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Abstract. In this article, the electro-osmotic flow of Oldroyd-B fluid in a circular micro-channel with slip boundary 
condition is considered. The corresponding fractional system is represented by using a newly defined time-
fractional Caputo-Fabrizio derivative without singular kernel. Closed form solutions for the velocity field are 
acquired by means of Laplace and finite Hankel transforms. Additionally, Stehfest’s algorithm is used for inverse 
Laplace transform. The solutions for fractional Maxwell, ordinary Maxwell and ordinary Newtonian fluids are 
obtained as limiting cases of the obtained solution. Finally, the influence of fractional and some important physical 
parameters on the fluid flow are spotlighted graphically. 

Keywords: Electro-osmotic flow; Slip boundary condition; Oldroyd-B fluid; Time-fractional Caputo-Fabrizio derivative; 
Stehfest’s algorithm. 

1. Introduction 

Electro-osmosis phenomenon refers to bulk movement of an aqueous solution past a stationary solid surface due to an 
externally applied electric field [1]. It is used intensified in the context of micro and nano fluidics and in enormous scientific 
applications such as lab-on-a-chip technologies, soil analysis and chemical analysis [2]. Towards its potential applications, 
many theoretical [3-9], numerical [10, 11] and experimental [12, 13] studies on different electro-osmotic flow models are 
carried out by many authors for Newtonian and non-Newtonian fluids. 

The subject of fractional calculus deals with the integrals and derivatives of any arbitrary real number. It has powerful 
applications in physics, engineering and many scientific areas [14-16]. The fractional derivative has many definitions, namely, 
Riemann-Liouville time-fractional derivative, Caputo time-fractional derivative [17], more recently, Caputo and Fabrizio [18]. 
The first two definitions, Riemann-Liouville time-fractional derivative, Caputo time-fractional derivative have a singular 
kernel while the new definition of the Caputo and Fabrizio time-fractional derivative is without singular kernal. Losada and 
Nieto [19] introduced the fractional integer corresponding to the fractional Caputo- Fabrizio derivative and studied its related 
fractional differential equations. In addition, Alsaedi et al. [20] found the solutions for a coupled system of time-fractional 
differential equations including continuous functions and the Caputo-Fabrizio fractional derivative. Moreover, Baleanu et al. 
[21] applied the variational homotopic perturbation and q-homotopic analysis methods to make a comparison between Caputo 
and Caputo-Fabrizio derivatives for the time-fractional advection equation. They indicated that rough answers for both 
derivatives are similar and the Caputo–Fabrizio derivative is faster than the Caputo derivative in terms of CPU speed up 
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computations by using Mathematica. 
Recently, the fluid flow with fractional derivatives becomes a highly emerging area of research. The effect of fractional 

parameter for different fluids has been studied by many researchers [22-25]. They described the governing equations by the 
corresponding fractional partial differential equations and then they obtained exact solutions by using the discrete Laplace 
transform, Fourier transform and some well-known special functions. Several researchers discussed Oldroyd-B fluid models by 
means of fractional approaches. Zheng et al. [26] illustrated the slip effects on the magnetohydrodynamic flow of an 
incompressible generalized Oldroyd-B fluid induced by an accelerating plate by using fractional calculus approach. They 
introduced closed form solutions for velocity and shear stress in terms of Fox H-function by using the discrete Laplace 
transform of the sequential fractional derivatives. Exact solutions for the helical flow of a generalized Oldroyd-B fluid in a 
circular cylinder by using Hankel and Laplace transforms are obtained by Fetecau et al. [27]. Qi and Xu [28] used the discrete 
Laplace transform of the sequential fractional derivative for the flow near a wall suddenly set in motion for a viscoelastic fluid 
with the generalized Oldroyd-B model. For the electro-osmotic flow of the Oldroyd-B fluid model, Jiang et al. [29] studied the 
electro-osmotic flow of a fractional Oldroyd-B fluid in a circular microchannel with linear Navier slip velocity boundary 
condition. They derived exact solutions for the electric potential and transient velocity by means of Laplace and finite Hankel 
transforms. Moreover, they obtained the solutions for the fractional Maxwell fluid and fractional second grade fluid as well as 
Newtonian fluid as special cases from the main results. Other interesting and recent solutions regard electro-osmotic flow with 
time-fractional derivative obtained in [30-33] by considering different types of fluids.  

This article is concerned with studying the electro-osmotic flow of an Oldroyd-B fluid with slip boundary condition in a 
circular micro-channel by using a newly defined time-fractional Caputo-Fabrizio derivative without singular kernel. Closed 
form solutions for velocity are obtained by using Laplace and finite Hankel transforms. In addition, Stehfest’s algorithm is 
used for inverse Laplace transform. The solutions for fractional Maxwell, ordinary Maxwell and ordinary Newtonian fluids are 
obtained as special cases of the general solution. Finally, the influences of the fractional parameter as well as some other 
important physical parameters on the fluid flow are spotlighted graphically. Our results may be useful for the prediction of the 
flow behavior of viscoelastic fluids in micro-channels and can benefit the design of micro-fluidic devices. 

2. Formulation of the Problem and Governing Equation 

The continuity equation for an incompressible viscoelastic fluid is 

. V 0 


  (1) 

We consider the flow of an Oldroyd-B fluid in a straight circular cylinder. The velocity field is defined as 

V v v v , with v 0, v 0, v ( , )r r z z r ze e e u r t       
   

  (2) 

The constitutive equation is 

( , )
1 ( , ) 1

r

u r t
r t

t t r
   
  

  
  

   
   
      (3) 

where, rzT  is the shear stress,  and
r

 are the relaxation and retardation time, respectively, and  is the constant viscosity. 

The start-up from rest of the electro-osmotic flow of a viscoelastic fluid in a circular microchannel of radius R. The dielectric 
constant of the fluid is . It is assumed that the channel wall is uniformly charged with a zeta potential W , and the liquid 

solution is a viscoelastic fluid whose behavior can be described by the fractional Oldroyd-B (Jeffrey’s) equation (3). When the 
external electric field 0E is imposed along the axial direction, then the fluid in the micro-channel sets in motion due to the 

electro-osmosis. 
According to the theory of electrostatics, the net change density e is expressed by a potential distribution , which is given by 

the following equation of Poisson type 

2 e e 
 

 
        (4) 

The corresponding boundary conditions of the zeta potential are 

0

( , ) , 0.W

r

R
r
  



 
   (5) 

Also, assume that the change distribution in the Debye layer is not affected by time, therefore, the wall of the channel has 
constant electric potential 0E . In the assumption of the Boltzmann distribution and a small surface (zeta) potential of the 

electrical double-layer, we use the Debye-Huckel approximation, so 

2 2
02

e
B

z e n

k T
     (6) 
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where 0n is the bulk number concentration, z  is the valence of ions, e is the fundamental charge, 
Bk is the Boltzmann 

constant, T is the absolute temperature. 

2 2

2 2 2

1 1f f f
f r

r r r r z
               (7) 

if ( , )f f r t (in our problem all functions depend only of ( , )r t ). Implies that 

2 2

2 2

1 1 1f f f f f
f r r

r r r r r r rr r

                      
  (8) 

By using (6) and (8) in (4) we have 

2 2 2
0

2

1 1 2

B

z e n
r r r k T

  


    
    (9) 

We define 2 2 2
0(2 ) / ( )Bk z e n k T  , the Debye-Huckel parameter and equation for the electrical potential becomes 

2 2
2 2 2 2 2

2 2
)

1 0, or ( 0 0k r r k r
r r r r r
     


      

      (10) 

Eq. (10) is the modified Bessel equation with the general solution 

     1 0 2 0r C I kr C K kr     (11) 

By using 

       0 1 0 1( ) ( ) ( ) ; ( ) ( ) ( ),
d d

u r u r u r u r u r u r
dr dr

I I K K      (12a) 

   1 1 2 1C kI kr C kK kr
r


 

   (12b) 

Since,    1 1 2
0

lim , 0 0, must be zero
r

K kr I C


   . 

   1 0r C I kr    (13a) 

   1 0 1
0

W
Wr R C I kR C

I kR


       (13b) 

Finally, the solution of (3) and (4) is obtained as 

   
 

0

0
W

I kr
r

I kR
    (14) 

The relevant equation of the linear momentum is 

0 0

1 1
( ) , or rz

rz e rz e

u u
r E E

t r r t r r


     

  
    

      (15) 

But,    2 2 2 2
0 0 0(2 ) / ( ) /e B Wz e n k T k k I kr I kR           , then, Eq. (15) becomes 

   2
0 0 0

1
/W

u
k E I kr I kR

t r r

    
  

    (16) 

The constitutive and linear momentum equations for ordinary Oldroyd-B fluid are: 
The constitutive equation: 

1 1 ,r
u

t t r
                     (17) 

The linear momentum equation: 

     2
0 0 0

1
/W

ru
k E I kr I kR

t r r


  


 

    (18) 
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the initial conditions are written as 

0

( , )
( ,0) 0, 0,

t

u r t
u r

t 


 

   (19) 

the boundary conditions are 

0

( , ) ( , )
0, ( , ) 0.

r r R

u r t u r t
u R t d

r r 

 
  

    (20) 

By introducing the following non-dimensional variables 

* * * * * * * *0
2 2 2

, , , , , , , , ,Wr
r s

W s s

Eu r d R
u r t t d u

u R R uR R R

      
  

            (21) 

after dropping the star notation, we can obtain the basic equation for Oldroyd-B fluid in the following non-dimensional form 

2 0

0 0

1

( )1 ( ) ( , )
1 1 , , 0,
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( , )
(1, ) 0.
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r
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K

t t r t r r I K r

u r t
u t d

r

  




                           


  
 

  (22) 

2.1. The fractional model with Caputo-Fabrizio derivatives 

In this case, the constitutive equation is 

    ( , )
1 ( , ) 1 , 0 1, 0 1.t r t

u r t
D r t D

r
    

      
   (23) 

By applying the operator (1 )tD to Eq. (22), the obtained result can be written as 

     
2

0

0

( )1
1 1 1
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                (24) 

By using equation (16) and the property 0, Constant,tD C C   the result reduce to the following form, 
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Then, Eq. (25) becomes 

2
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(30c) 

where    
0

, , stu r s u r t e dt
   is the Laplace transform of the function  ,u r t . 

3. Solution of the Problem 

By applying the Laplace transform to Eq. (18), the solution in transform domain is 

2 2
0

0

( )(1 )(1 ) 1 ( , )
( , ) ,

(1 ) (1 ) ( )
r I Krss s u r s K
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or  
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  (32) 

By applying Hankel transform and rearrange the following results is obtain 
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Rearrange Eq. (23), such that ( , )u r t  satisfies the initial and the boundary conditions. First consider the auxiliary function 
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and we have 
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where        2 2 3
0 / ( ) 3 /n n n n nA s U s J r r K h s    with inverse Laplace transform 
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(38b) 

where, [(j+1)/2] is the integer part of (j+1)/2 and p is a positive integer number. By applying the inverse Laplace transform to 
Eq. (25), results that 

   2,H n n nu r t t h a t    (39) 

By applying the inverse Hankel transform to Eq. (27), results that 
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3.1. Some observations 
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.  

So these observations imply that the obtained solution in Eq. (28) satisfies the initial and the boundary conditions. 

3.2. Particular cases 
3.2.1. Ordinary Oldroyd-B fluid 

When taking limit , 1   of Eqs. (38) and (40), the obtained result can be write as: 
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with inverse Laplace transform we have 
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(42) 

where, [(j+1)/2] is the integer part of (j+1)/2 and p is a positive integer number which gives the dimensionless velocity 
expression for the electro-osmotic flow of the ordinary Oldroyd-B fluid. 

 

3.2.2. Fractional Maxwell fluid  

By taking the limit 0r  of Eqs. (38) and (40), the obtained result can be write as: 
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(45) 

where, [(j+1)/2] is the integer part of (j+1)/2 and p is a positive integer number which gives the dimensionless velocity 
expression for the electro-osmotic flow of Maxwell fluid with fractional derivative. 

 
3.2.3. Ordinary Maxwell fluid 

By taking the limit 0r  and , 1   of Eqs. (38) and (40), the obtained result can be write as: 
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where          
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(47) 

where, [(j+1)/2] is the integer part of (j+1)/2 and p is a positive integer number which gives the dimensionless velocity 
expression for the electro-osmotic flow of the ordinary Maxwell fluid. 

3.2.4. Ordinary Newtonian fluid 

By taking the limit , 0r   and , 1   of Eqs. (38) and (40), the obtained result can be write as 
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where, [(j+1)/2] is the integer part of (j+1)/2 and p is a positive integer number which gives the dimensionless velocity 
expression for the electro-osmotic flow of the ordinary Newtonian fluid. 

4. Numerical Results and Discussion 

In this section we present the graphical analysis of the electro-osmotic flow of an Oldroyd-B fluid with a slip boundary 
condition in a circular micro-channel by using a newly defined time-fractional Caputo-Fabrizio derivative without singular 
kernel. Numerical results are given to demonstrate the effects of pertinent parameters such as , , , ,d K   and r on the fluid 

flow velocity. 
All parameters, variables and functions are considered non-dimensional. In Fig. 1, we present the effect of the fractional 
parameter versus r on the velocity field for two different values of time t. It is observed that for small value of time in Fig. 1a, 
near the boundary of the cylinder the velocity increases as the fractional parameter increases while after some critical values 
of r the velocity decreases as the fractional parameter increases. But for large value of time in Fig. 1b, the velocity increases 
as fractional parameter increases. The effect of the fractional parameter  versus r is presented in Fig. 2. This shows the 

opposite influence than Fig. 1. 

  
Fig. 1. Profiles of dimensionless velocity against r for  variation at 0.002, 0.5,d   0.1r  , K=20, 0.8  and two values of time t. 

 

  
Fig. 2. Profiles of dimensionless velocity against r for  variation at 0.002, 0.5,d   0.1r  , K=20, 0.8  and two values of time t. 

  
Fig. 3. Profiles of dimensionless velocity against t for  variation 

at 0.002, 0.5,d   0.1r  , K=20, 0.8  and r=0.1 
Fig. 4. Profiles of dimensionless velocity against r for  variation 

at 0.002, 0.5,d   0.1r  , K=20, 0.8   and r=0.1 

The effects of fractional parameters and  versus t on velocity profile are presented in Fig. 3. From this figure one can 
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observe that, for these parameters the fluid behavior is changed at many time values. 
In Figs. 5, 6 7, we study the effects of slip, electro-kinetic width and relaxation time, respectively, versus r on fluid flow 
velocity at two different values of time t. From these figures, it is observed that by increasing the values of slip parameter, the 
electrokinetic width parameter as well as the relaxation time the velocity increases. It is also important to note that by 
increasing the time t at the boundary layer difference is increasing. 

 

  
Fig. 5. Profiles of dimensionless velocity against r for d variation 

at 0.5,  0.1r  , K=20, 0.6   and two values of time t 
Fig. 6. Profiles of dimensionless velocity against r for K variation 
at 0.5,  0.1r  , d=0.002, 0.6   and two values of time t 

 

  
Fig. 7. Profiles of dimensionless velocity against r for λ variation 

at 0.002,d  0.1r  , K=20, 0.6   and two values of time t 
Fig. 8. Profiles of dimensionless velocity against r for λr variation 
at 0.002,d  0.5  , K=20, 0.6   and two values of time t 

The effect of retardation time r on the velocity profile versus r is presented in Fig. 8. It is observed that by increasing the value 

of retardation time r the velocity decreases and much influence is appeared for large values of time t. Fig. 8, shows an 

opposite influence than Figs. 5, 6 and 7. 
Figs. 9 and 10 are plotted in order to study the influence of relaxation and retardation time, respectively, versus t at two values 
of r. From these figures, we observe that initially the velocity has minimum value near the boundary while after some values of 
time (critical values) the velocity has a maximum value near the boundary. 
Similar results are obtained from Figs. 11 and 12 which presented the velocity field when both parameters (r,t) are 
simultaneous variable and for two values of fractional parameters. The grid points for the plotting are (ri = 0.01i, tj = 0.01j, i, j 
= 1, 2, …, 100. A comparison between our result and the result of Jiang et al. [29] is presented in Fig. 13.

 

  Fig. 9. Profiles of dimensionless velocity against t for λ variation 
at 0.002,d  0.1r  , K=20, 0.6   and two values of time r 

Fig. 10. Profiles of dimensionless velocity against t for λr variation 
at 0.002,d  0.5  , K=20, 0.6   and two values of time r 
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Fig. 11. Variation with r , t and of the non-dimensional velocity. 

 

  
Fig. 12. Variation with r , t and β of the non-dimensional velocity. 

 

 
Fig. 13. Comparison of our results with the available similar studies [29]. 

5. Conclusions 

The aim of this article is to study the electro-osmotic flow of an Oldroyd-B fluid with slip condition on the boundary in a 
circular micro-channel by using time-fractional Caputo-Fabrizio derivative without singular kernel. The Laplace and finite 
Hankel transforms are used to find solutions for the velocity field. In addition, Stehfest’s algorithm is used for inverse Laplace 
transform. The solutions for fractional Maxwell, ordinary Maxwell and ordinary Newtonian fluids are obtained as limiting 
cases from the obtained solution. Finally, the influences of the fractional parameter and some important physical parameters on 
the fluid flow are spotlighted graphically. The following points are observed: 
 For small values of time, near the boundary of the cylinder the velocity increased by increasing the values of the fractional 

parameter  and after some critical values of r the velocity decreased by increasing the values of the fractional 
parameter .  

 For large values of time, the velocity increased by increasing the values of fractional parameter . 
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 For small values of time, near the boundary of the cylinder the velocity decreased by increasing the values of the fractional 
parameter  and after some critical values of r the velocity increased by increasing the values of the fractional 

parameter  .  

 For large values of time, the velocity decreased by increasing the values of the fractional parameter  . 

 By slip, electrokinetic width and relaxation time the velocity increases. 
 By increasing the values of retardation time r  the velocity decreased and much influence is appeared for large values of 

time t. 
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Nomenclature 

u  Velocity of the fluid, R  Radius of the channel, 

0E  Electric field strength, 0n  Bulk ionic number concentration, 

d  Slip length, z   Valence of ions, 
e  Electron charge, T  Absolute temperature, 
K  Dimensionless electrokinetic width, 0J  Bessel function of the first kind, 

0I  Modified Bessel function of the first kind, nr  Positive roots of Bessel function of the first kind, 
  Shear stress,   Shear strain, 
  Dynamic viscosity,   Density of the electrolyte solution, 

e  Electric charge density,   Relaxation time, 

r  Retardation time, ,   Fractional order derivative parameters, 
  Dielectric constant,   Potential distribution, 

W  Zeta potential of the channel wall, Bk  Boltzmann constant, 

k  Debye-Huckel parameter,   
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