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Compiling quantum algorithms for near-term
quantum computers (accounting for connectiv-
ity and native gate alphabets) is a major chal-
lenge that has received significant attention both
by industry and academia. Avoiding the ex-
ponential overhead of classical simulation of
quantum dynamics will allow compilation of
larger algorithms, and a strategy for this is
to evaluate an algorithm’s cost on a quantum
computer. To this end, we propose a varia-
tional hybrid quantum-classical algorithm called
quantum-assisted quantum compiling (QAQC).
In QAQC, we use the overlap between a target
unitary U and a trainable unitary V as the cost
function to be evaluated on the quantum com-
puter. More precisely, to ensure that QAQC
scales well with problem size, our cost involves
not only the global overlap Tr(V †U) but also the
local overlaps with respect to individual qubits.
We introduce novel short-depth quantum cir-
cuits to quantify the terms in our cost func-
tion, and we prove that our cost cannot be effi-
ciently approximated with a classical algorithm
under reasonable complexity assumptions. We
present both gradient-free and gradient-based
approaches to minimizing this cost. As a demon-
stration of QAQC, we compile various one-qubit
gates on IBM’s and Rigetti’s quantum comput-
ers into their respective native gate alphabets.
Furthermore, we successfully simulate QAQC up
to a problem size of 9 qubits, and these simu-
lations highlight both the scalability of our cost
function as well as the noise resilience of QAQC.
Future applications of QAQC include algorithm
depth compression, black-box compiling, noise
mitigation, and benchmarking.

1 Introduction

Factoring [1], approximate optimization [2], and simu-
lation of quantum systems [3] are some of the applica-
tions for which quantum computers have been predicted
to provide speedups over classical computers. Conse-
quently, the prospect of large-scale quantum comput-
ers has generated interest from various sectors, such as
the financial and pharmaceutical industries. Currently
available quantum computers are not large-scale but
rather have been called noisy intermediate-scale quan-
tum (NISQ) computers [4]. A proof-of-principle demon-
stration of quantum supremacy with a NISQ device may
be coming soon [5, 6]. Nevertheless, demonstrating the
practical utility of NISQ computers appears to be a
more difficult task.

While improvements to NISQ hardware are con-
tinuously being made by experimentalists, quantum
computing theorists can contribute to the utility of
NISQ devices by developing software. This software
would aim to adapt textbook quantum algorithms (e.g.,
for factoring or quantum simulation) to NISQ con-
straints. NISQ constraints include: (1) limited numbers
of qubits, (2) limited connectivity between qubits, (3)
restricted (hardware-specific) gate alphabets, and (4)
limited circuit depth due to noise. Algorithms adapted
to these constraints will likely look dramatically differ-
ent from their textbook counterparts.

These constraints have increased the importance of
the field of quantum compiling. In classical computing,
a compiler is a program that converts instructions into
assembly language so that they can be read and exe-
cuted by a computer. Similarly, a quantum compiler
would take a high-level algorithm and convert it into
a lower-level form that could be executed on a NISQ
device. Already, a large body of literature exists on
classical approaches for quantum compiling, e.g., using
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temporal planning [7, 8], machine learning [9], and other
techniques [10–17].

A recent exciting idea is to use quantum computers
themselves to train parametrized quantum circuits, as
proposed in Refs. [2, 18–25]. The cost function to be
minimized essentially defines the application. For exam-
ple, in the variational quantum eigensolver (VQE) [18]
and the quantum approximate optimization algorithm
(QAOA) [2], the application is ground state prepara-
tion, and hence the cost is the expectation value of the
associated Hamiltonian. Another example is training
error-correcting codes [19], where the cost is the aver-
age code fidelity. In light of these works, it is natural
to ask: what is the relevant cost function for the appli-
cation of quantum compiling?

In this work, we introduce quantum-assisted quantum
compiling (QAQC, pronounced “Quack”). The goal of
QAQC is to compile a (possibly unknown) target uni-
tary to a trainable quantum gate sequence. A key fea-
ture of QAQC is the fact that the cost is computed
directly on the quantum computer. This leads to an
exponential speedup (in the number of qubits involved
in the gate sequence) over classical methods to compute
the cost, since classical simulation of quantum dynam-
ics is exponentially slower than quantum simulation.
Consequently, one should be able to optimally compile
larger-scale gate sequences using QAQC, whereas clas-
sical approaches to optimal quantum compiling will be
limited to smaller gate sequences.1

We carefully define a cost function for QAQC that
satisfies the following criteria:

1. It is faithful (vanishing if and only if the compila-
tion is exact);

2. It is efficient to compute on a quantum computer;

3. It has an operational meaning;

4. It scales well with the size of the problem.

A potential candidate for a cost function satisfying these
criteria is the Hilbert-Schmidt inner product between a
target unitary U and a trainable unitary V :

〈V,U〉 = Tr(V †U). (1)

It turns out, however, that this cost function does not
satisfy the last criterion. We thus use Eq. (1) only for

1We note that classical compilers may be applied to large-scale
quantum algorithms, but they are limited to local compiling. We
thus emphasize the distinction between translating the algorithm
to the native alphabet with simple, local compiling and optimal
compiling. Local compiling may reach partial optimization but
in order to discover the shortest circuit one may need to use a
holistic approach, where the entire algorithm is considered, which
requires a quantum computer for compiling.

small-scale problems. For general, large-scale problems,
we define a cost function satisfying all criteria. This
cost involves a weighted average of the global overlap in
(1) with localized overlaps, which quantify the overlap
between U and V with respect to individual qubits.

We prove that computing our cost function is DQC1-
hard, where DQC1 is the class of problems that can be
efficiently solved in the one-clean-qubit model of compu-
tation [26]. Since DQC1 is classically hard to simulate
[27], this implies that no classical algorithm can effi-
ciently compute our cost function. We remark that an
alternative cost function might be a worst-case distance
measure (such as diamond distance), but such measures
are known to be QIP-complete [28] and hence would vi-
olate criterion 2 in our list above. In this sense, our cost
function appears to be ideal.

Furthermore, we present novel short-depth quantum
circuits for efficiently computing the terms in our cost
function. Our circuits achieve short depth by avoiding
implementing controlled versions of U and V , and by
implementing U and V in parallel. We also present, in
Appendix F, circuits that compute the gradient of our
cost function. One such circuit is a generalization of
the well-known Power of One Qubit [26] that we call
the Power of Two Qubits.

As a proof-of-principle, we implement QAQC on both
IBM’s and Rigetti’s quantum computers, and we com-
pile various one-qubit gates to the native gate alphabets
used by these hardwares. To our knowledge, this is the
first compilation of a target unitary with cost evaluation
on actual NISQ hardware. In addition, we successfully
implement QAQC on both a noiseless and noisy simu-
lator for problems as large as 9-qubit unitaries. These
larger scale implementations illustrate the scalability of
our cost function, and in the case of the noisy simulator,
show a somewhat surprising resilience to noise.

In what follows, we first discuss several applications
of interest for QAQC. Section 3 provides a general out-
line of the QAQC algorithm. Section 4 presents our
short-depth circuits for cost evaluation on a quantum
computer. Section 5 states that our cost function is clas-
sically hard to simulate. Sections 6 and 7, respectively,
present small-scale and larger-scale implementations of
QAQC.

2 Applications of QAQC
Figure 1 illustrates four potential applications of
QAQC. Suppose that there exists a quantum algorithm
to perform some task, but its associated gate sequence is
longer than desired. As shown in Fig. 1(a), it is possible
to use QAQC to shorten the gate sequence by account-
ing for the NISQ constraints of the specific computer.
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Figure 1: Potential applications of QAQC. Here, denotes
the z-rotation gate Rz(θ), while represents the π/2-
pulse given by the x-rotation gate Rx(π/2). Both gates are
natively implemented on commercial hardware [29, 30]. (a)
Compressing the depth of a given gate sequence U to a shorter-
depth gate sequence V in terms of native hardware gates. (b)
Uploading a black-box unitary. The black box could be an
analog unitary U = e−iHt, for an unknown Hamiltonian H,
that one wishes to convert into a gate sequence to be run on
a gate-based quantum computer. (c) Training algorithms in
the presence of noise to learn noise-resilient algorithms (e.g.,
via gates that counteract the noise). Here, the unitary U is
performed on high-quality, pristine qubits and V is performed
on noisy ones. (d) Benchmarking a quantum computer by
compiling a unitary U on noisy qubits and learning the gate
sequence V on high-quality qubits.

This depth compression goes beyond the capabilities of
classical compilers.

As a simple example, consider the quantum Fourier
transform on n qubits. Its textbook algorithm is writ-
ten in terms of Hadamard gates and controlled-rotation
gates [31], which may need to be compiled into the na-
tive gate alphabet. The number of gates in the textbook
algorithm is O(n2), so one could use a classical compiler
to locally compile each gate. But this could lead to
a sub-optimal depth since the compilation starts from

the textbook structure. In contrast, QAQC is unbiased
with respect to the structure of the gate sequence, tak-
ing a holistic approach to compiling as opposed to a
local one. Hence, in principle, it can learn the optimal
gate sequence for given hardware. Note that classical
compilers cannot take this holistic approach for large n
due to the exponential scaling of the matrix represen-
tations of the gates.

Alternatively, consider the problem of simulating the
dynamics of a given quantum system with an unknown
Hamiltonian H (via e−iHt) on a quantum computer.
We call this problem black-box uploading because by
simulating the black-box, i.e., the unitary e−iHt, we are
“uploading” the unitary onto the quantum computer.
This scenario is depicted in Fig. 1(b). QAQC could be
used to convert an analog black-box unitary into a gate
sequence on a digital quantum computer.

Finally, we highlight two additional applications that
are the opposites of each other. These two applica-
tions can be exploited when the quantum computer has
some pristine qubits (qubits with low noise) and some
noisy qubits. We emphasize that, in this context, “noisy
qubits” refers to coherent noise such as systematic gate
biases, where the gate rotation angles are biased in a
particular direction. In contrast, we consider incoher-
ent noise (e.g., T1 and T2 noise) later in this article, see
Section 7.2.

Consider Fig. 1(c). Here, the goal is to implement a
CNOT gate on two noisy qubits. Due to the noise, to
actually implement a true CNOT, one has to physically
implement a dressed CNOT, i.e., a CNOT surrounded
by one-qubit unitaries. QAQC can be used to learn the
parameters in these one-qubit unitaries. By choosing
the target unitary U to be a CNOT on a pristine (i.e.,
noiseless) pair of qubits, it is possible to learn the uni-
tary V that needs to be applied to the noisy qubits in
order to effectively implement a CNOT. We call this
application noise-tailored algorithms, since the learned
algorithms are robust to the noise process on the noisy
qubits.

Figure 1(d) depicts the opposite process, which is
benchmarking. Here, the unitary U acts on a noisy set
of qubits, and the goal is to determine what the equiv-
alent unitary V would be if it were implemented on a
pristine set of qubits. This essentially corresponds to
learning the noise model, i.e., benchmarking the noisy
qubits.

3 The QAQC Algorithm
3.1 Approximate compiling
The goal of QAQC is to take a (possibly unknown) uni-
tary U and return a gate sequence V , executable on a
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quantum computer, that has approximately the same
action as U on any given input state (up to possibly a
global phase factor). The notion of approximate compil-
ing [32–37] requires an operational figure-of-merit that
quantifies how close the compilation is to exact. A nat-
ural candidate is the probability for the evolution under
V to mimic the evolution under U . Hence, consider the
overlap between |ψ(U)〉 := U |ψ〉 and |ψ(V )〉 := V |ψ〉,
averaged over all input states |ψ〉. This is the fidelity
averaged over the Haar distribution,

F (U, V ) :=
∫
ψ

|〈ψ(V )|ψ(U)〉|2 dψ . (2)

We call V an exact compilation of U if F (U, V ) = 1. If
F (U, V ) > 1− ε, where ε ∈ [0, 1], then we call V an ε-
approximate compilation of U , or simply an approximate
compilation of U .

As we will see, the quantity F (U, V ) has a connec-
tion to our cost function, defined below, and hence our
cost function has operational relevance to approximate
compiling. Minimizing our cost function is related to
maximizing F (U, V ), and thus is related to compiling
to a better approximation.

QAQC achieves approximate compiling by training a
gate sequence V of a fixed length L, which may even be
shorter than the length required to exactly compile U .
As one increases L, one can further minimize our cost
function. The length L can therefore be regarded as a
parameter that can be tuned to obtain arbitrarily good
approximate compilations of U .

3.2 Discrete and continuous parameters
The gate sequence V should be expressed in terms of the
native gates of the quantum computer being used. Con-
sider an alphabet A = {Gk(α)}k of gates Gk(α) that
are native to the quantum computer of interest. Here,
α ∈ R is a continuous parameter, and k is a discrete
parameter that identifies the type of gate and which
qubits it acts on. For a given quantum computer, the
problem of compiling U to a gate sequence of length L
is to determine

(αopt,kopt) := arg min
(α,k)

C(U, Vk(α)), (3)

where

Vk(α) = GkL
(αL)GkL−1(αL−1) · · ·Gk1(α1) (4)

is the trainable unitary. Here, Vk(α) is a function of
the sequence k = (k1, . . . , kL) of parameters describing
which gates from the native gate set are used and of
the continuous parameters α = (α1, . . . , αL) associated
with each gate. The function C(U, Vk(α)) is the cost,

Quantum Computer

Input: U

Output: Vkopt(αopt)

Continuous
parameter

optimizer over α

Structure
parameter

optimizer over k

Classical Computer

If α optimal

If α not optimal

Gate
sequence
Vk(α)

Cost
C(U, Vk(α))

|0〉 H •

U

• H

|0〉 H • • H

...

|0〉 H • • H

|0〉

V ∗
|0〉

...

|0〉

HST

|0〉 H •

U

• H

|0〉 H •
...

|0〉 H •

|0〉

V ∗
|0〉

...

|0〉

LHST

OR

OR

(a) Variable structure approach

⊕
⊕

⊕
⊕

Fixed
structure

Variable
structure

with L = 4

⊕
⊕

Optimal L = 5
compilation

(b) Fixed structure approach

Ansatz with
each layer

parameterized by
two-qubit gates

Two
layers

Figure 2: Outline of our variational hybrid quantum-classical
algorithm, in which we optimize over gate structures and con-
tinuous gate parameters in order to perform QAQC for a given
input unitary U . We take two approaches towards structure
optimization: (a) For small problem sizes, we allow the gate
structure to vary for a given gate sequence length L, which in
general leads to an approximate compilation of U . To obtain
a better approximate compilation, the best structure obtained
can be concatenated with a new sequence of a possibly dif-
ferent length, whose structure can vary. For each iteration of
the continuous parameter optimization, we calculate the cost
using the Hilbert-Schmidt Test (HST); see Sec. 4.1. (b) For
large problem sizes, we fix the gate structure using an ansatz
consisting of layers of two-qubit gates. By increasing the num-
ber of layers, we can obtain better approximate compilations of
U . For each iteration of the continuous parameter optimiza-
tion, we calculate the cost using the Local Hilbert-Schmidt Test
(LHST); see Sec. 4.2.

which quantifies how close the trained unitary is to the
target unitary. We define the cost below to have the
properties: 0 6 C(U, V ) 6 1 for all unitaries U and V ,
and C(U, V ) = 0 if and only if U = V (possibly up to a
global phase factor).

The optimization in (3) contains two parts: discrete
optimization over the finite set of gate structures pa-
rameterized by k, and continuous optimization over the
parameters α characterizing the gates within the struc-
ture. Our quantum-classical hybrid strategy to perform
the optimization in (3) is illustrated in Fig. 2. In the
next subsection, we present a general, ansatz-free ap-
proach to optimizing our cost function, which may be
useful for systems with a small number of qubits. In
the subsection following that, we present an ansatz-
based approach that would allow the extension to larger
system sizes. In each case, we perform the continuous
parameter optimization using gradient-free methods as
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described in Appendix E. We also discuss a method
for gradient-based continuous parameter optimization
in Appendix F.

3.3 Small problem sizes
Suppose U and V act on a d-dimensional space of n
qubits, so that d = 2n. To perform the continuous pa-
rameter optimization in (3), we define the cost function

CHST(U, V ) := 1− 1
d2 |〈V,U〉|

2

= 1− 1
d2 |Tr(V †U)|2,

(5)

where HST stands for “Hilbert-Schmidt Test” and refers
to the circuit used to evaluate the cost, which we intro-
duce in Sec. 4.1. Note that the quantity 1

d2 |〈V,U〉|2 is
simply the fidelity between the pure states obtained by
applying U and V to one half of a maximally entangled
state. Consequently, it has an operational meaning in
terms of F (U, V ). Indeed, it can be shown [38, 39] that

CHST(U, V ) = d+ 1
d

(
1− F (U, V )

)
. (6)

Also note that for any two unitaries U and V ,
CHST(U, V ) = 0 if and only if U and V differ by a
global phase factor, i.e., V = eiϕU for some ϕ ∈ R. By
minimizing CHST, we thus learn an equivalent unitary
V up to a global phase.

Now, to perform the optimization over gate struc-
tures in (3), one strategy is to search over all possible
gate structures for a gate sequence length L, which can
be allowed to vary during the optimization. As the set
of gate structures grows exponentially with the num-
ber of gates L, such a brute force search over all gate
structures in order to obtain the best one is intractable
in general. To efficiently search through this exponen-
tially large space, we adopt an approach based on sim-
ulated annealing. (An alternative approach is genetic
optimization, which has been implemented previously
to classically optimize quantum gate sequences [40].)

Our simulated annealing approach starts with a ran-
dom gate structure, then performs continuous optimiza-
tion over the parameters α that characterize the gates
in order to minimize the cost function. We then perform
a structure update that involves randomly replacing a
subset of gates in the sequence with new gates (which
can be done in a way such that the sequence length can
increase or decrease) and re-optimizing the cost func-
tion over the continuous parameters α. If this struc-
ture change produces a lower cost, then we accept the
change. If the cost increases, then we accept the change
with probability decreasing exponentially in the magni-
tude of the cost difference. We iterate this procedure

until the cost converges or until a maximum number of
iterations is reached.

With a fixed gate sequence length L, the approach
outlined above will in general lead to an approximate
compilation of U , which in many cases is sufficient. One
strategy for obtaining better and better approximate
compilations of U is a layered approach illustrated in
Fig. 2(a). In this approach, we consider a particular
gate sequence length L and perform the full structure
optimization, as outlined above, to obtain an (approx-
imate) length-L compilation of U . The optimal gate
sequence structure thus obtained can then be concate-
nated with a new sequence of a possibly different (but
fixed) length, whose structure can vary. By performing
the continuous parameter optimization over the entire
longer gate sequence, and performing the structure op-
timization over the new additional segment of the gate
sequence, we can obtain a better approximate compi-
lation of U . Iterating this procedure can then lead to
increasingly better approximate compilations of U .

3.4 Large problem sizes
We emphasize two potential issues with scaling the
above approach to large problem sizes.

First, one may want a guarantee that there exists an
exact compilation of U within a polynomial size search
space for V . When performing full structure optimiza-
tion, as above, the search space size grows exponen-
tially in the length L of the gate sequence. This implies
that the search space size grows exponentially in n, if
one chooses L to grow polynomially in n. Indeed, one
would typically require L to grow polynomially in n if
one is interested in exact compilation, since the number
of gates in U itself grows polynomially in n for many
applications. (Note that this issue arises if one insists
on exact, instead of approximate, compiling.)

Second, and arguably more importantly, the cost
CHST(U, V ) is exponentially fragile. The inner prod-
uct between U and V will be exponentially suppressed
for random choices of V , which means that CHST(U, V )
will be very close to one for most unitaries V . Hence,
for random unitaries V , the number of calls to the quan-
tum computer needed to resolve differences in the cost
CHST(U, V ) to a given precision will grow exponentially.

The first issue can be addressed with an efficiently
parameterized ansatz for V . With an ansatz, only the
continuous parameters α need to be optimized in V .
The k parameters are fixed, which means that structure
updates are not required. This fixed structure approach
is depicted in Fig. 2(b). One can choose an ansatz such
that the number of parameters needed to represent the
target unitary U is only a polynomial function of n.
Hence, one should allow the ansatz A(U) to be appli-
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(a) (b)

Figure 3: (a) One layer of the ansatz for the trainable unitary
V in the case of four qubits. The gate sequence in the layer
consists of a two-qubit gate acting on the first and second
qubits, the third and fourth qubits, the second and third qubits,
and the first and fourth qubits. (b) The full ansatz defining
the trainable unitary V consists of a particular number ` of the
layer in (a). Shown is two layers in the case of four qubits.

cation specific, i.e., to be a function of U . As an exam-
ple, if U = e−iHt for a local Hamiltonian H, one could
choose the ansatz to involve a polynomial number of
local interactions. Due to the application-specific na-
ture of the ansatz, the problem is a complex one, hence
we leave the issue of finding efficient ansatzes for future
work.

Nevertheless, we show a concrete example of a po-
tential ansatz for V in Fig. 3. The ansatz is defined
by a number ` of layers, with each layer being a gate
sequence of depth two consisting of two-qubit gates act-
ing on neighboring qubits. Consider the following ar-
gument. In QAQC, the unitary U to be compiled is
executed on the quantum computer, so it must be effi-
ciently implementable, i.e., the gate count is polynomial
in n. Next, note that the gate sequence used to imple-
ment U can be compiled into in the ansatz in Fig. 3 with
only polynomial overhead. This implies that the ansatz
in Fig. 3 could exactly describe U in only a polynomial
number of layers and would hence eliminate the need to
search through an exponentially large space. We remark
that the ansatz in Fig. 3 may be particularly useful for
applications involving compiling quantum simulations
of physically relevant systems, as the structure resem-
bles that of the Suzuki-Trotter decomposition [41] for
nearest-neighbor Hamiltonians.

Let us now consider the second issue mentioned
above: the exponentially suppressed inner product be-
tween U and V for large n. To address this, we pro-
pose an alternative cost function involving a weighted
average between the function in (5) and a “local” cost
function:

Cq(U, V ) := qCHST(U, V ) + (1− q)CLHST(U, V ), (7)

where 0 6 q 6 1 and

CLHST(U, V ) := 1
n

n∑
j=1

C
(j)
LHST(U, V ) = 1− Fe. (8)

Here, LHST stands for “Local Hilbert-Schmidt Test”, re-
ferring to the circuit discussed in Sec. 4.2 that is used to

compute this function. Also, Fe := 1
n

∑n
j=1 F

(j)
e , where

the quantities F (j)
e are entanglement fidelities (hence

the notation Fe) of local quantum channels Ej defined
in Sec. 4.2. Hence, CLHST(U, V ) is a sum of local costs,
where each local cost is written as a local entanglement
fidelity: C(j)

LHST(U, V ) = 1−F (j)
e . Expressing the overall

cost as sum of local costs is analogous to what is done
in the variational quantum eigensolver [18], where the
overall energy is expressed as a sum of local energies.
The functions C(j)

LHST are local in the sense that only two
qubits need to be measured in order to calculate each
one of them. This is unlike the function CHST, whose
calculation requires the simultaneous measurement of
2n qubits.

The cost function Cq in (7) is a weighted average be-
tween the “global” cost function CHST and the local cost
function CLHST, with q representing the weight given to
the global cost function. The weight q can be chosen ac-
cording to the size of the problem: for a relatively small
number of qubits, we would let q = 1. As the number of
qubits increases, we would slowly decrease q to mitigate
the suppression of the inner product between U and V .

To see why CLHST can be expected to deal with
the issue of an exponentially suppressed inner prod-
uct for large n, consider the following example. Sup-
pose the unitary U to be compiled is the tensor prod-
uct U = U1 ⊗ U2 ⊗ · · · ⊗ Un of unitaries Uj act-
ing on qubit j, and suppose we take the tensor prod-
uct V = V1 ⊗ V2 ⊗ · · · ⊗ Vn as the trainable uni-
tary. We get that CHST(U, V ) = 1 −

∏n
j=1 rj , where

rj = (1/4)|Tr(V †j Uj)|2. Since each rj will likely be less
than one for a random choice of Vj , then their prod-
uct will be small for large n. Consequently a very large
portion of the cost landscape will have CHST(U, V ) ≈ 1
and hence will have a vanishing gradient. However, the
cost function CLHST is defined such that CLHST(U, V ) =
1 − 1

n

∑n
j=1 rj , so that we obtain an average of the rj

quantities rather than a product. Taking the average
instead of the product leads to a gradient that is not
suppressed for large n.

More generally, for any U and V , the quantity Fe,
which is responsible for the variability in CLHST, can
be made non-vanishing by adding local unitaries to V .
In particular, for a given U and V , it is straightfor-
ward to show that for all j ∈ {1, 2, . . . , n} there exists a
unitary Vj acting on qubit j such that F (j)

e > 1
4 for the

gate sequence given by V ′ = VjV . In other words, there
exists a local unitary Vj that can be added to the train-
able gate sequence V such that C(j)

LHST(U, VjV ) 6 3
4 .

This implies that, with the appropriate local unitary
applied to each qubit at the end of the trainable gate
sequence, the local cost function CLHST can always be
decreased to no greater than 3

4 . Note that local uni-
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taries cannot be used in this way to decrease the global
cost function CHST, i.e., to make the second term in (5)
non-vanishing.

Finally, one can show (See Appendix C) that
CLHST > (1/n)CHST. Combining this with Eq. (6) gives

Cq(U, V ) >
(

1− q + nq

n

)(
d+ 1
d

)
(1− F (U, V )) ,

(9)

which implies that

F (U, V ) > 1−
(

n

1− q + nq

)(
d

d+ 1

)
Cq(U, V ). (10)

Hence, the cost function Cq retains an operational
meaning for the task of approximate compiling, since
it provides a bound on the average fidelity between U
and V .

3.5 Special case of a fixed input state
An important special case of quantum compiling is
when the target unitary U happens to appear at the
beginning of one’s quantum algorithm, and hence the
state that one inputs to U is fixed. For many quantum
computers, this input state is |ψ0〉 = |0〉⊗n. We empha-
size that many use cases of QAQC do not fall under this
special case, since one is often interested in compiling
unitaries that do not appear at the beginning of one’s
algorithm. For example, one may be interested in the
optimal compiliation of a controlled-unitary, but such
a unitary would never appear at the beginning of an
algorithm since its action would be trivial. Neverthe-
less we highlight this special case because QAQC can
potentially be simplified in this case. In addition, this
special case was very recently explored in Ref. [42] after
the completion of our article.

In this special scenario, a natural cost function would
be

Cfixed input = 1− |〈ψ0|UV †|ψ0〉|2 . (11)
This could be evaluated on a quantum computer in two
possible ways. One way is to apply U and then V † to
the |ψ0〉 state and then measure the probability to be
in the |ψ0〉 state. Another way is to apply U to one
copy of |ψ0〉 and V to another copy of |ψ0〉, and then
measure the overlap [9, 43] between these two states.

However, this cost function would not scale well for
the same reason discussed above that our CHST cost
does not scale well, i.e., its gradient can vanish expo-
nentially. Again, one can fix this issue with a local cost
function. Assuming |ψ0〉 = |0〉⊗n, this local cost can
take the form:

C local
fixed input = 1− 1

n

n∑
j=1

p
(j)
0 , (12)

where

p
(j)
0 = Tr[(|0〉〈0|j ⊗ 1)V †U |ψ0〉〈ψ0|U†V ] (13)

is the probability to obtain the zero measurement out-
come on qubit j for the state V †U |ψ0〉.

We remark that the two cost functions in (11) and
(12) can each be evaluated with quantum circuits on
only n qubits. This is in contrast to CHST and CLHST,
whose evaluation involves quantum circuits with 2n
qubits (see the next section for the circuits). This re-
duction in resource requirements is the main reason why
we highlight this special case.

4 Cost evaluation circuits
In this section, we present short-depth circuits for eval-
uating the functions in (5) and (8) and hence for evalu-
ating the overall cost in (7). We note that these circuits
are also interesting outside of the scope of QAQC, and
they likely have applications in other areas.

In addition, in Appendix F, we present circuits for
computing the gradient of the cost function, including a
generalization of the Power-of-one-qubit circuit [26] that
computes both the real and imaginary parts of 〈U, V 〉.

4.1 Hilbert-Schmidt Test
Consider the circuit in Fig. 4(a). Below we show that
this circuit computes |Tr(V †U)|2, where U and V are
n-qubit unitaries. The circuit involves 2n qubits, where
we call the first (second) n-qubit system A (B).

The first step in the circuit is to create a maximally
entangled state between A and B, namely, the state∣∣Φ+〉

AB
= 1√

d

∑
j

|j〉A ⊗ |j〉B , (14)

where j = (j1, j2, ..., jn) is a vector index in which each
component jk is chosen from {0, 1}. The first two gates
in Fig. 4(a)—the Hadamard gates and the CNOT gates
(which are performed in parallel when acting on distinct
qubits)—create the |Φ+〉 state.

The second step is to act with U on system A and
with V ∗ on system B. (V ∗ is the complex conjugate of
V , where the complex conjugate is taken in the stan-
dard basis.) Note that these two gates are performed in
parallel. This gives the state

(U ⊗ V ∗)
∣∣Φ+〉

AB
= 1√

d

∑
j

U |j〉A ⊗ V
∗|j〉B . (15)

We emphasize that the unitary V ∗ is implemented on
the quantum computer, not V itself. (See Appendix A
for elaboration on this point.)
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The third and final step is to measure in the Bell
basis. This corresponds to undoing the unitaries (the
CNOTs and Hadamards) used to prepare |Φ+〉 and then
measuring in the standard basis. At the end, we are only
interested in estimating a single probability: the prob-
ability for the Bell-basis measurement to give the |Φ+〉
outcome, which corresponds to the all-zeros outcome in
the standard basis. The amplitude associated with this
probability is

〈Φ+ |U ⊗ V ∗|Φ+〉 = 〈Φ+ |UV † ⊗ 1|Φ+〉 (16)

= 1
d

Tr(V †U) . (17)

To obtain the first equality we used the ricochet prop-
erty:

1⊗X
∣∣Φ+〉 = XT ⊗ 1

∣∣Φ+〉, (18)

which holds for any operator X acting on a d-
dimensional space. The probability of the |Φ+〉 out-
come is then the absolute square of the amplitude, i.e.,
(1/d2)|Tr(V †U)|2. Hence, this probability gives us the
absolute value of the Hilbert-Schmidt inner product be-
tween U and V . We therefore call the circuit in Fig. 4(a)
the Hilbert-Schmidt Test (HST).

Consider the depth of this circuit. Let D(G) denote
the depth of a gate sequence G for a fully-connected
quantum computer whose native gate alphabet includes
the CNOT gate and the set of all one-qubit gates. Then,
for the HST, we have

D(HST) = 4 + max{D(U), D(V ∗)} . (19)

The first term of 4 is associated with the Hadamards
and CNOTs in Fig. 4(a), and this term is negligible
when the depth of U or V ∗ is large. The second term re-
sults from the fact that U and V ∗ are performed in par-
allel. Hence, whichever unitary, U or V ∗, has the larger
depth will determine the overall depth of the HST.

4.2 Local Hilbert-Schmidt Test
Let us now consider a slightly modified form of the
HST, shown in Fig. 4(b). We call this the Local
Hilbert-Schmidt Test (LHST) because, unlike the HST
in Fig. 4(a), only two of the total number 2n of qubits
are measured: one qubit from system A, say Aj , and
the corresponding qubit Bj from system B, where j ∈
{1, 2, . . . , n}.

The state of systems A and B before the measure-
ments is given by Eq. (15). Using the ricochet property
in (18) as before, we obtain

(U ⊗ V ∗)
∣∣Φ+〉

AB
= (UV † ⊗ 1)

∣∣Φ+〉
AB

(20)
= (W ⊗ 1)

∣∣Φ+〉
AB
, (21)

(a)

|0〉A1 H •

U

• H

|0〉A2 H • • H

...
|0〉An H • • H

|0〉B1

V ∗
|0〉B2

...

|0〉Bn

(b)

|0〉A1 H •

U

• H

|0〉A2 H •
...

|0〉An H •

|0〉B1

V ∗
|0〉B2...

|0〉Bn

Figure 4: (a) The Hilbert-Schmidt Test. For this circuit, the
probability to obtain the measurement outcome in which all 2n
qubits are in the |0〉 state is equal to (1/d2)|Tr(V †U)|2. Hence,
this circuit computes the magnitude of the Hilbert-Schmidt
inner product, |〈V,U〉|, between U and V . (b) The Local
Hilbert-Schmidt Test, which is the same as the Hilbert-Schmidt
Test except that only two of the 2n qubits are measured at the
end. Shown is the measurement of the qubits A1 and B1, and
the probability that both qubits are in the state |0〉 is given by
(25) with j = 1.
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where W := UV †. Let Āj denote all systems Ak except
for Aj , and let B̄j denote all systems Bk except for Bj .
Taking the partial trace over Āj and B̄j on the state in
(21) gives us the following state on the qubits Aj and
Bj that are being measured:

TrĀjB̄j
((WA ⊗ 1B)

∣∣Φ+〉〈Φ+∣∣
AB

(W †A ⊗ 1B))

= TrĀj

(
(WA ⊗ 1Bj

)
(∣∣Φ+〉〈Φ+∣∣

AjBj
⊗

1Āj

2n−1

)
×(W †A ⊗ 1Bj

)
)

(22)

= (Ej ⊗ IBj
)(
∣∣Φ+〉〈Φ+∣∣

AjBj
) . (23)

In (22), |Φ+〉AjBj
is a 2-qubit maximally entangled state

of the form in (14). In (23), we have defined the channel
Ej by

Ej(ρAj ) := TrĀj

(
WA

(
ρAj ⊗

1Āj

2n−1

)
W †A

)
. (24)

The probability of obtaining the (0, 0) outcome in the
measurement of Aj and Bj is the overlap of the state
in (23) with the |Φ+〉AjBj

state, given by

F (j)
e := Tr

(∣∣Φ+〉〈Φ+∣∣
AjBj

(Ej ⊗ IBj )(
∣∣Φ+〉〈Φ+∣∣

AjBj
)
)
.

(25)
Note that this is the entanglement fidelity of the channel
Ej . We use these entanglement fidelities (for each j) to
define the local cost function CLHST(U, V ) as

CLHST(U, V ) = 1
n

n∑
j=1

C
(j)
LHST(U, V ), (26)

where
C

(j)
LHST(U, V ) := 1− F (j)

e . (27)

Note that for all j ∈ {1, 2, . . . , n}, the maximum value
of F (j)

e is one, which occurs when Ej is the iden-
tity channel. This means that the minimum value of
CLHST(U, V ) is zero. In Appendix B, we show that
CLHST is indeed a faithful cost function:

Proposition 1. For all unitaries U and V , it holds
that CLHST(U, V ) = 0 if and only if U = V (up to a
global phase).

The cost function CLHST is simply the average of the
probabilities that the two qubits AjBj are not in the
|00〉 state, while the cost function CHST is the probabil-
ity that all qubits are not in the |0〉⊗2n state. Since the
probability of an intersection of events is never greater
than the average of the probabilities of the individual
events, we find that

CLHST(U, V ) 6 CHST(U, V ) (28)

for all unitaries U and V . Furthermore, we can also
formulate a bound in the reverse direction

nCLHST(U, V ) > CHST(U, V ). (29)

In Appendix C, we offer a proof for the above bounds.

Proposition 2. Let U and V be 2n × 2n unitaries.
Then,

CLHST(U, V ) 6 CHST(U, V ) 6 nCLHST(U, V ) .

The depth of the circuit in Fig. 4(b) used to compute
the cost function CLHST is the same as the depth of the
circuit in Fig. 4(a) used to compute CHST, namely,

D(LHST) = 4 + max{D(U), D(V ∗)}. (30)

5 Computational complexity of cost
evaluation
In this section, we state impossibility results for the ef-
ficient classical evaluation of both of our costs, CHST
and CLHST. To show this, we analyze our circuits in
the framework of deterministic quantum computation
with one clean qubit (DQC1) [26]. We then make use
of known hardness results for the class DQC1, and es-
tablish that the efficient classical approximation of our
cost functions is impossible under reasonable complex-
ity assumptions.

5.1 One-clean-qubit model of computation.
The complexity class DQC1 consists of all problems that
can be efficiently solved with bounded error in the one-
clean-qubit model of computation. Inspired by the early
implementations of NMR quantum computing [26], in
the one-clean-qubit model of computation the input is
specified by a single “clean qubit”, together with a max-
imally mixed state on n qubits:

ρ = |0〉〈0 | ⊗ (1/2)⊗n. (31)

A computation is then realized by applying a poly(n)-
sized quantum circuit Q to the input. We then measure
the clean qubit in the standard basis and consider the
probability of obtaining the outcome “0”, i.e.,

Tr[(|0〉〈0 | ⊗ 1⊗n)QρQ†]. (32)

The DQC1 model of computation has been widely stud-
ied, and several natural problems have been found to
be complete for DQC1. Most notably, Shor and Jor-
dan [44] showed that the problem of trace estimation
for 2n × 2n unitary matrices that specify poly(n)-sized
quantum circuits is DQC1-complete. Moreover, Fujii et
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al. [27] showed that classical simulation of DQC1 is im-
possible, unless the polynomial hierarchy collapses to
the second level. Specifically, it is shown that an effi-
cient classical algorithm that is capable of weakly simu-
lating the output probability distribution of any DQC1
computation would imply a collapse of the polynomial
hierarchy to the class of Arthur-Merlin protocols, which
is not believed to be true. Rather, it is commonly be-
lieved that the class DQC1 is strictly contained in BQP,
and thus provides a sub-universal model of quantum
computation that is hard to simulate classically. Fi-
nally, we point out that the complexity class DQC1 is
known to give rise to average-case distance measures,
whereas worst-case distance measures (such as the di-
amond distance) are much harder to approximate, and
known to be QIP-complete [28]. Currently, it is not
known whether there exists a distance measure that lies
between the average-case and worst-case measures in
DQC1 and QIP, respectively. However, we conjecture
that only average-case distance measures are feasible
for practical purposes. We leave the task of finding a
distance measure whose approximation is complete for
the class BQP as an interesting open problem.

Our contributions are the following. We adapt the
proofs in [27, 44] and show that the problem of approxi-
mating our cost functions, CHST or CLHST, up to inverse
polynomial precision is DQC1-hard. Our results build
on the fact that evaluating either of our cost functions
is, in some sense, as hard as trace estimation. Using
the results from [27], it then immediately follows that
no classical algorithm can efficiently approximate our
cost functions under certain complexity assumptions.

5.2 Approximating CHST is DQC1-hard
In Appendix D, we prove the following:

Theorem 1. Let U and V be poly(n)-sized quantum
circuits specified by 2n × 2n unitary matrices, and let
ε = O(1/ poly(n)). Then, the problem of approximating
CHST(U, V ) up to ε-precision is DQC1-hard.

5.3 Approximating CLHST is DQC1-hard
In Appendix D, we also prove the following:

Theorem 2. Let U and V be poly(n)-sized quantum
circuits specified by 2n × 2n unitary matrices, and let
ε = O(1/ poly(n)). Then, the problem of approximating
CLHST(U, V ) up to ε-precision is DQC1-hard.

As a consequence of these results, it then follows from
[27] that there is no classical algorithm to efficiently
approximate our cost functions, CHST or CLHST, with
inverse polynomial precision, unless the polynomial hi-
erarchy collapses to the second level.

6 Small-scale implementations
This section presents the results of implementing
QAQC, as described in Sec. 3, for well-known one-
and two-qubit unitaries. Some of these implementa-
tions were done on actual quantum hardware, while
others were on a simulator. In each case, we performed
gradient-free continuous parameter optimization in or-
der to minimize the cost function CHST in (5), evaluat-
ing this cost function using the circuit in Fig. 4(a). For
full details on the optimization procedure, see Appendix
E.

6.1 Quantum hardware
We implement QAQC on both IBM’s and Rigetti’s
quantum computers. In what follows, the depth of a
gate sequence is defined relative to the native gate al-
phabet of the quantum computer used.

6.1.1 IBM’s quantum computers

Here, we consider the 5-qubit IBMQX4 and the 16-qubit
IBMQX5. For these quantum computers, the native
gate set is

AIBM = {Rx(π/2), Rz(θ),CNOTij} (33)

where the single-qubit gates Rx(π/2) and Rz(θ) can be
performed on any qubit and the two-qubit CNOT gate
can be performed between any two qubits allowed in the
topology; see [45] for the topology of IBMQX4 and [46]
for the topology of IBMQX5.

To compile a given unitary U , we use the general
procedure outlined in Sec. 3.3. Specifically, our initial
gate structure, given by Vk(α), is selected at random
from the gate alphabet in (33). We then calculate the
cost CHST(U, Vk(α)) by executing the HST shown in
Fig. 4(a) on the quantum computer. To perform the
continuous parameter optimization over the angles θ of
the Rz gates, we make use of Algorithm 2 outlined in
Appendix E.1. This method is designed to limit the
number of objective function calls to the quantum com-
puter, which is an important consideration when using
queue-based quantum computers like IBMQX4 and IB-
MQX5 since these can entail a significant amount of idle
time in the queue.

In essence, our method in Algorithm 2 discretizes the
continuous parameter space of angles θ to perform the
continuous optimization. These angles are selected uni-
formly over the unit circle and the grid spacing between
them decreases in the number of iterations. See Ap-
pendix E.1 for full details. If the cost of the new se-
quence is less than the cost of the previous sequence,
then we accept the change. Otherwise, we accept the

10



change with a probability that decreases exponentially
in the magnitude of the difference in cost. This change
in cost defines one iteration.

In Fig. 5(a), we show results for compiling single-
qubit gates on IBMQX4. All gates (1, T , X, and H)
converge to a cost below 0.1, but no gate achieves a cost
below our tolerance of 10−2. As elaborated upon in Sec.
8, this is due to a combination of finite sampling, gate
fidelity, decoherence, and readout error on the device.
The single-qubit gates compile to the following gate se-
quences:

1. 1 gate: Rz(θ), with θ ≈ 0.01π.

2. T gate: Rz(θ), with θ ≈ 0.30π.

3. X gate: Rx(π/2)Rx(π/2).

4. H gate: Rz(θ1)Rx(π/2)Rz(θ2), with θ1 = θ2 =
0.50π.

Figure 5(b) shows results for compiling the same
single-qubit gates as above on IBMQX5. The gate
sequences have the same structure as listed above for
IBMQX4. The optimal angles achieved are θ = −0.03π
for the 1 gate and θ = 0.23π for the T gate. The X
gate compiles to Rx(π/2)Rx(π/2), and the Hadamard
gate H compiles to Rx(π/2)Rz(π/2)Rx(π/2).

In our data collection, we performed on the order of
10 independent optimization runs for each target gate
above. The standard deviations of the angles θ were on
the order of 0.05π, and this can be viewed as the error
bars on the average values quoted above.

6.1.2 Rigetti’s quantum computer

The native gate set of Rigetti’s 8Q-Agave 8-qubit quan-
tum computer is

ARigetti = {Rx(±π/2), Rz(θ),CZij} (34)

where the single-qubit gates Rx(±π/2) and Rz(θ) can
be performed on any qubit and the two-qubit CZ gate
can be performed between any two qubits allowed in
the topology; see [47] for the topology of the 8Q-Agave
quantum computer.

As with the implementation on IBM’s quantum com-
puters, for the implementation on Rigetti’s quantum
computer we make use of the general procedure out-
lined in Sec. 3.3. Specifically, we perform random up-
dates to the gate structure followed by continuous op-
timization over the parameters θ of the Rz gates using
the gradient-free stochastic optimization technique de-
scribed in Algorithm 1 in Appendix E. In this optimiza-
tion algorithm, we use fifty cost function evaluations to
perform the continuous optimization over parameters.
(That is, each iteration in Fig. 5(c) and Fig. 6 uses fifty

Figure 5: Compiling the one-qubit gates 1, X, H, and T using
the gradient-free optimization technique described in Appendix
E. The plots show the cost CHST as a function of the number
of iterations, where an iteration is defined by an accepted up-
date to the gate structure; see Sec. 3.3 for a description of
the procedure. The insets display the minimum cost achieved
by optimizing over gate sequences with a fixed depth, where
the depth is defined relative to the native gate alphabet of the
quantum computer used. (a) Compiling on the IBMQX4 quan-
tum computer, in which we took 8, 000 samples to evaluate the
cost for each run of the Hilbert-Schmidt Test. (b) Compiling
on the IBMQX5 quantum computer, in which we again took
8, 000 samples to evaluate the cost for each run of the Hilbert-
Schmidt Test. (c) Compiling on Rigetti’s 8Q-Agave quantum
computer. In the plot, each iteration uses 50 cost function
evaluations to perform the continuous optimization. For each
run of the Hilbert-Schmidt Test to evaluate the cost, we took
10, 000 samples (calls to the quantum computer).
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cost function evaluations, and each cost function eval-
uation uses 10, 000 calls to the quantum computer for
finite sampling.) We take the cost error tolerance (the
parameter ε′ in Algorithm 1) to be 10−2, and for each
run of the Hilbert-Schmidt Test, we take 10, 000 sam-
ples in order to estimate the cost. Our results are shown
in Fig. 5(c). As described in Algorithm 1, we define an
iteration to be one accepted update in gate structure
followed by a continuous optimization over the internal
gate parameters.

The gates compiled in Fig. 5(c) have the following
optimal decompositions. The same decompositions also
achieve the lowest cost in the cost vs. depth plot in the
inset.

1. 1 gate: Rz(θ), with θ ≈ 0.

2. T gate: Rz(θ), with θ ≈ 0.342π.

3. X gate: Rx(−π/2)Rx(−π/2).

4. H gate: Rz(θ1)Rx(π/2)Rz(θ2), with θ1 ≈ 0.50π
and θ2 ≈ 0.49π.

As with the results on IBM’s quantum computers, none
of the gates achieve a cost less than 10−2, due to factors
such as finite sampling, gate fidelity, decoherence, and
readout error. In addition, similar to the IBM results,
the standard deviations of the angles θ here were on
the order of 0.05π, which can be viewed as the error
bars on the average values (over 10 independent runs)
quoted above.

6.2 Quantum simulator
We now present our results on executing QAQC for
single-qubit and two-qubit gates using a simulator. We
use the gate alphabet

A = {Rx(π/2), Rz(θ),CNOTij}, (35)

which is the gate alphabet defined in Eq. (33) except
with full connectivity between the qubits. We again
use the gradient-free optimization method outlined in
Appendix E to perform the continuous parameter op-
timization. The simulations are performed assuming
perfect connectivity between the qubits, no gate errors,
and no decoherence.

Using Rigetti’s quantum virtual machine [29], we
compile the controlled-Hadamard (CH) gate, the CZ
gate, the SWAP gate, and the two-qubit quantum
Fourier transform QFT2 by adopting the gradient-free
continuous optimization procedure in Algorithm 1. We
also compile the single-qubit gates X and H. For each
run of the Hilbert-Schmidt Test to determine the cost,
we took 20, 000 samples. Our results are shown in Fig.
6. For the SWAP gate, we find that circuits of depth
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Figure 6: Compiling one- and two-qubit gates on Rigetti’s
quantum virtual machine with the gate alphabet in (35) using
the gradient-free optimization technique described in Algorithm
1 in Appendix E. (a) The minimum cost achieved by optimiz-
ing over gate sequences with a fixed depth. (b) The cost as
a function of the number of iterations of the full gate struc-
ture and continuous parameter optimization; see Sec. 3.3 for
a description of the procedure. Note that each iteration uses
50 cost function evaluations, and each cost function evaluation
uses 10, 000 samples (calls to the quantum computer). (c)
Shortest-depth decompositions of the two-qubit controlled-Z,
controlled-Hadamard, and quantum Fourier transform gates as
determined by the compilation procedure. The equalities indi-
cated are true up to a global phase factor. Here, denotes
the rotation gate Rz(θ), while represents the rotation
gate Rx(π/2).

12



one and two cannot achieve zero cost, but there exists
a circuit with depth three for which the cost vanishes.
The circuit achieving this zero cost is the well-known de-
composition of the SWAP gate into three CNOT gates.
While our compilation procedure reproduces the known
decomposition of the SWAP gate, it discovers a decom-
position of both the CZ and the QFT2 gates that differs
from their conventional “textbook” decompositions, as
shown in Fig. 6(c). In particular, these decompositions
have shorter depths than the conventional decomposi-
tions when written in terms of the gate alphabet in (35).

In Appendix F, we likewise implement QAQC for
one- and two-qubit gates on a simulator, but instead
using a gradient-based continuous parameter optimiza-
tion method outlined therein.

7 Larger-scale implementations
While in the previous section we considered one- and
two-qubit unitaries, in this section we explore larger
unitaries, up to nine qubits. The purpose of this section
is to see how QAQC scales, and in particular, to study
the performance of our CHST and CLHST cost functions
as the problem size increases. We consider two different
examples.

Example 1. In the first example, we let U be a tensor
product of one-qubit unitaries. Namely we consider

U =
n⊗
j=1

Rz(θj) (36)

where the θj are randomly chosen, and Rz(θ) is a ro-
tation about the z-axis of the Bloch sphere by angle θ.
Similarly, our ansatz for V is of the same form,

V =
n⊗
j=1

Rz(φj) (37)

where the initial values of the angles φj are randomnly
chosen.

Example 2. In the second example, we go beyond the
tensor-product situation and explore a unitary that en-
tangles all the qubits. The target unitary has the form
U = U4(θ′)U3U2U1(θ), with

U1(θ) =
n⊗
j=1

Rz(θj), U2 = ...CNOT34CNOT12 (38)

U3 = ...CNOT45CNOT23, U4(θ′) =
n⊗
j=1

Rz(θ′j) .

(39)

Here, CNOTkl denotes a CNOT with qubit k the control
and qubit l the target, while θ = {θj} and θ′ = {θ′j} are
n-dimensional vectors of angles. Hence U2 and U3 are
layers of CNOTs where the CNOTs in U3 are shifted
down by one qubit relative to those in U2. Our ansatz
for the trainable unitary V has the same form as U but
with different angles, i.e., V = U4(φ′)U3U2U1(φ) where
φ and φ′ are randomly initialized.

In what follows we discuss our implementations of
QAQC for these two examples. We first discuss the
implementation on a simulator without noise, and then
we move onto the implementation on a simulator with
a noise model.

7.1 Noiseless implementations

We implemented Examples 1 and 2 on a noiseless sim-
ulator. In each case, starting with the ansatz for V at
a randomly chosen set of angles, we performed the con-
tinuous parameter optimization over the angles using a
gradient-based approach. We made use of Algorithm 4
in Appendix F.3, which is a gradient descent algorithm
that explicitly evaluates the gradient using the formu-
las provided in Appendix F.3. For each run of the HST
and LHST, we took 1000 samples in order to estimate
the value of the cost function. The results of this im-
plementation are shown in Figs. 7 and 8.

In the case of Example 1 (Fig. 7), both the CHST
and CLHST cost functions converge to the desired global
minimum up to 5 qubits. However, for n = 6, 7, 8, and
9 qubits, we find cases in which the CHST cost func-
tion does not converge to the global minimum but the
CLHST cost function does. Specifically, the cost CHST
stays very close to one, with a gradient value smaller
than the pre-set threshold of 10−3 for four consecutive
iterations, causing the gradient descent algorithm to de-
clare convergence. Interestingly, even in the cases that
the CHST cost does not converge to the global minimum,
training with the CLHST cost allows us to fully minimize
the CHST cost. (See the green curves labelled “HST via
LHST” in Fig. 7, in which we evaluate the CHST cost
at the angles obtained during the optimization of the
CLHST cost.) This fascinating feature implies that, for
n > 6 qubits in Example 1, training our CLHST cost
is better at minimizing the CHST cost than is directly
attempting to train the CHST cost.

We find very similar behavior for Example 2 (Fig. 8).
In particular, for n > 6 qubits, we were unable to di-
rectly train the CHST cost. However, the CLHST cost
converges to the global minimum for n = 6 and 8 qubits.
Furthermore, as with Example 1, we find that minimiz-
ing the CLHST cost also minimizes the CHST cost.
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Figure 7: Results of performing continuous parameter optimiza-
tion using the HST and the LHST for the scenario described
in Example 1. We make use of the gradient-based optimiza-
tion algorithm given by Algorithm 4 in Appendix F. The curves
“HST via LHST” are given by evaluating CHST using the angles
obtained during the optimization iterations of CLHST. For each
run of the HST and LHST, we use 1000 samples to estimate
the cost function.
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Figure 8: Results of performing continuous parameter optimiza-
tion using the HST and the LHST for the scenario described
in Example 2. We make use of the gradient-based optimiza-
tion algorithm given by Algorithm 4 in Appendix F, in which
each iteration can involve several calls to the quantum com-
puter. The curves “HST via LHST” are given by evaluating
CHST using the angles obtained during the optimization itera-
tions of CLHST. For each run of the HST and LHST, we use
1000 samples to estimate the cost function.

7.2 Noisy implementations
We implemented Examples 1 and 2 on IBM’s noisy sim-
ulator, where the noise model matches that of the 16-
qubit IBMQX5 quantum computer. This noise model
accounts for T1 noise, T2 noise, gate errors, and mea-
surement errors. We emphasize that these are realistic
noise parameters since they simulate the noise on cur-
rently available quantum hardware. (Note that when
our implementations required more than 16 qubits,
we applied similar noise parameters to the additional
qubits as those for the 16 qubits of the IBMQX5.) We
used the same training algorithm as the one we used
in the noiseless case above. The results of these imple-
mentations are shown in Figs. 9 and 10.

Similar to the noiseless case, for Example 1 (Fig. 9)
and for Example 2 (Fig. 10), we find that both the CHST
and CLHST cost functions converge up to a problem
size of 5 qubits. Due to the noise, as expected, both
cost functions converge to a value greater than zero.
For n > 6 qubits, however, we find that the CHST cost
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Figure 9: Results of performing continuous parameter optimiza-
tion using the HST and the LHST, in the presence of noise,
for the scenario described in Example 1. The noise model used
matches that of the IBMQX5 quantum computer. We make
use of the gradient-based optimization algorithm given by Algo-
rithm 4 in Appendix F. The curves “Noiseless HST via LHST”
are given by evaluating CHST (without noise) using the angles
obtained during the optimization iterations of CLHST. For each
run of the HST and LHST, we use 1000 samples to estimate
the cost function.

function does not converge to a local minimum. Specif-
ically, this cost stays very close to one with a gradient
value smaller than the pre-set threshold of 10−3 for four
consecutive iterations, causing the gradient descent al-
gorithm to declare convergence. The local cost, on the
other hand, converges to a local minimum in every case.

Remarkably, despite the noise in the simulation, we
find that the angles obtained during the iterations of
the CLHST optimization correspond to the optimal an-
gles in the noiseless case. This result is indicated by the
green curves labeled “Noiseless HST via LHST”. One can
see that the green curves go to zero for the local minima
found by training the noisy CLHST cost function. Hence,
in these examples, training the noisy CLHST cost func-
tion can be used to minimize the noiseless CHST cost
function to the global minimum. This intriguing behav-
ior suggests that the noise has not affected the location
(i.e., the value for the angles) of the global minimum.
We thus find evidence of the robustness of QAQC to the
kind of noise present in actual devices. We elaborate on
this point in the next section.

8 Discussion
On both IBM’s and Rigetti’s quantum hardware, we
were able to successfully compile one-qubit gates with
no a priori assumptions about gate structure or gate
parameters. We also successfully implemented QAQC
for simple 9-qubit gates on both a noiseless and noisy
simulator. These implementations highlighted two im-
portant issues, (1) barren plateuas in cost landscape
and (2) the effect of hardware noise, which we discuss
further now.

8.1 Barren Plateaus
Recent results [48, 49] on gradient-based optimization
with random quantum circuits suggest that the prob-
ability of observing non-zero gradients tends to be-
come exponentially small as a function of the number
of qubits. That work showed that a hardware-efficient
ansatz leads to vanishing gradients as the ansatz’s depth
becomes deeper (and hence begins to look more like a
random unitary). This is an important issue for many
variational hybrid algorithms, including QAQC, and
motivates the need to avoid a deep, random ansatz.
Strategies to address this “barren plateau” issue for
QAQC include restricting to a short-depth ansatz, or
alternatively employing an application-specific ansatz
that takes into account some information about the tar-
get unitary U . We intend to explore application-specific
ansatze in future work to address this issue. There may
be other strategies based on the fact that similar issues
have been identified in classical deep learning [50]. For
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Figure 10: Results of performing continuous parameter opti-
mization using the HST and the LHST, in the presence of noise,
for the scenario described in Example 2. The noise model used
matches that of the IBMQX5 quantum computer. We make
use of the gradient-based optimization algorithm given by Algo-
rithm 4 in Appendix F. The curves “Noiseless HST via LHST”
are given by evaluating CHST (without noise) using the angles
obtained during the optimization iterations of CLHST. For each
run of the HST and LHST, we use 1000 samples to estimate
the cost function.

instance, recent work [51] shows that gradient descent
with momentum (GDM) using an adaptive (multiplica-
tive) integration step update, called resilient backprop-
agation (rProp), can help with convergence. But, this
is an active research area and will likely be important
to the success of variational hybrid algorithms.

Interestingly, in this work, we identified another bar-
ren plateau issue that is completely independent and
distinct from the issue raised in Refs. [48, 49]. Namely,
we found that our operationally meaningful cost func-
tion, CHST, can have barren plateaus even when the
ansatz is a depth-one circuit. The gradient of CHST
can vanish exponentially in n even when the ansatz has
only a single parameter. This issue became apparent in
our implementations (see Figs. 7 through 10), where we
were unable to directly train the CHST cost for n > 6
qubits. Fortunately, we fixed this issue by introduc-
ing the CLHST cost, which successfully trained in all
cases we attemped (we attempted up to n = 9 qubits).

Although CLHST is not directly operationally meaning-
ful, it is indirectly related to CHST via Eqs. (28) and
(29). Hence it can be used to indirectly train CHST, as
shown in Figs. 7 through 10. We believe this barren
plateau issue will show up in other variational hybrid
algorithms. For example, we encountered the same is-
sue in a recently introduced variational algorithm for
state diagonalization [52].

8.2 Effect of Hardware Noise
The impact of hardware noise, such as decoherence, gate
infidelity, and readout error, is important to consider.
This is especially true since QAQC is aimed at being a
useful algorithm in the era of NISQ computers, although
we remark that QAQC may also be useful for fault-
tolerant quantum computing.

On the one hand, we intuitively expect noise to sig-
nificantly affect the HST and LHST cost evaluation cir-
cuits. On the other hand, we see empirical evidence of
noise resilience in Figs. 9 and 10. Let us elaborate on
both our intuition and our empirical observations now.

A qualitative noise analysis of the HST circuit in
Fig. 4(a) is as follows. To compile a unitary U acting on
n qubits, a circuit with 2n qubits is needed. Preparing
the maximally-entangled state |Φ+〉 in the first portion
of the circuit requires n CNOT gates, which are signif-
icantly noisier than one-qubit gates and propagate er-
rors to other qubits through entanglement. In principle,
all Hadamard and CNOT gates can be implemented in
parallel, but on near-term devices this may not be the
case. Additionally, due to limited connectivity of NISQ
devices, it is generally not possible to directly imple-
ment CNOTs between arbitrary qubits. Instead, the
CNOTs need to be “chained” between qubits that are
connected, a procedure that can significantly increase
the depth of the circuit.

The next level of the circuit involves implementing
U in the top n-qubit register and V ∗ in the bottom n-
qubit register. Here, the noise of the computer on V ∗

is not necessarily undesirable since it could allow us to
compile noise-tailored algorithms that counteract the
noise of the specific computer, as described in Sec. 2.
Nevertheless, the depth of V ∗ and/or of U essentially
determines the overall circuit depth as noted in (19),
and quantum coherence decays exponentially with the
circuit depth. Hence, compiling larger gate sequences
involves additional loss of coherence on NISQ comput-
ers.

The final level of the HST circuit involves making a
Bell measurement on all qubits and is the reverse of
the first part of the circuit. As such, the same noise
analysis of the first portion of the circuit applies here.
Readout errors can be significant on NISQ devices [53],
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and our HST circuit involves a number of measurements
that scales linearly in the number of qubits. Hence,
compiling larger unitaries can increase overall readout
error.

A similar qualitative noise analysis holds for the
LHST circuit in Fig. 4(b), except we note that to cal-
culate the functions C(j)

LHST in (26) we require only one
CNOT gate in the last portion of the LHST circuit be-
fore the measurement. Furthermore, we measure only
two qubits regardless of the total number of qubits.

With that said, we observed a (somewhat surprising)
noise resilience in Figs. 9 and 10. In these implemen-
tations, we imported the noise model of the IBMQX5
quantum computer, which is a currently available cloud
quantum computer. Hence, we considered realistic noise
parameters for decoherence, gate infedility, and read-
out error. This noise affected all circuit elements of the
LHST circuit in Fig. 4(b). Yet we still obtained the cor-
rect unitary V via QAQC, as shown by the green curves
going to zero in Figs. 9 and 10.

Naturally, we plan to investigate this noise resilience
in full detail in future work. But it is worth emphasiz-
ing the following point here. The value of the cost could
be significantly affected by noise without shifting the lo-
cation of the global minimum in parameter space. In
fact, one can see in Figs. 9 and 10 that the value of the
CLHST cost is significantly affected by noise. Namely,
note that the red curves in these plots do not go to
zero for larger iterations. However, the green curves do
go to zero, which means that QAQC found the correct
parameters for V despite the noisy cost values.

We could speculate reasons for why the global mini-
mum appears not shift in parameter space with noise.
For example, it could be due to the nature of our cost
functions. These cost functions can be thought of as en-
tanglement fidelities and hence are related to Hilbert-
space averages of input-output fidelities, see Eq. (6).
By averaging the input-output fidelity over the whole
Hilbert space, the effect of noise could essentially be
averaged away. This is just speculation at this point,
and we will perform a detailed analysis of the effect of
noise in future work. Regardless, our preliminary re-
sults in Figs. 9 and 10 suggest that QAQC may indeed
be useful in the NISQ era.

9 Conclusions
Quantum compiling is crucial in the era of NISQ de-
vices, where constraints on NISQ computers (such
as limited connectivity, limited circuit depth, etc.)
place severe restrictions on the quantum algorithms
that can be implemented in practice. In this work,
we presented a methodology for quantum compilation

called quantum-assisted quantum compiling (QAQC),
whereby a quantum computer provides an exponential
speedup in evaluating the cost of a gate sequence, i.e.,
how well the gate sequence matches the target. In prin-
ciple, QAQC should allow for the compiling of larger
algorithms than standard classical methods for quan-
tum compiling due to this exponential speedup. As
a proof-of-principle, we implemented QAQC on IBM’s
and Rigetti’s quantum computers to compile various
one-qubit gates to their native gate alphabets. To our
knowledge, this is the first time NISQ hardware has
been used to compile a target unitary. In addition,
we successfully implemented QAQC on a noiseless and
noisy simulator for simple 9-qubit unitaries.

Our main technical results were the following. First,
we carefully chose a cost function (which involved global
and local overlaps between a target unitary U and a
trainable unitary V ) and proved that it satisfied four
criteria: it is faithful, it is efficient to compute on a
quantum computer, it has an operational meaning, and
it scales well with the size of the problem. Second, we
presented short-depth circuits (see Sections 4.1 and 4.2)
for computing our cost function. Third, we proved that
evaluating our cost function is DQC1-hard, and hence no
classical algorithm can efficiently evaluate our cost func-
tion, under reasonable complexity assumptions. This
established a rigorous proof for the difficulty of classi-
cally simulating QAQC. We also remark that, in the
Appendix, we detailed our gradient-free and gradient-
based methods for optimizing our cost function. This
included a circuit for gradient computation that gener-
alizes the famous Power of One Qubit [26] and hence is
likely of interest to a broader community.

As elaborated in the Discussion section, our noisy im-
plementations of QAQC showed a surprising resilience
to noise. While simulating realistic noise parameters
based on a currently available cloud quantum computer
(IBMQX5), we were able to run QAQC on a 9-qubit
unitary and obtain the correct parameters for V . We
plan to investigate this intriguing noise resilience in fu-
ture work.

QAQC is a novel variational hybrid algorithm, sim-
ilar to other well-known variational hybrid algorithms
such as VQE [18] and QAOA [2]. Variational hybrid
algorithms are likely to provide some of the first real
applications of quantum computers in the NISQ era. In
the case of QAQC, it is an algorithm that makes other
algorithms more efficient to implement, via algorithm
depth compression. We note that the ability to com-
press algorithm depth will also be useful (to reduce the
run-time of quantum circuits) in the era of fault-tolerant
quantum computing. The central application of QAQC
is thus to make quantum computers more useful.
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A Remark on implementation of V ∗

As mentioned in Sec. 4, a subtle point about evaluating
the cost functions CHST(U, Vk(α)) and CLHST(U, Vk(α))
is that the complex conjugate Vk(α)∗ must be executed
on the quantum computer, not Vk(α) itself. The com-
plex conjugate of a unitary corresponding to a gate se-
quence can be obtained by taking the complex conju-
gate of each unitary in the gate sequence. However, if
each gate in the sequence comes from a gate alphabet
A, it is possible that the complex conjugate of a gate
in the sequence is not contained in the alphabet; for
example, if A = {Rx(π/2), Rz(θ)}, then the complex
conjugate of Rx(π/2), which is Rx(−π/2), is not con-
tained in A. But the unitary Rz(π)Rx(π/2)Rz(π) is
equal (up to a global phase) to Rx(−π/2). There are
thus two ways to proceed when performing the com-
pilation procedure: during the optimization over the
continuous parameters, directly run the gate sequence
corresponding to Vk(α), expressing it in terms of the
native gate alphabet of the quantum computer, then at
the end establish the complex conjugate of the optimal
unitary as the unitary to which U has been compiled.
This would involve translating the complex conjugate of
each gate in the optimal sequence into the native gate
alphabet of the quantum computer. An alternative is
to first take the complex conjugate Vk(α)∗ by translat-
ing the complex conjugate of each gate in the sequence
into the native gate alphabet, then execute the resulting
sequence on the quantum computer. In each case, we

allow for a small-scale classical compiler that can per-
form the simple translation of the complex conjugate
of a gate sequence into the native gate alphabet of the
quantum computer. Note that this small-scale classi-
cal compiler does not come with exponential overhead
because it is only compiling one- and two-qubit gates.

Also, observe that if a gate alphabet is not closed
under complex conjugation, then the depth of a gate
sequence from that alphabet can increase by taking its
complex conjugate. This is true for the example given
above, in which the complex conjugate Rx(−π/2) of
Rx(π/2) has a depth of three under the alphabet A =
{Rx(π/2), Rz(θ)}, while the original gate has a depth
of only one. However, in general, note that the final
depth increases by at most a constant factor relative to
the original depth.

B Faithfulness of LHST cost function
Proposition 1. For all unitaries U and V , it holds
that CLHST(U, V ) = 0 if and only if U = V (up to a
global phase).

Proof: First, we note that since 0 6 C(j)
LHST(U, V ) 6 1

for all j ∈ {1, 2, . . . , n}, we get that CLHST(U, V ) = 0
if and only if C(j)

LHST(U, V ) = 0, i.e., F (j)
e = 1, for all

j ∈ {1, 2, . . . , n}. Next, since F (j)
e is by definition the

entanglement fidelity of the channel Ej , we have that
F

(j)
e = 1 if and only if Ej is the identity channel I.

Finally, the condition U = V is equivalent to W :=
UV † = 1. Therefore, it suffices to prove that W =
1 if and only if Ej is the identity channel for all j ∈
{1, 2, . . . , n}. The implication W = 1 ⇒ Ej = I for
all j ∈ {1, 2, . . . , n} is immediate. We now prove the
converse.

Let j = 1, and suppose that W has the following
operator Schmidt decomposition under the bipartite cut
A1|A2 · · ·An:

W =
r∑
i=1

√
σiX

A1
i ⊗ Y

A2···An
i , (40)

where {Xi}ri=1 and {Yi}ri=1 are orthonormal sets of op-
erators, σi > 0 are the Schmidt coefficients of W , and r
is the Schmidt rank of W . Since W is unitary, we have

W †W =
r∑

i,i′=1

√
σiσi′X

†
iXi′ ⊗ Y †i Yi′ = 1A1···An

, (41)

which implies that

TrA2···An
(W †W ) =

r∑
i=1

σiX
†
iXi = 2n−1

1A1 . (42)
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Plugging in the Schmidt decomposition of W into the
definition of E1 in (24), we get

E1(ρ) =
r∑
i=1

1
2n−1σiXiρX

†
i . (43)

The operators Ki :=
√

σi

2n−1Xi can therefore be re-
garded as Kraus operators for E1. Indeed, they satisfy
the following condition for trace preservation:

r∑
i=1

K†iKi = 1
2n−1

r∑
i=1

σiX
†
iXi (44)

= 1
2n−1 TrA2···An

(W †W ) (45)

= 1A1 , (46)

where to obtain the second equality we used (42).
Now, we assume that E1 is the identity channel, mean-

ing that E1(ρ) =
∑r
i=1

σi

2n−1XiρX
†
i = ρ for all states

ρ. By the non-uniqueness of Kraus representations of
quantum channels, there exists an isometry V relating
the Kraus operators {Ki}ri=1 to another set {Nj}sj=1
of Kraus operators according to Ki =

∑s
j=1 Vi,jNj .

Since one Kraus representation of the identity chan-
nel is the one consisting of only the identity operator
1, we let the set {Nj}sj=1 consist of only the identity
operator. The isometry V is then a r × 1 matrix, so
that Vi,1 = αi ∈ C for all i ∈ {1, 2, . . . , r}. This implies
that Ki =

√
σi

2n−1Xi = αi1A1 for all i ∈ {1, 2, . . . , r}.
Therefore,

WA1···An =
r∑
i=1

√
σiX

A1
i ⊗ Y

A2···An
i (47)

=
r∑
i=1

√
σi

√2n−1

σi
αi1A1

⊗ Y A2···An
i (48)

= 1A1 ⊗
√

2n−1
r∑
i=1

αiY
A2···An
i (49)

=: 1A1 ⊗W ′A2···An
, (50)

where in the last line we have defined the unitary
W ′A2···An

=
√

2n−1∑r
i=1 αiY

A2···An
i .

Now, given the assumption that E1 = I, so that W
has the form in (50), we get that

E2(ρ) = TrA3···An

(
W ′
(
ρ⊗ 1A3···An

2n−2

)
(W ′)†

)
. (51)

Therefore, applying the procedure above for j = 2 by
taking the bipartite cut in the operator Schmidt decom-
position of W ′ to be A2|A3 · · ·An, we get that if E2 is
the identity channel, then W = 1A1 ⊗ 1A2 ⊗ W ′′ for
some unitary W ′′ acting on A3 · · ·An. Continuing in

this manner for all j up to j = n, assuming in each
case that Ej is the identity channel, we ultimately ob-
tain W = 1A1 ⊗ 1A2 ⊗ · · · ⊗ 1An

, which implies that
U = V , as required. �

C Relation between CLHST and CHST

Proposition 2. Let U and V be 2n × 2n unitaries.
Then,

CLHST(U, V ) 6 CHST(U, V ) 6 nCLHST(U, V ) .

Proof: First we rewrite the global cost function:

CHST(U, V ) = 1− 1
d2

∣∣Tr[V †U ]
∣∣2

= 1− Tr[
∣∣Φ+〉〈Φ+∣∣

AB

× (W ⊗ 1B)
∣∣Φ+〉〈Φ+∣∣

AB
(W † ⊗ 1B)],

(52)
where W = UV †. Also, for the local cost function, we
have

CLHST(U, V ) := 1
n

n∑
j=1

C
(j)
LHST(U, V ), (53)

where

C
(j)
LHST(U, V )

= 1− Tr[Πj(W ⊗ 1B)
∣∣Φ+〉〈Φ+∣∣

AB
(W † ⊗ 1)]

(54)

and we have defined

Πj := 1A1B1⊗· · ·⊗
∣∣Φ+〉〈Φ+∣∣

AjBj
⊗· · ·⊗1AnBn

, (55)

which are projectors that all mutually commute. Let

ρ := (W ⊗ 1B)
∣∣Φ+〉〈Φ+∣∣

AB
(W † ⊗ 1B). (56)

Then, we can write CHST(U, V ) as

CHST(U, V ) = 1− Tr[Πn · · ·Π1ρ], (57)

and we can write C(j)
LHST(U, V ) as

C
(j)
LHST(U, V ) = 1− Tr[Πjρ] (58)

for all 1 6 j 6 n. If we associate the events Ej
with the projectors Πj , so that Pr[Ej ] = Tr[Πjρ], then,
Tr[Πn · · ·Π1ρ] = Pr [

⋂n
i=1Ei].

To prove (28), namely CLHST(U, V ) 6 CHST(U, V ),
we recall a basic inequality in probability theory. For
any set {A1, A2, . . . , An} of events, it holds that

Pr
[
n⋃
i=1

Ai

]
>

1
n

n∑
i=1

Pr[Ai]. (59)
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Let us take Ai = Ei in (59). Then,

Pr
[
n⋃
i=1

Ei

]
>

1
n

n∑
i=1

Pr[Ei] (60)

⇒ 1− Pr
[
n⋂
i=1

Ei

]
>

1
n

n∑
i=1

(1− Pr[Ei]). (61)

By definition of the events Ei, the last equality is pre-
cisely CHST(U, V ) > CLHST(U, V ), as required.

To prove (29), we make use of the union bound:

Pr
[
n⋃
i=1

Ei

]
6

n∑
i=1

Pr[Ei] (62)

⇒ 1− Pr
[
n⋂
i=1

Ei

]
6

n∑
i=1

(1− Pr[Ei]) (63)

= nCLHST(U, V ). (64)

Given that the left-hand side of the above inequality
is precisely CHST(U, V ), we have that CHST(U, V ) 6
nCLHST(U, V ), as required. �

D Proofs of complexity theorems
Theorem 1. Let U and V be poly(n)-sized quantum
circuits specified by 2n × 2n unitary matrices, and let
ε = O(1/ poly(n)). Then, the problem of approximating
CHST(U, V ) up to ε-precision is DQC1-hard.

Proof: We show that the problem of approximat-
ing the cost CHST(U, V ) is hard for DQC1. In other
words, we have to show that any problem in DQC1 re-
duces to an instance of approximating CHST(U, V ) for
some ε = O(1/poly(n)). Recall that, given as input a
poly(n)-sized unitary Q on n-qubits, any problem in
DQC1 requires us to estimate the acceptance proba-
bility pacc when measuring the outcome “0” on input
ρ = |0〉〈0 | ⊗ 1/2n, i.e.

pacc = Tr[(|0〉〈0 | ⊗ 1)QρQ†]. (65)

Note that, since the above equation describes a proba-
bility via the positive semi-definite operator |0〉〈0 | ⊗ 1,
the trace will result in a non-negative real number. Let
us re-write Eq. (65) as follows:

pacc = 1
2n
∣∣Tr[(|0〉〈0 | ⊗ 1)Q(|0〉〈0 | ⊗ 1)Q†]

∣∣. (66)

When letting U ′ as in Fig. 11, we can also write

Tr[(|0〉〈0 | ⊗ 1)Q(|0〉〈0 | ⊗ 1)Q†] = Tr[U ′]/4, (67)

hence the problem is equivalent to approximating the
absolute value of the trace of a unitary U ′. In fact, given

⊕
⊕

Q† Q... ...U ′ =

Figure 11: The trace of the unitary U ′ defined by the circuit
above is equal to the trace of the non-unitary operator (|0〉〈0 |⊗
1)Q(|0〉〈0 | ⊗ 1)Q† up to a factor of 4 [44].

our choice of U ′ and when taking V to be the identity,
the problem reduces to an instance of approximating the
cost CHST(U ′,1) up to some precision ε = O(1/ poly(n))
via a simple reduction. Therefore, we have shown
that the problem of approximating CHST(U, V ) up to
ε-precision is DQC1-hard. �

Theorem 2. Let U and V be poly(n)-sized quantum
circuits specified by 2n × 2n unitary matrices, and let
ε = O(1/ poly(n)). Then, the problem of approximating
CLHST(U, V ) up to ε-precision is DQC1-hard.

Proof: We show that any problem in DQC1 reduces
to an instance of approximating CLHST(U, V ) via a re-
duction. We are given as input a poly(n)-sized unitary
Q on n-qubits, and the task is to estimate the accep-
tance probability of outputting “0”. Our proof strategy
is to show that one can efficiently extract Tr(U ′), the
trace of an n-qubit unitary U ′, from two distinct eval-
uations of CLHST and elementary post-processing. This
implies that computing CLHST is hard for DQC1, since
all problems in DQC1 can be seen as estimating the real
part of Tr(U ′) via Eq. (66) and Eq. (67).

The two cost function evaluations that we consider
are CLHST(U1,1) and CLHST(U2,1), where

U1 = U ′ (68)
U2 = CU ′ . (69)

Here, CU ′ denotes controlled-U ′ operation.
First, consider U2 and let the j = n + 1 qubit corre-

spond to the control qubit for the CU ′ controlled uni-
tary. Then one can show that

C
(j)
LHST(U2,1) = 1

2C
(j)
LHST(U1,1) ∀j ∈ {1, ..., n} , (70)

C
(n+1)
LHST (U2,1) = 1

2 −
1

2n+1Re(Tr(U ′)) . (71)

This gives

CLHST(U2,1) = 1
2(n+ 1)

(
1 + nCLHST(U1,1)

− Re(Tr(U ′))
2n

)
. (72)
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For notational simplicity, letB(U) := 1−CLHST(U,1).
Then, we can rewrite Eqs. (72) as

B(U2) = 1
2

(
1 + 2−n

n+ 1Re(Tr(U ′)) + n

n+ 1B(U1)
)
.

(73)

Hence, we have that

Re(Tr(U ′)) = 2n ((n+ 1)(2B(U2)− 1)− nB(U1)) .
(74)

By choosing U ′ according to Fig. 11, one can see from
Eq. (66) and Eq. (67) that the problem is equivalent
to ε-approximating our local cost function for some
ε = O(1/ poly(n)). Hence, any DQC1 problem can
be efficiently solved for by computing a simple linear
combination of two instances of CLHST. Therefore, we
have shown that the problem of approximating the cost
CLHST(U, V ) is hard for DQC1. �

E Gradient-free optimization method
We now outline our approach to gradient-free optimiza-
tion of over the continuous gate parameters α in the
trainable unitary Vk(α). This approach was used to
obtain the results in Sec. 6. Given that this is an im-
plementation for small problem size, we employ the cost
function CHST(U, Vk(α)). However, we note that one
can replace CHST with our general cost function Cq for
larger problem sizes.

Recall that we compute the cost function
CHST(U, Vk(α)) using the Hilbert-Schmidt Test
(HST), as described in Sec. 4.1 and illustrated in Fig.
4(a). For a given set of gate structure parameters k,
the calculation of the cost on a quantum computer (as
well as on a simulator) is affected by the fact that, due
to finite sampling, the HST allows us to obtain only
an estimate of the magnitude of the Hilbert-Schmidt
inner product. Noise within the quantum computer
itself also affects the calculation of the cost. Therefore,
in order to perform gradient-free optimization over
the continuous gate parameters α, we make use of
stochastic optimization techniques that are designed to
optimize noisy functions. Specifically, we make use of
the gp_minimize routine in the scikit-optimize Python
library [54], which is a gradient-free optimization
routine that performs Bayesian optimization using
Gaussian processes [55, 56]. See Algorithm 1 for a
general overview of the optimization procedure. Note
that with this algorithm, we obtain an ε-approximate
compilation of U , with

ε =
(

d

d+ 1

)
ε′ . (75)

Algorithm 1: Gradient-free Continuous
Optimization for QAQC via the HST
Input: Unitary U to be compiled; trainable

unitary Vk(α) of a given structure; error
tolerance ε′ ∈ (0, 1); maximum number of
starting points N ; maximum number of
iterations Niter for gp_minimize; sample
precision δ > 0.

Output: Parameters αopt such that at best
CHST(U, Vk(αopt)) 6 ε′.

Init: αopt ← 0; cost← 1
1 repeat
2 choose an initial parameter α(0) at random;
3 run gp_minimize with α(0) and Niter as input

and αmin as output; whenever the cost is
called upon for some α, run the HST on
Vk(α)∗ and U approximately 1/δ2 times to
estimate the cost CHST(U, Vk(α));

4 if cost > CHST(U, Vk(αmin)) then
5 cost← CHST(U, Vk(αmin)); αopt ← αmin

6 until cost 6 ε′, at most N times.
7 return αopt, cost

In the small-scale quantum computer implementations
of Fig. 5(c) and Fig. 6, we use 50 objective function
evaluations in gp_minimize per iteration. Note that
evaluating the objective function involves running the
quantum circuit many times in order to sample from
the output distribution of the circuit.

For large problem sizes, as described in Sec. 3.4, we
propose using the cost function Cq = qCHST + (1 −
q)CLHST. The gradient-free continuous parameter opti-
mization algorithm for Cq is similar to the one for CHST
in Algorithm 1, except that in addition to running the
HST we run the LHST for every qubit j ∈ {1, 2, . . . , n}
in order to compute the local cost CLHST. In this case,
the algorithm provides an ε-approximate compilation of
U , with

ε =
(

n

1− q + nq

)(
d

d+ 1

)
ε′ . (76)

We emphasize that our approach to gradient-free op-
timization avoids the exponential overhead of evaluat-
ing the cost function classically, yet at the same time
makes use of fast and efficient classical heuristics for
optimization. In fact, using the HST, Algorithm 1 re-
quires only O(1/δ2) calls to the quantum computer in
order to evaluate the cost, where δ = 1/√nshots is the
sample precision, which is related to the number of sam-
ples nshots taken from the device.
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E.1 Alternative method for gradient-free opti-
mization
Here we propose an alternative algorithm for gradient-
free optimization that, on average, significantly reduces
the number of times the objective function is evaluated.
As a result, it is more suitable for cloud computing un-
der a queue submission system (e.g., IBM’s Quantum
Experience). This algorithm performs a “multi-scale
bisection” of the parameter space based on simulated
annealing. We implement this method in Sec. 6.1.1
specifically for the hardware of IBM because the queue
submission system can require a significant amount of
time to make many calls to the quantum computer.

This alternative approach to performing gradient-
free continuous parameter optimization is outlined
in Algorithm 2. We start with four angles spread
uniformly in the interval [0, 2π)—namely 0, π/2, π,
and 3π/2. This significantly reduces the size of the
search space and allows us to get close to, or find
exactly, an optimal gate sequence. Once the optimal
structure is reached from this step, we then bisect
the angles for each gate Rz(α) by evaluating the cost
with a new circuit containing Rz(α ± π/2t+1), where
t = 1, 2, . . . , tmax is determined by the iteration in the
procedure. Although we do not explore all angles in
the interval, the runtime is logarithmically faster than
a continuous search due to the bisection procedure.
An additional advantage of this approach is that many
gates have angles that are simple fractions of π, e.g.,
T = Rz(π/4) and H = Rz(π/2)Rx(π/2)Rz(π/2).
In a noiseless environment, the two steps above are
sufficient. On actual devices, we implement a third
step of stochastic optimization by evaluating the cost
for the new circuit with each gate Rz(α) replaced
by Rz(α ± ∆(t)) for some small value ∆(t) � 1
decreasing monotonically with the iteration t. This
allows us to compile for a given device by accounting
for noise and gate errors. This can be thought of as a
“fine-grained” angular optimization in contrast to the
previous “coarse-grained” angular optimization.

F Gradient-based optimization method
We now describe a gradient-based approach to perform-
ing the optimization over the continuous parameters in
the trainable gate sequence Vk(α). In Sec. F.1, we
define a new cost function for this purpose, and we in-
troduce a quantum circuit to calculate this cost function
on a quantum computer. In Sec. F.2, we present the
results of implementing this method on a quantum sim-
ulator. In Sec. F.3, we briefly describe how the original
cost functions CHST and CLHST can also be optimized

Algorithm 2: Gradient-free Optimization
using Bisection for QAQC
Input: Unitary U to be compiled; trainable

unitary Vk(α) of a given structure and
gate alphabet A; error tolerance ε′ ∈ (0, 1);
maximum number of iterations N ;
maximum number of bisections tmax of the
unit circle; sample precision δ > 0.

Output: Parameters αopt such that at best
CHST(U, Vk(αopt)) 6 ε′.

Init: Restrict all gates in A with continuous
parameters to discrete angles in the set
Ω0 = {0, π/2, π, 3π/2}; αopt ← 0; cost← 1

1 for t = 1, 2, . . . , tmax do
2 repeat
3 anneal over all possible bisected angles in

the set
Ωt := {α± π/2t+1 | for α ∈ Ω0} ∪ Ωt−1;

4 whenever the cost is called upon for some
α ∈ Ωt, run the HST on Vk(α)∗ and U
approximately 1/δ2 times to estimate the
cost CHST(U, Vk(α));

5 if cost > CHST(U, Vk(α)) then
6 cost← CHST(U, Vk(α));
7 until cost 6 ε′ at most N times.
8 repeat
9 minimize the cost over all small continuous

increments ∆(t)� 1 within the set of
bisected angles Ωt; whenever the cost is
called upon for some α+ ∆(t), with
α ∈ Ωt, run the HST on Vk(α+ ∆(t))∗ and
U approximately 1/δ2 times to estimate
the cost CHST(U, Vk(α+ ∆(t)));

10 if cost > CHST(U, Vk(α+ ∆(t))) then
11 cost← CHST(U, Vk(α+ ∆(t)));

αopt ← α+ ∆(t)
12 until cost 6 ε′ at most N times.
13 return αopt, cost
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using a gradient-based method.
While recent work on gradient descent continuous op-

timization has shown vast quantum speedups over clas-
sical variants [57–59], the majority of proposals still ap-
pear to be out of reach for implementations on NISQ
devices, mainly due to their use of certain algorithmic
techniques, such as quantum random-access memory,
the quantum Fourier transform, and the Grover search
algorithm, which have high resource requirements. In-
stead, we focus on continuous optimization procedures
that are feasible on current quantum computers and
leave improvements to our algorithms as an open prob-
lem.

The gradient with respect to α of the gate sequence
Vk(α) given by

Vk(α) = GkL
(αL)GkL−1(αL−1) · · ·Gk1(α1), (77)

is defined by

∇αVk(α) =
(
∂Vk(α)
∂α1

, . . . ,
∂Vk(α)
∂αL

)
, (78)

where the (i, j) matrix element of the `-th component
is (

∂Vk(α)
∂α`

)
i,j

= ∂Vk(α)i,j
∂α`

. (79)

For example, consider the rotation gate Rz(α) =
e−iασz/2, which is parametrized by the angle α. Then,
the derivative with respect to α can be written as

∂

∂α
Rz(α) = − i2σzRz(α) , (80)

which follows from the Taylor series expansion of the
exponent.

Now, evaluating the gradient on a quantum computer
is possible due to the fact that for the gate alphabets
we consider in this paper, only the single-qubit gates
are parameterized, and these gates are simply rotation
gates. In fact, any unitary gate can be decomposed into
circuits in which only the single-qubit rotation gates are
present. This is illustrated in Fig. 12. Furthermore, the
circuits in Fig. 12(a) and Fig. 12(b) are universal for
one- and two-qubit gates, respectively (see [60], which
also contains universal circuits for n-qubit gates). This
means that our gradient-based approach can be applied
to any n-qubit unitary without explicitly searching over
gate structures, though the compilations obtained in
this manner will generally have sub-optimal depth.

F.1 The Power of Two Qubits
Consider the following cost function based on the nor-
malized Hilbert-Schmidt distance between the unitaries

(a)

(b)

U = Rz(αz1) Ry(αy) Rz(αz2)

UAB =
U1(α

(1))

U2(α
(2))

⊕ Rz(αz)

Ry(αy1) Ry(αy2)⊕

⊕ U3(α
(3))

U4(α
(4))

Figure 12: (a) Any single-qubit gate U can be decomposed
into three elementary rotations (up to a global phase). Given
appropriate parameters α = (αz1 , αy, αz2 ), U can be written
as V (α) = e−iαz2σz/2e−iαyσy/2e−iαz1σz/2. (b) Any two-
qubit gate UAB can be decomposed into three CNOT gates
as well as 15 elementary single-qubit gates, where each unitary
Uj(α(j)) can be written as in (a). This decomposition is known
to be optimal [61], i.e., it uses the least number of continuous
parameters and CNOT gates. General universal quantum cir-
cuits for n-qubit gates are discussed in [60].

U and V :

CPOTQ(U, V ) := 1
2d ||U − V ||

2
HS

= 1− 1
d
Re
[
Tr(V †U)

]
,

(81)

where POTQ stands for “Power of Two Qubits” and
refers to the circuit used to evaluate it, which we present
below. Note that CPOTQ(U, V ) is zero if and only if U =
V . Contrary to the cost function CHST(U, V ), which is
defined using the magnitude of the inner product 〈V,U〉,
this cost function is defined using the real part of the
inner product. Consequently, it does not vanish if U and
V differ only by a global phase. Indeed, if V = eiϕU ,
then CPOTQ(U, V ) = 1− cos(ϕ).

Before discussing the circuit used to evaluate the cost
function CPOTQ(U, V ), let us review the Power of One
Qubit (POOQ) [26], shown in Fig. 13(a), which is a
circuit for computing the trace of a d-dimensional uni-
tary U . This circuit acts on a d-dimensional system A,
initially in the maximally mixed state, 1/d, and on a
single-qubit ancilla Q initially in the |0〉 state. After ap-
plying a Hadamard gate to Q and a controlled-U gate
to QA (with Q the control system), the reduced density
matrix ρQ has its off-diagonal elements proportional to
Tr(U). Hence, one can measureQ in theX and Y bases,
respectively, to read off the real and imaginary parts of
Tr(U).

We now introduce a circuit for computing the real and
imaginary parts of 〈V,U〉 that generalizes the POOQ
and is called the Power of Two Qubits (POTQ), de-
picted in Fig. 13(b). As the name suggests, the POTQ
employs two single-qubit ancillas, Q and Q′, each ini-
tially in the |0〉 state. In addition, two d-dimensional
systems, A and B, are initially prepared in the Bell
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state |Φ+〉 defined in Eq. (14). (Although not shown in
Fig. 13(b), this Bell state is prepared with a depth-two
circuit, as shown in Fig. 4.)

The first step in the POTQ is to prepare the two-
qubit maximally entangled state 1√

2 (|0〉|0〉+ |1〉|1〉) be-
tween Q and Q′, using the Hadamard and CNOT gates
as shown in Fig. 13(b). The second step is to apply a
controlled-U gate between Q and A (with Q the control
system). In parallel with this gate, the anticontrolled-
V T gate is applied to Q′B, with Q′ the control system,
where anticontrolled means that the roles of the |0〉 and
|1〉 states on the control system are reversed in compar-
ison to a controlled gate. This results in the state:

1√
2

(|0〉Q|0〉Q′(1A ⊗ V
T )
∣∣Φ+〉

+ |1〉Q|1〉Q′(U ⊗ 1B)
∣∣Φ+〉)

= 1√
2

(|0〉Q|0〉Q′(V ⊗ 1B)
∣∣Φ+〉

+ |1〉Q|1〉Q′(U ⊗ 1B)
∣∣Φ+〉), (82)

where to obtain the equality we used the ricochet prop-
erty in Eq. (18). As in the HST, note that V itself is
not implemented. In this case, its transpose is imple-
mented.

Finally, a CNOT gate is applied to QQ′, with Q the
control system. This results in the reduced state on Q
being

ρQ = 1
2
(
|0〉〈0|+ Tr(V †U)|0〉〈1|

+Tr(U†V )|1〉〈0|+ |1〉〈1|
)
. (83)

By inspection of ρQ, one can see that measuringQ in the
X and Y bases, respectively, gives the real and imagi-
nary parts of Tr(V †U).

Interestingly, if we set V to the identity in the
POTQ, then since the CNOT gate commutes with the
controlled-U gate and the reduced state of |Φ+〉 is the
maximally mixed state 1/d, we recover the POOQ. The
POTQ is therefore a generalization of the POOQ.

Note that while the POOQ can also be used to de-
termine Tr(V †U), the POTQ has the advantage that
the controlled gates for U and V can be executed in
parallel, while in the POOQ they would have to be exe-
cuted in series. This makes the POTQ better suited for
NISQ devices, where short depth is crucial. Consider
the depth of the POTQ. Denoting the controlled-U and
the anticontrolled-V T as CU and CV T respectively, the
overall depth is

D(POTQ) = 4 + max{D(CU ), D(CV T )} (84)

Note the similarity here to Eq. (19). The overall depth
is essentially determined by whichever controlled gate
has the largest depth.

(a) Power of One Qubit

(b) Power of Two Qubits

|0〉

1

d

H

U... ...

R

|0〉

|0〉

H

⊕ ⊕

U

V T

|Φ+〉
...

...

R

...

...

Figure 13: (a) The Power of One Qubit (POOQ) [26]. This
can be used to compute the trace of a unitary U acting on a
d-dimensional space. The R gate represents either H, in which
case the circuit computes Re[Tr(U)], or the S gate followed
by H, in which case the circuit computes Im[Tr(U)]. (b) The
Power of Two Qubits (POTQ). This is a generalization of the
POOQ, as can be seen by setting V = 1. The POTQ can be
used to compute the Hilbert-Schmidt inner product Tr(V †U)
between two unitaries U and V acting on a d-dimensional
space. As with the POOQ, R = H leads to Re[Tr(V †U)],
while R = HS leads to Im[Tr(V †U)].

F.2 Gradient-based optimization via the POTQ
The gradient with respect to α of CPOTQ(U, Vk(α)) can
be computed using the POTQ. This is due to the fact
that

∂

∂α`
Re
[
Tr(Vk(α)†U)

]
= 1

2Re
[
Tr
(
Ṽ

(`)
k (α)†U

)]
,

(85)
where

Ṽ
(`)
k (α) := GkL

(αL) · · ·Gk`+1(α`+1)(−iσk`
)

×Gk`
(α`)Gk`−1(α`−1) · · ·Gk1(α1)

(86)

is the original gate sequence Vk(α) except with an ad-
ditional Pauli gate σk`

corresponding to the variable
with respect to which the derivative is taken. (Note
that for the gate alphabets that we consider in this pa-
per, only the single-qubit gates are parameterized, and
these gates are simply rotation gates. The derivative
of any one-qubit rotation gate is analogous to the ex-
pression in (80) for the derivative of the rotation gate
Rz(α).) This means that to compute the gradient of
CPOTQ(U, Vk(α)), we simply add the appropriate local
Pauli gate to the original gate sequence and run the
POTQ on this new gate sequence.

Our gradient-based optimization procedure is out-
lined in Algorithm 3. Given an arbitrary unitary U
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Algorithm 3: Gradient-based Continuous
Optimization for QAQC via the POTQ
Input: Unitary U to be compiled; a trainable

unitary Vk(α) of a given structure, where
α is a continuous circuit parameter of
dimension L; maximum number of
iterations N ; error tolerance ε′ ∈ (0, 1);
learning rate η > 0; sample precision δ > 0.

Output: Parameters αopt such that at best
CPOTQ(U, Vk(αopt)) 6 ε′.

Init: αopt ← 0; cost← 1
1 repeat
2 choose initial parameters α(0) at random
3 for τ = 1, 2, . . . , T do
4 for i = 1, 2, . . . , L do
5 run the POTQ on ∂αi

Vk(α(τ−1))T and
U approximately 1/δ2 times to
estimate Re

(
Tr
[
∂αi

Vk(α(τ−1))†U
])

6 update α(τ) ←
α(τ−1) − η∇αCPOTQ(U, Vk(α(τ−1)))

7 run the POTQ on Vk(α(τ))T and U
approximately 1/δ2 times to estimate the cost
CPOTQ(U, Vk(α(τ)))

8 if cost > CPOTQ(U, Vk(α(τ))) then
9 cost← CPOTQ(U, Vk(α(τ))); αopt ← α(τ)

10 until cost 6 ε′, at most N times
11 return αopt, cost

as input, Algorithm 3 compiles U to a unitary Vk(αopt)
of a given structure k that minimizes the cost CPOTQ.
The gradient is evaluated with the POTQ circuit as
a subroutine within a classical gradient-descent algo-
rithm. The overall query complexity in the number of
calls to the cost evaluation routine of Algorithm 3 is
O(NTL/δ2), where δ = 1/√nshots is the sample pre-
cision, N is the maximum number of repetitions over
random initial parameters α0, L is the dimension of
the continuous parameter space of α, and T is the num-
ber of gradient descent iterations for a suitable learning
rate η > 0. In order to improve convergence, it may
also be useful to supply the quantum subroutines for
computing the cost function and the gradient to a more
advanced minimization routine, for example as found
in the Python library SciPy [62]. We present below the
results on compiling both single-qubit and two-qubit
gates on a simulator.

When performing Algorithm 3, we rely on the ability
to perform the controlled-U gate. The unitary U may
be unknown, e.g., as in Fig. 1(b). In general, to per-
form a controlled operation with respect to a target uni-
tary U , one can use a method for “remote control” [63].

Figure 14: Compiling one- and two-qubit gates on a sim-
ulator with the gate alphabet in (35) using the gradient-
based optimization technique described in Algorithm 3, with
nshots = 10, 000. Shown is the cost as a function of the num-
ber of gradient calls of the continuous parameter optimization
using the minimize routine in the SciPy-optimize Python li-
brary. The gate structure for the single-qubit gates is fixed to
the one shown in Fig. 12(a), while the gate structure for the
two-qubit gates is fixed to the one shown in Fig. 12(b).

This method employs a local U gate and controlled-
SWAP operations in order to realize the controlled-U
gate. In practice, since any controlled unitary gate can
be decomposed into native gates, the ability to com-
pile controlled-SWAP, the Toffoli gate, and the set of
controlled rotations is sufficient. In order to perform
such a translation, we allow the user to have access to
a small-scale classical compiler. This does not incur ex-
ponential overhead since the gates to be translated are
one- and two-qubit gates (or their controlled versions).
While this may cause the depth of our compiled unitary
to increase, it will only be by a constant factor.

We note that decoherence, gate infidelity, and read-
out errors on NISQ computers are all more pronounced
when attempting to execute controlled unitaries. This
means that there is significant performance loss for
controlled unitaries, as required in the POTQ. Conse-
quently, we did not implement our gradient-based op-
timization method on current quantum devices, but we
speculate that improvements to quantum hardware will
enable this application.

F.2.1 Implementation on a quantum simulator

We use IBM’s simulator [30] to compile a selection
of single-qubit and two-qubit gates by performing the
gradient-based optimization procedure in Algorithm 3.
In order to improve convergence, we additionally sup-
ply the gradient, as well as the cost function, to the
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minimize routine in the SciPy-optimize Python library
[62]. For the single-qubit gates, we assume a fixed
structure for the trainable gate sequence according to
the decomposition in Fig. 12(a), while for the two-
qubit gates we assume a fixed structure for the train-
able gate sequence according to the decomposition in
Fig. 12(b). We compile the T gate, X gate, Hadamard
(H) gate, as well as the CNOT and CZ gates, all with
nshots = 10, 000. The results are shown in Fig. 14. We
note that increasing nshots to higher orders of magnitude
significantly reduces the sampling error and results in
more stable convergence at the cost of an increase in
runtime.

F.3 Gradient-based optimization via the HST
and LHST
We now show that it is possible to perform gradient-
based optimization of the original cost function CHST
and its local variant CLHST. This allows us to perform
gradient-based optimization of the general cost function
Cq = qCHST+(1−q)CLHST. The algorithm for gradient-
based optimization of CHST and CLHST is presented in
Algorithm 4.

The gradient with respect to α of both
CHST(U, Vk(α)) and CLHST(U, Vk(α)) can be com-
puted using the HST and the LHST, respectively.
Specifically, for a gate sequence of the form in (77), in
which the only parameterized gates are the single-qubit
rotation gates, we have that

∂

∂α`
CHST(U, Vk(α)) = 1

2CHST(U, V̂ (`)
k,+(α))

− 1
2CHST(U, V̂ (`)

k,−(α)),
(87)

and
∂

∂α`
C

(j)
LHST(U, Vk(α)) = 1

2C
(j)
LHST(U, V̂ (`)

k,+(α))

− 1
2C

(j)
LHST(U, V̂ (`)

k,−(α))
(88)

for all j ∈ {1, 2, . . . , n}. Here,

V̂
(`)
k,±(α) := GkL

(αL) · · ·Gk`+1(α`+1)Gk`

(
±π2

)
×Gk`

(α`)Gk`−1(α`−1) · · ·Gk1(α1)
(89)

is the original gate sequence Vk(α) with an additional
rotation gate Gk`

(
±π2
)
corresponding to the variable

with respect to which the derivative is taken. In other
words, to compute the gradient of the cost function
CHST(U, Vk(α)), we run the HST in Fig. 4(a) twice,
once with the gate sequence V̂ (`)

k,+(α) and once with the

gate sequence V̂ (`)
k,−(α). Similarly, to compute the gradi-

ent of the functions C(j)
LHST(U, Vk(α)), we run the LHST

in Fig. 4(b) twice, once with the gate sequence V̂ (`)
k,+(α)

and once with the gate sequence V̂ (`)
k,−(α).

The expressions for the gradient in (87) and (88) can
be verified by recalling that only the one-qubit gates
need to be parameterized and that they can always be
assumed to have the form e−iασ/2 for some Pauli oper-
ator σ, where α is the continuous parameter specifying
the gate. Then, for the gate sequence Vk(α) in (77), we
get

∂Vk(α)
∂α`

= GkL
(αL) · · ·Gk`+1(α`+1)∂Gk`

(α`)
∂α`

×Gk`−1(α`−1) · · ·Gk1(α1) (90)

= − i2Gk`
(α`) · · ·Gk`+1(α`+1)σk`

Gk`
(α`)

×Gk`−1(α`−1) · · ·Gk1(α1) (91)

Then, we use the identity

i[σk`
, ρ] = Gk`

(
−π2

)
ρGk`

(
−π2

)†
−Gk`

(π
2

)
ρGk`

(π
2

)†
,

(92)

which holds for any state ρ. We also observe that both
the functions CHST(U, Vk(α)) and C(j)

LHST(U, Vk(α)) are
of the form

F (α) = Tr[H(U ⊗ Vk(α)∗)ρ(U† ⊗ Vk(α)T )], (93)

where ρ = |Φ+〉〈Φ+|A1···An
for both functions,

H = |Φ+〉〈Φ+|A1···An
for CHST(U, Vk(α)), and H =

|Φ+〉〈Φ+|AjBj
⊗ 1ĀjB̄j

for C(j)
LHST(U, Vk(α)). Finally,

using

∂F (α)
∂α`

= Tr
[
H

(
U ⊗

(
Vk(α)
∂α`

)∗)
ρ(U† ⊗ Vk(α)T )

]
+ Tr

[
H(U ⊗ Vk(α)∗)ρ

(
U† ⊗

(
∂Vk(α)
∂α`

)T)]
, (94)

substituting (91) into this expression, and using (92) to
simplify, we obtain (87) and (88).
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Algorithm 4: Gradient-based Continuous
Optimization for QAQC via the HST and
LHST
Input: Unitary U to be compiled; a trainable

unitary Vk(α) of a given structure, where
α is a continuous circuit parameter of
dimension L; maximum number of
iterations N ; gradient tolerance ε′ ∈ (0, 1);
sample precision δ > 0; cost function
C ∈ {CHST, CLHST}.

Output: Parameters αopt such that at best
||∇αC(U, Vk(αopt))||2 6 ε′.

Init: αopt ← 0; cost← 0; grad←∞; τ ← 0;
gradCount← 0; η ← 1

1 choose initial parameters α(0) at random
2 cost← C(U, Vk(α(0)))
3 while count < N and gradCount < 4 do
4 τ ← τ + 1
5 for i = 1, 2, . . . , L do
6 Calculate ∂C

∂αi
using either (87) or (88),

taking approximately 1
δ2 samples for each

circuit.
7 grad← ||∇αC(U, Vk(α(τ−1)))||2
8 if grad 6 ε′ then
9 gradCount← gradCount + 1

10 α
(τ−1)
1 ← α(τ−1) − η∇αC(U, Vk(α(τ−1)))

11 α
(τ−1)
2 ← α

(τ−1)
1 − η∇αC(U, Vk(α(τ−1)))

12 if cost− C(U, Vk(α(τ−1)
2 )) > η · grad then

13 η ← 2η
14 α(τ) ← α

(τ−1)
2

15 else if cost− C(U, Vk(α(τ−1)
1 )) < η

2 · grad
then

16 η ← η
2

17 α(τ) ← α
(τ−1)
1

18 else
19 α(τ) ← α

(τ−1)
1

20 cost← C(U, Vk(α(τ)))
21 αopt ← α(τ)

22 return αopt, cost
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