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Abstract. This paper investigates the axial unsteady flow of a generalized Burgers’ fluid with fractional 
constitutive equation in a circular micro-tube, in presence of a time-dependent pressure gradient and an electric 
field parallel to flow direction and a magnetic field perpendicular on the flow direction. The mathematical model 
used in this work is based on a time-nonlocal constitutive equation for shear stress with time-fractional Caputo-
Fabrizio derivatives; therefore, the histories of the velocity gradient will influence the shear stress and fluid motion. 
Thermal transport is considered in the hypothesis that the temperature of the cylindrical surface is constant. 
Analytical solutions for the fractional differential momentum equation and energy equation are obtained by 
employing the Laplace transform with respect to the time variable t and the finite Hankel transform with respect to 
the radial coordinate r. It is important to note that the analytical solutions for many particular models such as, 
ordinary/fractional Burgers fluids, ordinary/fractional Oldryd-B fluids, ordinary/fractional Maxwell fluids and 
Newtonian fluids, can be obtained from the solutions for the generalized fractional Burgers' fluid by particularizing 
the material coefficients and fractional parameters. By using the obtained analytical solutions and the Mathcad 
software, we have carried out numerical calculations in order to analyze the influence of the memory parameters 
and magnetic parameter on the fluid velocity and temperature. Numerical results are presented in graphical 
illustrations. It is found that ordinary generalized Burgers’ fluids flow faster than the fractional generalized Burgers’ 
fluids. 

Keywords: Electro-magneto-hydrodynamic (EMHD) flow, Porous medium, Thermal-fluidic transports, Fractional model, 
Micro scale flow. 

1. Introduction 

In modern era, viscoelastic fluids have wide research interest due to their many useful applications.  Lubricants, polymeric 
solutions, colloidal solutions, and artificial and natural gels are few examples of viscoelastic fluids. Flows of such fluids 
through porous media are important for engineering and bioengineering.  

Since 1695, Leibniz and L'Hospital have initiated the differential calculus of fractional order. The theory of fractional 
derivatives, fractional integrals and of the fractional differential equations has intensively developed in last year’s. Also, the 
fractional calculus became an important tool for the mathematical modeling of the complex transport phenomena such as 
anomalous diffusion, flows with heat and mass transfer of viscoelstic materials, etc. Interesting results about flows of 
viscoelastic fluids modeled by the fractional calculus are given in the references [1-6]. 

The space-fractional derivatives and time-fractional derivatives have the advantage of describing heredity of materials and 
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processes, respectively the memory properties of materials. Mathematical models with time-fractional derivatives are more 
realistic for to describing many practical phenomena than the differential equations of integer order. 

Combined electro-magneto-hydrodynamic (EMHD) effects in the thermo-fluidic transport through small scale channels 
lead to the improvement of fluidic devices performances. Chakraborty et al. [7] investigated the thermal transport in the 
EMHD flows in the presence of Joule heating and viscous dissipation when the wall heat flux is constant. They have studied 
the influence of the applied magnetic field on the fluid temperature and velocity. 

Analytical solutions for the transient rotating electro-magneto-hydrodynamic flow in a parallel micro-channel have been 
determined by Jian et al [8]. They described analytically several particular cases of alternating current (AC) and direct current 
(DC) magnetic and electric fields. Their results demonstrate that the fluid velocity is strongly influenced by the applied 
magnetic field. It is also observed that the EMHD speed rises in the normal direction with the increase in the rotating Reynolds 
number and diminishes along the axis of rotation. 

The analysis of heat transfer through a capillary domain in the EMHD flow of blood was carried out by Sinha and Shit [9]. 
They determined that the Joule heating parameter can be used to control the blood temperature. Additionally, their 
investigation highlighted that the magnetic field can be used as a tool to control blood flow, especially in surgical operations. 
Wang et al. [10] studied the convective EMHD flows of a third grade fluid between two micro-parallel plates. Analytical 
solutions for the fluid temperature and velocity have been obtained by employing the perturbation method. Results demonstrate 
that both temperature and velocity distribution are maximum for Newtonian fluids and are diminishing for non-Newtonian 
fluids. The Lorentz force increases with the rise in the value of magnetic parameter and it results in considerable suppression of 
the convection. 

The flows of fluids through permeable porous media are of major significance in industry, biomechanics, geomechanics, 
etc. It is known that the flows in porous media can be described by the Darcy’s law. The flow of a fluid with the Jeffrey's 
constitutive equation in a circular cylinder filled with porous medium has been investigated by Jyothi et al. [11], while Ghosh 
et al. [12] studied the flow in a channel of an Oldroyd-B fluid generated by a rectified sine pulses. The peristaltic transport in a 
porous medium through an asymmetric channel has been examined by Elshehawey et al. [13]. Their results could be useful in 
medical applications. 

In the present paper we consider unsteady flows of a generalized Burgers fluid in a circular microtube filled with the porous 
medium. The mathematical model is described by a time-fractional constitutive equation for shear stress. The generalized 
fractional constitutive equation is based on the Caputo-Fabrizio time fractional derivative with exponential kernel. In this 
mathematical model, the histories of the velocity gradient influence the shear stress.  

The thermal transport is considered in hypothesis of constant temperature on the cylinder surface under presence of Joule 
heating and viscous dissipation. The fluid motion is an axial flow generated by a time-dependent pressure gradient and an 
electric field in the flow direction and an applied magnetic field perpendicular on the flow direction.  

Analytical solutions for the velocity and temperature fields are determined by using the Laplace transform with respect to 
the variable t and the finite Hankel transform of order zero with respect to the radial coordinate r.  

Obviously, the solutions for the fractional generalized Burgers fluid contain solutions for particular cases 
(fractional/ordinary Burgers fluids, fractional/ordinary Oldroyd-B fluids, fractional/ordinary Maxwell fluids and Newtonian 
fluids) obtained from the general case by particularizing the material coefficients and fractional parameters. 

By using the analytical solutions and the software Mathcad, the curves corresponding velocity and temperature for different 
values of the fractional parameters and magnetic parameter have been plotted. It is found that the fluids modeled by the 
fractional constitutive equation flow slower than ordinary fluids. Also, the temperature values are lower for the fractional fluids. 

2. Mathematical Formulation of the Problem. 

Let us consider an incompressible viscoelastic electrolyte solution with density   and the constant shear viscosity  . The 

solution is in micro-channel of length L and radius .R  The electrolyte solution has electric conductivity   and is in the 
influences of the combined applied electromagnetic force and oscillating pressure-gradient. The capillary is filled with porous 
medium with porosity .  The combined effects of the the electric field zEE e and the magnetic field rBB e  generates the 

electro-magneto-hydrodynamic (EMHD) force in the direction of flow, where ,ze and re are the unit vectors along z and radial 

directions, respectively, of cylindrical coordinate system ( , , )r z . The flow of fluid is along axial direction (z-axis) of the 

capillary and no flow is assumed in the radial or azimuthal direction. In porous medium, the continuity and momentum 
equations for incompressible fluid are 

. 0, v  (1) 

1
. ( . ),dp

t 


       

v

v v b R  (2) 

where  is density, p is pressure,  is stress tensor, v is velocity, b is body force and dR is Darcy's resistance of porous 

medium. The shear stress tensor for generalized Burgers’ fluids is given by [14]: 
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where ,T   A L L L v and  is the dynamic viscosity of the fluid, and 1 3,  are the relaxation time, respectively the 

retardation time, and 2 4,  are the material parameters heaving the dimension 2[ ]s  and / t  denotes the upper convected 

derivative defined as 

2

2
.Td

t t t dtt

   
  

         
   

L L
      (4) 

The generalized Burgers’ model given by Eq. (3) reduces at Burgers fluid for 4 0  , Oldroyd-B fluid for 2 4 0   , 

Maxwell fluid for 2 3 4 0     and the Newtonian fluid for 1 2 3 4 0.        

For axisymmetric flow binary electrolyte solution, the Poisson-Boltzmann equation describes the electric potentialE of 
electrical double layer by [15-18] 

2 2
2 1/ 20 021 ( )

( ),( ) ( )
B a

z e nr
r k r k

r r r k T
 

 
 

E E


 (5) 

with conditions 

0( ) , | 0,w rR
r 


 


EE E  (6) 

where 1
0 0, , , , , ,a BT k e n z k k

 and  are the absolute temperature of the electrolytic solution, the Boltzmann constant, the 

electronic charge, the ionic concentration in the bulk phase, the absolute value of the valence for a electrolyte ions, the 
thickness of electrical double layer, the Debye-Hückel parameter, and the dielectric constant respectively. The imposed body 
force b on the fluid is a combined effect of applied magnetic and electric field effects to the system.  

The EMHD body force is [20-25, 27, 30] 

( ) ,c r  b J B E  (7a) 

where J is given by the Ohm's law 

,   J E v B  (7b) 

and is the electric conductivity of the flow. For the considered problem the body force b takes the form 

2( ( ) ( , )) ,c zr E B v r t EB     b e e  (8) 

where 2( ) ( ), , ( , ) ,c z z rr k r E v r t B     E e v e B eE are the net charge density of the electrolyte solution, the axial 

component of applied electric field, the axial velocity of the fluid, and the constant external magnetic field in orthogonal 
direction to the flow respectively. The Darcy's resistance for generalized Burgers’ fluid is given by the following equation [26] 

2 2

1 2 3 12 2
0

1 1 ,( ) ( )dt k tt t

      
     

  
R v  (9) 

where 0,d z k R e is the permeability constant of the medium and is the porosity of the medium. With the help of Eqs. 

(2) and (8) one obtains the momentum equation for incompressible flow with combined electroosmotic and pressure effects in 
the form 

2 2
0

1
( ) ( ) ( , ) ( ) ,rz

v
p p t k E r B v r t r

t r r
   

    
 

E  (10) 

where 0 ( )p p p t  is the pressure gradient along axial direction , ( )z p t is continuous function and rz is shear stress in 

the axial direction and is given by generalized Burger fluid model [28] 

2 2

1 2 4 32 2
( 1) ,rz rz

rz

v

t t rt t

 
     

    
    

   
 (11) 

where i ( 1i   to 4 ) are the material constants. The appropriate initial and boundary conditions for velocity are 
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 v R, t 0.  (12b) 

We now introduce the following dimensionless parameters in Eqs. (5), (6), (9)-(12) 
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(13) 

where , ,h av H K and 0K are the Hemholtz-Smoluchowsky velocity, the Hartmann number, the non-dimensional 

electrokinetic width and the permeability parameter of the porous medium respectively. Dropping "*" notations, the governing 
equations in the non-dimensional form takes the form 
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along with initial and boundary conditions 
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The solution of Eqs. (17), (18) takes the form, 

0

0

( )
( ) ,

( )

I Kr
r

I K
E  (22) 

where 0I is the first kind of modified Bessel function with order zero. In order to consider a fractional model, we generalize 

the constitutive Eq. (15) with Caputo-Fabrizio time fractional derivative with non-singular kernel CF
t
 , namely we have 

1 1
1 2 3 4(1 ) (1 ) ,CF CF CF CF

t t rz t t

v

r
         

        


 (23) 

where CF
t
 is defined as [29], 



Electro-magneto-hydrodynamics Flows of Burgers Fluids in Cylindrical Domains with Time Exponential Memory  
 

Journal of Applied and Computational Mechanics, Vol. 5, No. 4, (2019), 577-591 

581

0

1 ( )
( ( )) exp( ) ( ) , 0 1,

1 1

tCF
t

t s
f t f s ds  

 
     

   (24) 

with the properties 

1
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and the Laplace transform of Caputo-Fabrizio time fractional derivative ( )CF n
t
  is given by [29] 
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Finally, our goal is to find solutions for the differential equations (14), (16), (23) along with conditions (19)-(21). To do this, 
we will employ the Laplace transform with respect to the time variable t and the finite Hankel transform with respect to the 
radial coordinate r. 

3. Solution of the Problem 

In order to solve the fractionalized form of generalized Burger bio-fluid model with the combined electric and magnetic 
effects in porous medium we will use the Laplace transformation and zeroth order finite Hankel transform. We apply the 
Laplace transform to Eqs. (14), (16) and (23) and we use the initial conditions from Eqs. (19)-(21) along with the formula (27) 
we get 

2
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From Eq. (30) we can write as 
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Eqs. (31) and (32) gives 
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v r q
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Similarly from Eq. (29) we can write 

( , ) ( ) ( , )r q A q v r q    (34) 

where, 
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Substituting Eqs. (22), (33) and (34) in Eq. (28) 

2
20

0 0

( )1 1
( ) ( ( , )) ( ) ( ( )) ( , ),

( ) a

K I Kr
F q rv r q P q q H A q v r q

r r qI K K


     


 (36) 

Applying the finite Hankel transform to above equation 
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where 
1

0 00
( , ) ( , ) ( ) ,n nv r q rv r q J r r dr J  is the zeroth order Bessel function of first kind and 0 ( ) 0nJ r  for all n. With Eqs. 

(32) and (35) the expression ( , )nv r q takes the form 
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where, 
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and the functions 0, 1, 6,, , ,n n nP P P and constants 0 1 5, , ,B B B are given in Appendix A. Let 1, 2, 6,, , ,n n nq q q be the roots of 

the polynomial 2 3 4 5 6
0, 1, 2, 3, 4, 5, 6,n n n n n n nq q q q q q     P P P P P P P (These roots can be computed numerically). By simple 

calculation we can write partial fractions as 
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where ,i na ( 1,2, ,6i   ) are in Appendix B. The inverse Laplace transform of Eq. (40) is 

,

6

,
16,

1
( , ) ,i nq t
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Thus the inverse Laplace transform for function ( , ) /nF r q q involved in the second term of (38) is 

,

6
,

0
16, ,

1
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t q ti n
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a
d r t f r d e

q
 



   P
 (42) 

Using Eqs. (41) and (42) we can write the inverse Laplace transform for Eq. (38) 

2
1 1

2 2

( ) ( )
( , ) ( , )* ( ) ( , ),n n n

n n n
n n

J r K r J r
v r t f r t p t d r t

r K r
 


 (43) 

where ( , )* ( )nf r t p t represents the convolution of two functions f and .p  If ( , ), [0,1]g r t r  has the Hankel transform 

( , ),ng r t the inverse Hankel is 2
0 1

1

( , ) 2 ( ) / ( ) ( , ).n n n
n

g r t J rr J r g r t




  The required solution for velocity component can be 

obtained by applying the inverse Hankel transform to Eq. (43) and is given by 

20 0
2 20

1 11 1

( ) ( )
( , ) 2 ( , ) ( ) 2 ( , ).

( ) ( )( )

t
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n n
n nn n n n

J rr r J rr
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   (44) 

4. Thermal Transport in Electro-magneto-hydrodynamics Flow 

In this section we will derive solution for the time-fractional temperature distribution due to EMHD flow of a generalized 
burger fluid. The energy equation which describes the mathematical model for the temperature distribution is [30] 

2 2 2 20 ( , ) ( , ) ( , )
( ) ( ( , ) ) ( )

p p p

r t v r t r t
r B v r t E

C r r t C C r t

  
 

   
   

   
 (45) 

where 0 represents the thermal conductivity of the fluid and pC represents the specific heat capacity of the fluid at 

constant pressure. Let w denotes the constant wall temperature through microchannel walls due to combined effects of 

viscous and Joule heating [31], then the appropriate initial and boundary conditions are 

( ,0) , 0 ,wr r R      (46) 
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( , ) , 0 .wR t t     (47) 

Using the dimensionless parameters defined in Eq. (13) along with the parameters *
1) / ( )( ,w w      

2 2
1 /zR E k  Eqs. (45)-(47) become (after dropping * notation) 
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u
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( ,0) 0, 0 1 , (1, ) 0, 0 ,r r t t        (49) 

where the constants , ,c a zE H S and rP are the Eckert number, the Hartmann number, the dimensionless volumetric heat 

generation due to Joule heating, and the Prandtl number respectively. These constants are defined as 
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The time fractional form of temperature distribution can be written as 

1
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r r r
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in which is the fractional parameter and the velocity ( , )v r t is given by Eq. (44). The Laplace transformed form of Eqs. 

(50)-(51) along with Eq. (49) is given by 

1
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r

r r r q 
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(1, ) 0q   (53) 

where { ( , )} ( , )r q r q   and { ( , )} ( , ).r q r q   Now we apply the finite Hankel transform to Eq. (52) along with Eq. 

(53), we get 
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we can rewrite it 

2

1
( , ) ,n n n

n

r q
q

 


 


  (57) 
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From Eqs. (55) and (57), 

11
1 1 00
( , ) { ( , )} ( , ) ( ) ,n n nr t r q r r t J rr dr       (59) 
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1
2 2( , ) { ( , )} ( ) ,n t

n n n nr t r q t e          (60) 

where ( )t represents the Dirac delta distribution. By using convolution theorem and Eqs. (59) and (60), the Laplace 

transformed form of temperature distribution can be written as, 

1 10
( , ) ( , ) ( , ) .n n

tt
n n n n nr t r t e e r d           (61) 

The thermal transport ( , )r t in the electro-magneto-hydrodynamics flow of time fractional form of generalized Burgers' 

fluid can be obtained by applying the finite inverse Hankel transform to Eq. (61) 

1
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4.1 Special case 1   

We know that  

1

( , )
lim ( , ).CFr t

r t
t



 


  


 (63) 

Applying the limit 1  to Eq. (62) we obtain the thermal transport ( , )r t in the EMHD flow of ordinary generalized 

Burgers' fluid as, 
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2
( , ) ( ) ( , ) ,

( )
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r
rPr t
Pr

n n
n n

e t
r t J rr e r d

Pr J r


 






      (64) 

with 1( , )nr t is given by Eq. (59), ( , )r t given by Eq. (51) but with velocity ( , )v r t given by Eq. (44) corresponding to 

ordinary fluid. 

5. Numerical Results and Discussion 

The axial unsteady electro-magneto-hydrodynamic flows of fractional generalized Burgers’ fluids within a circular tube 
with isothermal surface have been studied. The mathematical model is described by the fractional constitutive equation with 
time-fractional Caputo-Fabrizio derivatives with exponential kernel. In the considered model, the histories of the velocity 
gradient influence the shear stress. Also, the thermal memory effects are considered in fractional energy equation.  

The fluid motion is generated by the combined influence of external electric and magnetic fields and the pressure gradient 
in the axial direction. Exact analytical solutions for the fluid velocity and thermal transport have been determined by using the 
Laplace transform with respect to time variable t and the finite Hankel transform of order zero with respect to the radial 
coordinate r.  

By employing the Mathcad software, numerical calculations were carried out in order to obtain numerical values of 
velocity v(r,t) and temperature T(r,t). In the analytical expressions (44) for velocity and (62) for the temperature needs to know 
the positive roots of the equation 0 ( ) 0J x  . These roots have been determined with the subroutine “root(f(x),x,a,b)” from 

Mathcad. In our numerical calculations, we used n = 200 terms in the series solutions (44) and (62). By numerical simulations, 
we have observed that the influence of terms corresponding to n > 200 is insignificant.  

For the numerical computations presented in this paper, we have used the oscillating pressure gradient 

 ( ) 0.2 0.1cos 3 / 2 0.05sin( t)p t t    , the Hartman number Ha = 0.1, Prandtl number Pr = 7 and the thermal fractional 

parameter 0.6  .  

The influence of permeability 0K of porous medium on the fluid velocity has been analyzed in graphs from Figs. 1- 4. In 

these figures we have compared the ordinary fluids corresponding to fractional parameters (a) 1   with the fractional 

ones corresponding to the fractional parameters (b) , (0,1)   . We have considered following cases: generalized Burgers’ 

fluids with 1 2 3 410, 1.9, 0.9, 1.4       , Burgers’ fluids for which 1 2 3 410, 1.9, 0.9, 0       , Oldroyd-B fluids 

characterized by 1 2 3 410, 0, 0.9, 0       and Maxwell fluids with 1 2 3 410, 0, 0, 0       .   

It is observed from Figs. 1-4 that the values of fluid velocity are increasing with the permeability of porous medium. This 
fact is due to the Darcy’s resistance which decreases for increasing values of the parameter 0K . Also, it is important to note that 

fractional fluids flow slower than the ordinary fluids. This behavior is produced by the stronger damping of the velocity 
gradient in the case of fractional fluids due to the kernel of the Caputo-Fabrizio derivatives (See Eq. (33)). Graphs from Figs. 
1-4 reveals that the Burgers’ fluids flow faster that the generalized Burgers fluids and Oldroyd-B fluids, whereas the velocity of 
Maxwell fluids has the highest values. The different fluid behaviors are due to the different way in which the gradient of the 
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velocity is damped (the mathematical expressions of the damping kernels differ from fluid to fluid). 

 

Fig. 1. Velocity profile ( , )v r t of Burgers’ fluid ( 4 3 2 11.4, 0.9, 1.9, 10       ) for 1, 0.1, 0.1at K H   and various values of 0K  

(a) Generalized Burgers’ fluid; (b) Fractional Generalized Burgers’ fluid. 

 

Fig. 2. Velocity profile ( , )v r t of Burgers’ fluid ( 4 3 2 10, 0.9, 1.9, 10       ) for 1, 0.1, 0.1at K H   and various values of 0K  

(a) Burgers’ fluid; (b) Fractional Burgers’ fluid. 

 

Fig. 3. Velocity profile ( , )v r t of Oldroyd-B fluid ( 4 3 2 10, 0.9, 0, 10       ) for 1, 0.1, 0.1at K H   and various values of 0K  

(a) Oldroyd-B fluid; (b) Fractional Oldroyd-B fluid. 

Fig. 5 has been plotted to highlight the influence of the fractional parameter on the fluid motion when the fractional 
parameter 0.7  . It can seen from Fig. 5 that for small values of the time t, the values of velocity are increasing with the 

fractional parameter while, for large values of the time t velocity values are decreasing with the fractional parameter .  

Fig. 6 has been plotted to highlight the influence of the fractional parameter  on the fluid motion when the fractional 

parameter 0.4  . One can see from Fig. 6 that for small values of the time t, the values of velocity are decreasing with the 
fractional parameter  while, for large values of the time t velocity values are increasing with the fractional parameter  . The 

behaviors highlighted in Figs 5 and 6 are due to the time-evolution of the weight function of the velocity gradient in the 

constitutive equation, namely  1( ) L ( )h t F q 
 with graphs given in Fig. 9. 
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Fig. 4. Velocity profile ( , )v r t  of Maxwell fluid ( 4 3 2 10, 0, 0, 10       ) for 1, 0.1, 0.1at K H    and various values of 0K  

(a) Maxwell fluid; (b) Fractional Maxwell fluid. 

  

 
Fig. 5. Velocity profile ( , )v r t , versus r , of generalized Burgers’ fluid ( 4 3 2 10.2, 0.1, 0.8, 0.15       ) for  

00.1, 0.4, 0.1aK K H   and different values of with  fixed. 
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Fig. 6. Velocity profile ( , )v r t , versus r , of generalized Burgers’ fluid ( 4 3 2 10.2, 0.1, 0.8, 0.15       ) for  

00.1, 0.4, 0.1aK K H   and different values of  with  . 

  

 
Fig. 7. Profile of temperature ( , )r t versus r of generalized Burgers’ fluid ( 4 3 2 10.4, 0.1, 0.3, 0.15       ) for 

00.1, 4.5, 0.4,aH K K   1.2, 0.6cE   and different values of with  . 
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Fig. 8. Profile of temperature ( , )r t versus r of generalized Burgers’ fluid ( 4 3 2 10.4, 0.1, 0.3, 0.15       ) for 

00.1, 4.5, 0.4,aH K K   0.6, 0.6zS   and different values of with  . 

Figs. 7 is prepared to demonstrate the effects of ,zS the Joule heating coefficient, on the temperature profile together with 

the fractional parameters. The temperature profile increases with the increase in the values of .zS  Fig. 8 represents the effects 

of Eckert number cE along with the fractional parameters on the thermal transport. We used higher values of Eckert number cE . 

An increase in fluid thermal transport is observed with the increase in the values of cE . 

In refs. [32, 33], authors used Eckert number to investigate the EMHD thermofluidic temperature profile in a channel flow. 
They have used for the Eckert number the values 1,1.2,1.4cE  . For the higher values of Eckert number, a remarkable increase 

in thermal transport profile was observed in refs. [32, 33], therefore a good resemblance of the results from this paper it is 
found with results given in [32, 33]. 

 

Fig. 9. Profile of function , ( )F t  versus for 4 30.4, 0.1,   2 10.3, 0.15, 0.7     and different values of time t . 

6. Concluding remarks 

The exact analytical solution of time fractional model EMHD fluid flow through a cylindrical micro channel is derived for 
both velocity and thermal transport profiles with the help of Laplace and finite Hankel transforms. The following is a summary 
of main findings in the paper. 
 As anticipated, the drag force falls as the permeability of porous medium rises and this increases the velocity profile for all 

kinds of fluids (a generalized Burgers' fluids, a Burgers' fluid, a Maxwell fluid and an Oldroyd-B fluid). This is 
resemblance with the fact that velocity profile reduces with permeability. Furthermore an opposite effect is observed with 
the increase in the magnitude of applied magnetic fields. 

 A comparative study has been carried out numerically to distinguish the distinct behavior of ordinary model solutions and 
fractional model solutions. 

 It is observed that we can control the fluid velocity and thermal transport performance with the variation of fractional 
parameters. 

 The ordinary fluid moves slower/faster than the fractional fluid for certain values of time t. 
 The Joule heating parameter can be used to control the fluid thermal transport. 
 For large values of the Eckert number, increase in fluid temperature is observed. 

Fractional order EMHD flow through capillary and its thermal behavior have important applications in Biochip technology. 
Thus, our results are also important in the control of liquid samples of nano-volumes present in microfluidic devices. These 
liquid samples have applications in medical diagnosis and biological analysis. 
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Appendix A 

0 0B K    (A.1) 

1 0 1 1( 2 )B K            (A.2) 

2
2 0 1 1 1 1 2 2( 1 2 , )B K                     (A.3) 

2 2
3 0 1 1 1 1 1 1 2 2 2 1 2( 2 2 ),B K                       (A.4) 
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4 0 2 2 2 2 1 2 1 2 2( 2 2 ),B K                  (A.5) 

5 2 2
5 0 2 2( )B K q      (A.6) 

2 2
0, 0 0 ,n nHa K K r     P  (A.7) 

2 2 2 2 2
1, 0 0 0 0 0 02 2n n nHa K K r Ha K K r K Ha K                  P

2 2 2 2 2
0 1 0 1 0 1 0 1 0 3 32 n n nK r Ha K Ha K K r K r             

(A.8) 

2 2 2 2 2
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2 2 2 2 2 2
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2 2 2 2 2
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2 2 2 2 2
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1 4 0 2 4 2 4nK r        
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