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Abstract. Effects of the uniform transverse magnetic field on the transient free convective flows of a nanofluid 
with generalized thermal transport between two vertical parallel plates have been analyzed. The fluid temperature is 
described by a time-fractional differential equation with Caputo derivatives. Closed form of the temperature field is 
obtained by using the Laplace transform and fractional derivatives of the Wright’s functions. A semi-analytical 
solution for the velocity field is obtained by using the Laplace transform coupled with the numerical algorithms for 
the inverse Laplace transform elaborated by Stehfest and Tzou. Effects of the derivative fractional order and 
physical parameters on the nanofluid flow and heat transfer are graphically investigated. 

Keywords: Convection flows; Nanofluids; Caputo fractional derivative; Laplace transform. 

1. Introduction 

Nanofluids plays an important role in various branches of engineering, for instance industrial cooling systems, nuclear 
reactors, solar collectors, transportation industries, biochemical applications, heat exchangers, electronic cooling devices and 
so forth. Therefore, numerous theoretical and computational investigations have been performed on nanofluids in regular 
surfaces for saving energy as well as getting better performance and minimizing operating costs. However, flow over 
roughened surface is very common in industries and in several heat transfer devices since irregular surfaces transfer more heat 
energy compared to flat surfaces. Thus effects of irregular surfaces on convective heat transfer enhancement have been carried 
out by several investigators. 

The concept of a nanofluid has been advanced by Choi [1] who showed substantial augmentation of heat transported in 
suspensions of copper or aluminum nanoparticles in water and other liquids. Nanofluids are a new kind of fluid; they are 
dispersions of nanoparticles in liquids that are permanently suspended by Brownian motion. Xuan and Li [2] introduced a 
procedure for preparing a nanofluid consisting of water and 5 volume% Cu nanoparticles and revealed a great potential of 
nanofluid in enhancing the thermal conductivity. Khanafer and Vafai [3] analyzed thermo-physical characteristics of nanofluids. 
They introduced several relative correlations for the thermo-physical properties of nanofluids based on available experimental 
data. Khanafer et al. [4] investigated the problem of buoyancy-driven heat transfer enhancement of nanofluids in a two-
dimensional enclosure. They analyzed four different models based on the physical properties of nanofluid for a range of 
Grashof numbers and volume fractions. It was found that the suspended nanoparticles substantially increase heat transfer rate 
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for any given Grashof number. Santra et al. [5] conducted a study of heat transfer augmentation in a differently heated square 
cavity using copper-water nanofluid. Oztop and Abu-Nada [6] studied natural convection flow in nanofluid filled partially 
heated rectangular enclosures with different types of nanoparticles. Some interesting results exist in literature about natural 
convection nanofluids are [7-12]. The review of literature clearly indicates that the natural convection flow is mainly related to 
heated enclosures of regular surfaces filled with nanofluids. 

However, none of the above-mentioned papers or books took into consideration fractional derivatives in their governing 
equations although in the last time the fractional models acquired an increasing interest in many fields including physics, 
chemistry, biology, heat transfer, quantum mechanics, viscoelasticity, etc. The subject of fractional calculus deals with the 
investigations of integrals and derivatives of any arbitrary real order. Fractional calculus is now considered as a practical 
technique in many branches of science including physics (Oldham and Spainier [13]). A growing number of works in science 
and engineering deal with dynamical system described by fractional order equations that involve derivatives and integrals of 
non-integer order (Benson et al. [14], Metzler and Klafter [15], Zaslavsky [16]). These new models are more adequate than the 
previously used integer order models, because fractional order derivatives and integrals describe the memory and hereditary 
properties of different substances” (Podlubny [17]). This is the most significant advantage of the fractional order models in 
comparison with integer order models, in which such effects are neglected.  

In the recent years, the fluid flow with fractional derivatives become highly emerging area of research. Recently, the effect 
of fractional order for different fluid have been studied by researchers [18-21], which has been described by fractional partial 
differential equation and the exact solution of these equations have been obtained by using the discrete Laplace transform, 
Fourier transform and some well-known special functions. 

Up to the author’s knowledge, no studies have so far been made with regard to unsteady hydromagnetic free convection of 
nanofluid flowing between vertical parallel plates with one plate isothermally heated and the other thermally insulated for 
nanofluids namely copper-water nanofluids with thermal transport described by Caputo time fractional derivatives.  

In this work, the fractional differential equation for temperature is solved by using Laplace transform and the partial 
differential equation for the unsteady fluid flow velocity with appropriate initial and boundary conditions have been solved 
numerically. The influence of the fractional parameter and physical parameters such as the magnetic interaction parameter, 
Grashof number, volume fraction on the fluid flow and heat transfer characteristics are analyzed and discussed. 

2. Statement of the problem 

The transient free convection flow of a nanofluid between two vertical plates separated by a distance L, with one plate 
isothermally heated and the other one thermally insulated in the presence of a transversal magnetic field of constant 
intensity 0B is studied. Initially the temperature of the two plates and of the fluid is assumed to be mT  . At time 0t   , the plate 

of 0y   is kept insulated and the temperature of the plate at y L  is raised to wT  . The transient motion of the nanofluid is 

caused by the buoyancy force arising from the variations of the temperature gradient. The nanofluid is a water-based fluid 
containing copper/alumina nanoparticles. For the present study, the Prandtl number of water has been considered to 
be Pr 6.2 .  
The effective density, specific heat capacity, viscosity and thermal conductivity of the nanofluid are given by [18, 22] 
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In the above hypothesis, the governing equations of the considered problem are [22]: 
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where ( , )u y t   is the fluid velocity in x-direction, ( , )T y t   is the fluid temperature, is the electrical conductivity and 

subscripts f and s refer to the fluid and solid particles, respectively. Along with basic equations (5) and (6) we consider the 
following initial and boundary conditions: 
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Introducing the following dimensionless variables and parameters, 
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into Eqs. (5)-(9), we obtain the dimensionless governing equations, initial and boundary conditions as follow: 
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( , 0) 0, ( , 0) 0 ; 0 1,u y T y y     (13) 

0

( , )
(0, ) 0, 0 ; 0,

y

T y t
u t t

y 


  


 (14) 

(1, ) 0, (1, ) 1; 0,u t T t t    (15) 

where Gr is the Grashof number, Pr is the Prandtl number and 2M is the magnetic parameter. The thermal transport equation 
(12) has been obtained by using the thermal balance equation and the classical Fourier’s law for the thermal flux. In order to 
consider a mathematical model with thermal memory we followed the ideas from [23, 24]. Generalizing the Fourier’s law with 
Caputo time-fractional derivative, the following fractional mathematical model is studied: 
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where ( , )tD T y t is Caputo derivative operator defined as 
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3. Solution of the problem 

3.1. Temperature distribution 

Applying Laplace transform to Eqs. (17), (14)2 and (15)2 and using initial condition Eq. (13)2, we obtain 
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Solution of the partial differential equation (19) subject to conditions in Eq. (20) can be written as 
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where 1 1 1(Pr ) / , (1 ) [( ) / ( ) ].f nf p s p fa k b k b c c        In order to obtain the inverse Laplace transform of ( , )T y t  

given by Eq. (21), we consider the auxiliary function 
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with the inverse Laplace transform 
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The Laplace transform (21) can be written in the equivalent form 
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Using the inverse Laplace transform of the composed functions, we obtain 
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In the above relations is the Wright function [25] and ( )t is the Dirac’s distribution. Now, we have 
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Finally, we obtain the temperature field given by 
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It is easy to look like the relations 
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Using Eqs. (30) and (31), we obtain that 
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and, Eq. (30) becomes 
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Therefore, the temperature field is expressed with the Caputo derivative of the Wright’s functions. 
 

3.2. Velocity field 

Applying the Laplace transform to Eqs. (16), (14)1, (15)1, using the initial condition (13)1 and Eq. (21), we obtain the 
transformed equation for velocity 
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along with the boundary conditions 
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The solution of the differential equation (34) along with conditions (35) is given by 
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The analytical expression of the Laplace transform ( , )u y q of velocity ( , )u y t being very complicated, we will determine the 

inverse Laplace transform of velocity using the Stehfest’s formula [25], namely  

2

1

ln(2) ln(2)
( , ) , ,

p

S j
j

u y t d u y j
t t

   
 

  (39) 

where 
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where [x] is the integer part of the real number x and p is a positive integer. In order to have a validation of the above results, 
we used Tzou’s [26] algorithm to obtain the inverse Laplace transform of ( , )u y q . Based on Tzou’s algorithm [24], the 

inverse Laplace transform is given by 
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where Re( ) is the real part, i is the imaginary unit and 1N is a natural number. 

4. Numerical results and discussions 

In order to analyze the influence of the thermal fractional parameter , nanoparticles volume fraction , magnetic 
parameter M and the Grashof number Gr on the heat transfer and fluid motion, numerical calculations have been carried out 
and results were presented in graphical illustrations. For the numerical calculations we used the water-copper nanofluid with 
the following thermo-physical properties [18]: 

5 5998.19, 8933, 21 10 , 1.67 10 ,f s f s          0.613, 401, ( ) 4179,f s p fk k c   ( ) 385p sc   (42) 

In Fig. 1, the curves corresponding to the fluid temperature T(y,t) at small and large values of the time t, for different values of 
the fractional parameter  are plotted. From Fig. 1, it is observed that for small values of the time t, the temperature decreases 
with the fractional parameter; therefore the ordinary fluid has the slowest temperature. For large values of the time t, the 
temperature increases with the thermal fractional parameter . This behavior is due to generalized thermal transport in which 
the temperature gradient-therefore the thermal flux- is damped by the power-law Caputo kernel. 

   

   
Fig. 1. Profiles of dimensionless temperature versus y for variation and different values of time t. 

The effect of volume fraction  on the fluid temperature is highlighted by curves in Fig. 2. It is clear that the temperature is 
increasing function with respect to the nanoparticles volume fraction. It should be noted that the heat transfer process could be 
improved by the variation of two essential parameters, namely, the fractional coefficient  and the volume fraction . Profiles 
of the fluid velocity at small/large values of the time t and different values of the fractional parameter  have been plotted in 
Fig. 3 for M = 0.05, Gr = 3 and  = 0.05. For small values of the time t, the fluid velocity decreases with the fractional 
parameter. This behavior is in accordance with the temperature variation for small time values. Indeed, at small time values, 
the temperature decreases with the fractional parameter, therefore the intensity of buoyancy force decreases and fluid flows 
slower. For large values of the time t the fluid velocity has an opposite behavior as in previous case. The influence of the 
magnetic parameter M on the fluid motion is presented by curves in Fig. 4.  
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Fig. 2. Profiles of the dimensionless temperature versus volume fraction . 

   

   

Fig. 3. Profiles of the dimensionless velocity versus y for variation and different values of time t. 

In this figure we have used Gr = 3 and  = 0.05. As expected the magnetic field acts as a slowing element for fluid movement. 
The increasing of magnetic field intensity leads to a stronger Lorentz force which is opposite to fluid velocity so, the fluid 
motion decreases with the magnetic parameter M. Fig. 5 is plotted in order to study effects of the Grashof parameter on the 
fluid velocity. It is observed from Fig. 5 that the fluid velocity increases with the Grashof number. Indeed, by increasing values 
of the Grashof number the intensity of buoyancy forces increases and fluid velocity increases. The comparison has between 
numerical results obtained with Stehfest’s and Tzou’s algorithms is presented in tables A1-A4 (Appendix A). It can observe 
that numerical results are in a very good agreement. 
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Fig. 4. Profiles of the dimensionless velocity versus y for variation and different values of the magnetic parameter M. 

   

   

Fig. 5. Profiles of the dimensionless velocity versus y for  variation and different values of the Grashof number Gr. 

5. Conclusions 

The effects of the thermal fractional parameter  and of the uniform transverse magnetic field on the transient free 
convective nanofluid flow with fractional thermal transport between vertical asymmetric parallel plates have been analyzed. 
Closed form of the temperature field and semi-analytical solution of the fluid velocity have been obtained by using the Laplace 
transform. Numerical inversion techniques of Laplace transform given by Stehfest and Tzou have been employed. To get some 
physical aspects of the studied problem, we have studied the effects of fractional parameter, volume fraction parameter, 
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magnetic field and Grashof number on the fluid behavior. The comparison between results given by Stehfest’s and Tzou’s 
algorithms is made. The main aims are following: 
 For small values of time, increasing the value of fractional parameter the temperature as well as velocity is decreases while 

the influence is opposite at large value of time. 
 The temperature is increase by increasing the number of nanoparticles as well as the time. 
 By increasing the magnetic field the velocity is decreases while increasing the Grashof number the velocity is increasing.  
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Appendix A 

Table A1. Comparison of temperature profiles by using Stehfest’s and Tzou’s algorithm 

Y 
0.2   

( , )ST y t  
0.2   

( , )TT y t  

0.2   

( , ) ( , )S TT y t T y t  
0.8   

( , )ST y t  
0.8   

( , )TT y t  

0.8   

( , ) ( , )S TT y t T y t  

0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 
0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

0.107 
0.108 
0.112 
0.118 
0.126 
0.138 
0.152 
0.17 

0.191 
0.217 
0.247 
0.282 
0.323 
0.371 
0.427 
0.492 
0.566 
0.653 
0.753 
0.868 

0.106 
0.108 
0.111 
0.117 
0.126 
0.137 
0.151 
0.169 
0.19 

0.215 
0.244 
0.279 
0.32 

0.368 
0.423 
0.487 
0.562 
0.648 
0.748 
0.865 

4.243x10-4 
4.373x10-4 
4.767x10-4 
5.443x10-4 
6.426x10-4 
7.751x10-4 
9.465x10-4 
1.162x10-3 
1.425x10-3 
1.743x10-3 
2.117x10-3 
2.546x10-3 
3.023x10-3 
3.53x10-3 

4.032x10-3 
4.467x10-3 
4.732x10-3 
4.664x10-3 
4.015x10-3 
2.404x10-3 

6.108x10-4 
7.135x10-4 
1.049x10-3 
1.701x10-3 
2.826x10-3 
4.679x10-3 
7.641x10-3 

0.012 
0.019 
0.03 

0.046 
0.068 
0.099 
0.142 
0.2 

0.276 
0.372 
0.492 
0.636 
0.806 

6.131x10-4 
7.159e-4 

1.051x10-3 
1.703x10-3 
2.83x10-3 

4.683x10-3 
7.646x10-3 

0.012 
0.019 
0.03 

0.046 
0.068 
0.099 
0.142 
0.2 

0.276 
0.372 
0.492 
0.636 
0.804 

2.31x10-6 
2.375x10-6 
2.578x10-6 
2.939x10-6 
3.502x10-6 
4.331x10-6 
5.506x10-6 
7.101x10-6 
9.154x10-6 
1.166x10-5 
1.458x10-5 
1.791x10-5 
2.177x10-5 
2.634x10-5 
3.181x10-5 
3.824x10-5 
4.548x10-5 
5.01x10-5 

1.928x10-4 
2.348x10-3 

Table A2. Comparison of temperature profiles by using Stehfest’s and Tzou’s algorithm 

  
0.5t   

( , )ST y t  
0.5t   

( , )TT y t  

0.5t   

( , ) ( , )S TT y t T y t  
1.5t   

( , )ST y t  
1.5t   

( , )TT y t  

1.5t   

( , ) ( , )S TT y t T y t  

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.2 

0.034942 
0.037451 
0.040053 
0.042749 
0.045538 
0.04842 
0.051395 
0.054462 
0.05762 
0.06087 
0.06421 
0.06764 
0.071161 
0.07477 
0.078468 
0.082255 
0.08129 
0.090092 
0.094141 
0.098278 

0.034955 
0.037464 
0.040067 
0.042763 
0.045553 
0.048436 
0.051411 
0.054478 
0.057637 
0.060887 
0.064227 
0.067658 
0.071179 
0.074789 
0.078488 
0.082275 
0.08615 
0.090113 
0.094163 
0.0983 

1.264x10-5 
1.313x10-5 
1.361x10-5 
1.409x10-5 
1.458x10-5 
1.506x10-5 
1.554x10-5 
1.602x10-5 
1.65x10-5 

1.698x10-5 
1.746x10-5 
1.794x10-5 
1.843x10-5 
1.891x10-5 
1.94x10-5 

1.989x10-5 
2.039x10-5 
2.089x10-5 
2.14x10-5 

2.191x10-5 

0.448349 
0.457173 
0.465986 
0.474789 
0.483582 
0.492365 
0.501138 
0.5099 

0.518651 
0.527391 
0.536118 
0.544832 
0.55353 
0.562213 
0.570878 
0.579523 
0.588148 
0.596749 
0.605325 
0.613874 

0.448407 
0.457231 
0.466045 
0.474849 
0.483642 
0.492425 
0.501199 
0.509961 
0.518713 
0.527453 
0.53618 
0.544894 
0.553594 
0.562277 
0.570942 
0.579588 
0.588213 
0.596815 
0.605392 
0.613942 

5.806x10-5 
5.865x10-5 
5.918x10-5 
5.966x10-5 
6.016x10-5 
6.055x10-5 
6.092x10-5 
6.13x10-5 

6.163x10-5 
6.199x10-5 
6.231x10-5 
6.266x10-5 
6.306x10-5 
6.349x10-5 
6.402x10-5 
6.464x10-5 
6.542x10-5 
6.631x10-5 

6.737x10-5 
6.869x10-5 

Table A3. Comparison of velocity profiles by using Stehfest’s and Tzou’s algorithm 

Y 
0.2   

( , )Su y t  
0.2   

( , )Tu y t  

0.2   

( , ) ( , )S Tu y t u y t  
0.8   

( , )Su y t  
0.8   

( , )Tu y t  

0.8   

( , ) ( , )S Tu y t u y t  

0 
0.05 
0.1 
0.15 
0.2 
0.25 
0.3 

0 
0.027688 
0.053584 
0.077671 
0.0999 

0.120186 
0.13841 

0 
0.027686 
0.053586 
0.077676 
0.099906 
0.12019 
0.138411 

0 
1.948x10-6 
2.15x10-6 

5.547x10-6 
6.191x10-6 
4.433x10-6 
1.603x10-6 

0 
0.018779 
0.036815 
0.054128 
0.070694 
0.086448 
0.101272 

0 
0.018784 
0.036826 
0.054143 
0.070714 
0.08647 
0.101296 

0 
5.613x10-6 
1.088x10-5 
1.566x10-5 
1.965x10-5 
2.242x10-5 
2.339x10-5 
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Table A3. Continued 

Y 
0.2   

( , )Su y t  
0.2   

( , )Tu y t  

0.2   

( , ) ( , )S Tu y t u y t  
0.8   

( , )Su y t  
0.8   

( , )Tu y t  

0.8   

( , ) ( , )S Tu y t u y t  

0.35 
0.4 
0.45 
0.5 
0.55 
0.6 
0.65 
0.7 
0.75 
0.8 
0.85 
0.9 
0.95 

0.154414 
0.168002 
0.178936 
0.186932 
0.191657 
0.192728 
0.189703 
0.182075 
0.169263 
0.150597 
0.125303 
0.092479 
0.05109 

0.154414 
0.168002 
0.178941 
0.186945 
0.191683 
0.192764 
0.18974 
0.182094 
0.169233 
0.150482 
0.125067 
0.092124 
0.050751 

4.981x10-7 
2.304x10-8 
4.648x10-6 
1.375x10-5 
2.575x10-5 
3.619x10-5 
3.734x10-5 
1.888x10-5 
2.969x10-5 
1.155x10-4 
2.36x10-4 
3.55x10-4 

3.397x10-4 

0.115003 
0.127418 
0.138237 
0.147116 
0.15364 
0.157321 
0.157594 
0.153815 
0.145266 
0.13115 

0.110595 
0.082634 
0.046173 

0.115025 
0.127436 
0.138249 
0.14712 
0.153638 
0.157319 
0.157601 
0.153842 
0.14532 
0.131229 
0.110674 
0.082656 
0.046091 

2.2x10-5 
1.794x10-5 
1.15x10-5 

4.012x10-6 
1.867x10-6 
2.249x10-6 
6.857x10-6 
2.71x10-5 

5.474x10-5 
7.888x10-5 
7.936x10-5 
2.251x10-5 
8.193x10-5 

Table A4. Comparison of velocity profiles by using Stehfest’s and Tzou’s algorithm 

  
0.5t   

( , )Su y t  
0.5t   

( , )Tu y t  

0.5t   

( , ) ( , )S Tu y t u y t  
1.5t   

( , )Su y t  
1.5t   

( , )Tu y t  

1.5t   

( , ) ( , )S Tu y t u y t  

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.1 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.2 

0.148746 
0.148519 
0.148169 
0.1477 

0.147116 
0.146421 
0.145617 
0.144709 
0.143702 
0.142598 
0.141401 
0.140117 
0.138748 
0.137298 
0.135772 
0.134173 
0.132506 
0.130773 
0.128979 
0.127126 

0.148756 
0.148527 
0.148176 
0.147706 
0.14712 
0.146423 
0.145618 
0.14471 
0.143701 
0.142596 
0.141399 
0.140113 
0.138743 
0.137293 
0.135767 
0.134168 
0.1325 

0.130767 
0.128973 
0.127121 

9.726x10-6 
8.257x10-6 
6.807x10-6 
5.388x10-6 
4.012x10-6 
2.691x10-6 
1.436x10-6 

2.592x10-7 
8.298x10-7 
1.821x10-6 
2.705x10-6 
3.475x10-6 
4.123x10-6 
4.644x10-6 
5.033x10-6 
5.286x10-6 
5.403x10-6 
5.381x10-6 
5.223x10-6 
4.93x10-6 

0.282172 
0.279331 
0.276356 
0.273254 
0.27003 
0.26669 
0.263241 
0.259687 
0.256035 
0.252289 
0.248455 
0.244538 
0.240543 
0.236476 
0.232341 
0.228143 
0.223887 
0.219578 
0.215221 
0.21082 

0.282199 
0.279362 
0.27639 
0.273292 
0.270072 
0.266736 
0.26329 
0.259741 
0.256093 
0.252351 
0.248521 
0.244609 
0.240619 
0.236556 
0.232426 
0.228233 
0.223982 
0.219679 
0.215327 
0.210931 

9.726x10-6 
8.257x10-6 
6.807x10-6 
5.388x10-6 
4.012x10-6 
2.691x10-6 
1.436x10-6 
2.592x10-6 
8.298x10-7 
1.821x10-6 
2.705x10-6 
3.475x10-6 
4.123x10-6 
4.644x10-6 
5.033x10-6 
5.286x10-6 
5.403x10-6 
5.381x10-6 
5.223x10-6 
4.93x10-6 
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