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Sleep deprivation (SD) has been reported to severely affect executive function,

and interindividual differences in these effects may contribute to the SD-associated

cognition impairment. However, it is unclear how individual differences in chronotypes

(morning-type, MT; evening-type, ET) influence neurobehavioral functions after SD. To

address this question, we used functional magnetic resonance imaging (fMRI) to evaluate

whether 24 h of SD differentially affect response inhibition, a core component of executive

function, in MT and ET individuals. Accordingly, MT and ET participants were instructed

to follow their preferred 7–9-h sleep schedule for 2 weeks at home both prior to and

throughout the course of the study, and then performed a go/no-go task during fMRI

scanning at 08:00 a.m. both at rested wakefulness (RW) and following SD. We also

examined whether the neurobehavioral inhibition differences in the chronotypes in each

session can be predicted by subjective ratings (sleepiness, mood, and task) or objective

attention. Behaviorally, SD led to an increased response time of go trials (hit RT), more

attentional lapses, higher subjective sleepiness, and worse mood indices, but it did not

impair the accuracy of go trials (hit rate) and no-go trials (stop rate). Regardless of the

presence of SD, ET individuals exhibited a lower stop rate, higher subjective ratings of

sleepiness, exhausted mood, and task difficulty in comparison with MT individuals. On

the neural level, SD resulted in decreased inhibition-related activation of the right lateral

inferior frontal gyrus (rIFG) in MT individuals and increased rIFG activation in ET individuals.

Moreover, the rIFG activation in ET individuals after SD was positively correlated to the

subjective ratings of sleepiness and effort put into the task, which was considered as

a compensatory response to the adverse effects of SD. These findings suggest that

individual differences in inhibition-related cerebral activation after SD are influenced by

chronotypes. In addition, ET individuals may be vulnerable to response inhibition. Thus, it

is essential to take into consideration the chronotype in SD research and sleep medicine.

Keywords: chronotype, sleep deprivation, response inhibition, interindividual difference, go/no-go task, inferior

frontal gyrus, functional magnetic resonance imaging
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INTRODUCTION

Sleep deprivation (SD) is commonplace in modern society, and
there is increasing neuroimaging evidence suggesting that the
prefrontal cortex may be particularly susceptible to the impacts
of sleep loss due to its extensive use during normal waking (1).
Accordingly, SD should particularly impair complex executive
functions that rely on the prefrontal regions (2). However,
studies on this assumption have yielded inconsistent results,
with some groups reporting impairments in executive function
tasks during SD (3–5) and others failing to find such effects (6,
7). These inconsistencies may be attributable to interindividual
differences. For instance, earlier studies reported that individuals
who are better able to maintain inhibitory efficiency exhibit
a larger activation in the prefrontal cortex as a compensatory
response to SD relative to those whose inhibitory efficiency
declines (8).

The concept of chronotype relies on the subjective preference
for activities in the morning or evening (morning- [MT]
or evening- [ET] type). MT individuals are most alert in
the early morning and prefer to go to sleep and wake
up early. By contrast, ET individuals are most alert toward
later in the evening and prefer to go to sleep and wake
up late (9, 10). Individuals with different chronotypes differ
in their homeostatic sleep regulation; the build-up (11) and
dissipation (12) rate of sleep pressure are faster in MT
individuals than in ET individuals. Even under conditions
of sleep fragmentation (5-min awakenings every 30min), MT
individuals exhibit increased homeostatic response (13). In
a normal waking day, ET individuals are more capable of
maintaining alertness (14) and executive function (15) by
recruiting arousal-promoting brain structures with increasing
homeostatic sleep pressure. However, few studies have directly
examined the interindividual chronotype differences (MT vs. ET)
in the neurobehavioral responses to an elevation in sleep pressure
triggered by total SD (16). Therefore, the present study employed
functional magnetic resonance imaging (fMRI) to evaluate
whether 24-h total SD differentially affects the neurobehavioral
differences in response inhibition, a core component of executive
function, between MT and ET individuals. To investigate this
question, MT and ET participants underwent scanning while
performing a go/no-go task in both rested wakefulness (RW)
and SD conditions. Furthermore, the study aimed to examine
whether the subjective ratings (sleepiness, mood, and task)
and objective attention (psychomotor vigilance) of chronotypes
in each session reflect the neurobehavioral differences in
response inhibition.

On the basis of previous findings, we expected that SD
impairs inhibition-related neurobehavioral responses, such as
poor inhibition performance (8) and impaired frontoparietal
network activities (17), which are especially located in
the right lateral inferior frontal gyrus (rIFG) and critical
for successful response inhibition (18, 19). Furthermore,
we hypothesized that SD would differentially impact the
neurobehavioral changes of chronotypes and that the subjective
ratings and objective attention of participants in each session
would predict to some extent the neurobehavioral responses
to inhibition.

METHODS

Subjects
Participants were recruited from students who completed the
self-reported Morningness–Eveningness Questionnaire (20) at
Southwest University. The inclusion criteria were as follows: (1)
age, 18–30 years; (2) normal or corrected-to-normal vision; (3)
right-handedness; and (4) a regular sleep-wake schedule that
includes 7–9 h of total sleep time. Exclusion criteria were as
follows: (1) self-reported history of psychiatric, neurologic, or
sleep disorders; (2) drug or alcohol abuse, excessive caffeine (>5
cups of coffee per day) or nicotine (>5 cigarettes per day) intake;
(3) travel across more than two time zones within 3 months
before the study; and (4) presence of contraindications for fMRI.

The chronotype was determined by the Chinese version of
the Morningness–Eveningness Questionnaire (21, 22) which
has good psychometric properties. After the answers had been
checked and scored by the experimenters (score >62, MT
participant; score<50, ET participant), 26MT individuals (mean
score = 64.2 ± 3.4) and 22 ET individuals (mean score = 40.0
± 4.2) were recruited for this study. Three participants (MT,
2; ET, 1) were excluded from data analysis because of excessive
head movement and the presence of behavioral outliers. This
study received approval from the Institutional Review Board at
the Southwest University, Chongqing and followed the principles
of the Declaration of Helsinki. All participants gave written
informed consent before the experiment and were compensated
for their participation.

Experimental Procedure
The participants visited the laboratory three times. At their first
visit, the participants underwent the screening process, were
informed of the study requirements, and practiced the task. The
participants filled out the Pittsburgh Sleep Quality Index [PSQI;
(23)], Epworth Sleepiness Scale (24), the positive and negative
affective schedule (25), the self-rating depression scale (26), the
self-rating anxiety scale (27), the NEO Five-Factor Inventory
(28), the Barrett Impulsiveness Scale-11 [BIS; (29)], and the
Dysexecutive Questionnaire [DEX; (30)]. Only participants with
regular sleep habits (self-reported sleep for 7–9 h per night)
were invited to take part in the following experiments. The
participants were then instructed to follow their preferred 7–9-
h sleep-wake schedule at home for at least 2 weeks both prior to
and throughout the course of the study. Compliance was verified
by using sleep diaries. In addition, alcohol, nicotine, and caffeine
intake, napping, and intense physical activity were forbidden for
at least 24 h before scanning.

Participants were scanned twice with a week between the
scans. The order of the two scanning sessions was randomized
and counterbalanced (31, 32). The two sessions were conducted
1 week apart to minimize the possible residual effects of SD. In
the RW session, participants underwent scanning at 08:00 a.m.
after a night of normal sleep at home. Before the experiment, the
participants were instructed to sleep about 7–9 h the night, get
up at least 1 h prior to the beginning of scanning, and arrived at
the laboratory at 07:30 a.m. to prepare for the following scanning.
In the SD session, participants were monitored by the two
experimenters in the laboratory from 10:00 p.m. until scanning
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began at 08:00 a.m. For both sessions, lighting conditions were
carefully controlled at a steady low level, and exposure to
sunlight was avoided. During the SD session, at every hour from
10:00 p.m., the participants performed the 10-min version of
the Psychomotor Vigilance Task [PVT; (33, 34)], responded to
the Karolinska Sleepiness Scale [KSS; (35)] as well as a mood-
related Likert-type rating scale (range, 0–10) which was defined
by the items motivated–unmotivated, fresh–exhausted, elated–
depressed, congenial–irritable, relaxed–stressed, and calm–
anxious (8). For the rest of the time, participants were kept awake
with non-strenuous activities like reading, watching movies, and
conversing with the experimenters. In addition, regular snacks
were available. Prior to the scanning, subjects carried out the
PVT, KSS, the mood rating, and had a task practice. Then,
participants performed the task immediately in the fMRI scanner.
After task completion but still in the scanner, participants were
asked to complete the KSS, the mood rating, and the 10-point
Likert scales (36) to assess the following task-related factors:
task difficulty, ability to concentrate, effort put into the task,
and motivation to perform the task well. The number of lapses
(RTs >500ms) and mean RT in PVT were treated as indexes of
psychomotor vigilance (33).

Task
The go/no-go task requires from the participant continual
responses to stimuli while bearing in mind to refrain from

responding to a specific but less frequently presented stimulus.
This task [Figure 1; (36, 37)] alternated between task blocks and
resting blocks. During resting blocks, a fixation cross appeared
in the center of the screen. During task blocks, stimuli were
exhibited by an event-related design and four shapes (go stimuli:
large square, small square, large pentagon; the no-go stimulus:
small pentagon) were presented one at a time in the center of
the screen. Once the subjects observed a go stimulus, they had
to press a button using the right finger as soon as possible.
However, they were required to refrain from responding when
they observed the no-go stimulus. Task blocks were in total 270 s
long, in which each of five task blocks lasted 30 s and another
eight blocks lasted 15 s. Resting blocks were in total 114 s and
varied between 3 and 15 s (mean = 8.8 s). Stimuli appeared for
200ms every 1,500ms. There were 180 stimuli in total, of which
75% were go stimuli. The task lasted 6min 24 s. The response
time of go trials (hit RT), as well as the accuracy of go (hit rate)
and no-go (stop rate) trials, were assessed.

fMRI Data Acquisition
Images were collected on a 3-Tesla MR scanner (Siemens
Magnetom Trio TIM; Erlangen, Germany). A magnetization-
prepared gradient echo sequence was employed to acquire T1-
weighted anatomical images: TR = 1,900ms, TE = 2.52ms, flip
angle= 9◦, FOV= 250× 250mm2, in-plane resolution= 0.98×
0.98mm, slices = 176, thickness = 1mm. A single-shot gradient

FIGURE 1 | Schematic representation (A) and the timing parameters (B) of the go/no-go task.

Frontiers in Neurology | www.frontiersin.org 3 May 2019 | Volume 10 | Article 514

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Song et al. Chronotype and Sleep Deprivation

echo-planar imaging (EPI) sequence was employed to acquire
task-based functional T2∗-weighted images: TR = 2,000ms, TE
= 30ms, bandwidth = 2,232 Hz/pixel, flip angle = 90◦, FOV =
220 × 220 mm2, matrix size = 64 × 64, slices = 32, thickness =
3mm, inter-slice gap= 1 mm.

fMRI Data Analysis
We used SPM12 and DPABI2.1 to analyze the functional data
(38, 39). For each participant, the first five images were discarded
due to non-steady magnetization, the rest of the functional
images were corrected for slice timing and spatially realigned
using six parameters of head motion. The structural images were
co-registered to the EPI mean image and segmented into white
matter, gray matter, and cerebrospinal fluid. The functional data
were normalized to a Montreal Neurological Institute (MNI)
space with a voxel size of 3× 3× 3 mm3 and spatially smoothed
using a Gaussian kernel with 8mm full width at half maximum.

In the first-level analysis, a statistical analytical design was
estimated using the general linear model (GLM). Five regressors
were created (rest; go success, GS; go error, GE; no-go success,
NGS; and no-go error, NGE) after convolution with the canonical
hemodynamic response function [HRF; (40)]. Six realignment
parameters were included in themodel to attribute to the residual
variance, and a high-pass filter of 128 s was used to remove
possible effects of low-frequency changes. Sex and age differences
were controlled as covariates. Subsequently, we probed the
inhibition-related cerebral activations using the contrast of NGS
and GS at the group level [two-tailed Gaussian random field
correction, voxel level: p < 0.001, cluster level: p < 0.05; (41)].
The group analysis targeted the interaction effects between
chronotype and session on response inhibition. In addition,
using functional MRI results, the regions-of-interest (ROIs) were
defined by a sphere of 6mm radius around the centers of the
peak coordinates of inhibition-related areas. For the ROI analysis
using MarsBar (42), individual β values were extracted. To assess
the interaction effect on response inhibition, repeated-measures
analysis of variance (ANOVA) based on the ROIs were carried
out using SPSS Statistics 20.0, followed by Tukey’s post hoc tests.

RESULTS

Participants
The features of the participants are specified in Table 1. Global
and several component (sleep quality, latency, and disturbance;
Table S1) scores on the PSQI were significantly higher for
ET individuals, with higher scores indicating more severe
complaints. In addition, ET individuals showed marginally
significantly higher values for the non-planning factor [t(43) =
−1.81, p = 0.08] on the BIS and the inhibition factor [t(43) =
−1.78, p = 0.08] on the DEX (Table S1). According to the sleep
diaries (Table 2), chronotypes showed significant differences in
sleeping and waking time but not in sleep duration.

Behavioral Findings-Subjective and
Objective Measures
For the go/no-go task, repeated-measures ANOVAs for the
accuracy and RT data were carried out (Table 3). A main effect

TABLE 1 | Participant characteristics.

Measures MT (N = 24) ET (N = 21) p-value

Sex(male/female) 8/16 8/13

Age 21.29 ± 2.37 20.14 ± 1.24

PSQI 3.75 ± 1.42 5.90 ± 2.44 <0.001

ESS 11.38 ± 3.99 11.38 ± 3.34 0.99

PANAS

Positive affect 30.79 ± 5.70 30.24 ± 7.08 0.77

Negative affect 18.54 ± 6.01 20.38 ± 6.65 0.34

SDS 44.17 ± 8.53 47.38 ± 9.73 0.24

SAS 33.96 ± 5.21 36.43 ± 7.01 0.18

PSQI, Pittsburgh Sleep Quality Inventory; ESS, Epworth Sleepiness Scale; PANAS,

positive and negative affective schedule; SDS, self-rating depression scale; SAS, self-

rating anxiety scale.

TABLE 2 | Sleep characteristics based on sleep diary.

Measures MT (N = 24) ET (N = 21) p-value

Sleep onset time of 1st week 23 : 44 ± 0 : 30 0 : 54 ± 0 : 35 < 0.001

Wake-up time of 1st week 7 : 03 ± 0 : 41 8 : 52 ± 2 : 08 < 0.001

Sleep duration of 1st week+ 7.30 ± 0.76 7.41 ± 0.73 0.630

Sleep onset time of 2nd week 23 : 39 ± 0 : 32 0 : 53 ± 0 : 40 < 0.001

Wake-up time of 2nd week 7 : 22 ± 1 : 00 8 : 24 ± 0 : 50 < 0.001

Sleep duration of 2nd week+ 7.60 ± 0.730 7.56 ± 0.78 0.857

MT, morning-type; ET, evening-type; M, 24-h clock time; SD, “hours: minutes”; +, sleep

duration is in hours.

TABLE 3 | Accuracy and reaction times of the go/no-go task according to

session and chronotype.

Morning-type Evening-type

RW SD RW SD

Hit rate (%) 0.97 ± 0.07 0.92 ± 0.14 0.97 ± 0.06 0.87 ± 0.15

Hit RT (ms) 434.52 ± 64.59 443.38 ± 69.30 420.32 ± 86.83 456.39 ± 80.65

Stop rate (%) 0.91 ± 0.07 0.88 ± 0.11 0.82 ± 0.13 0.77 ± 0.13

RW, rested wakefulness; SD, sleep deprivation; Hit rate, the accuracy of go trials; Hit RT,

the reaction times of go trials; Stop rate, the accuracy of no-go trials.

of session was noted on the hit RT [F(1, 43) = 4.34, p < 0.05] after
controlling for the covariates of sex and age, i.e., the hit RT was
significantly higher following SD than at RW. However, the hit
rate [F(1, 43) = 2.43, p = 0.13] and stop rate [F(1, 43) = 0.27, p =
0.61] showed no significant main effects of session. A main effect
of chronotype was found on the stop rate [F(1, 43) = 8.65, p <

0.01] after controlling for the covariates of sex and age. In other
words, ET individuals showed a significantly lower stop rate than
MT individuals. However, the hit rate [F(1, 43) = 0.18, p = 0.68]
and hit RT [F(1, 43) = 0.01, p= 0.93] showed no significant main
effects of chronotype. The interaction effect of chronotype and
session on hit rate [F(1, 43) = 0.34, p = 0.57], hit RT [F(1, 43) =
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0.52, p = 0.48], and stop rate [F(1, 43) = 0.25, p = 0.62] were
not significant.

With respect to the PVT, we focused on the number of
lapses [transformed lapses:

√

lapses +
√

lapses+ 1; (33)] as
the primary outcome to assess vigilance. Repeated-measures
ANOVAs (Table S2) showed a significant main effect of session
[F(1, 43) = 67.66, p < 0.001] and a marginally significant main
effect of chronotype [F(1, 43) = 3.88, p= 0.06] on the transformed
lapses. As expected, the number of lapses after SDweremore than
those after RW. In addition, more lapses (trend level) occurred
in ET individuals than in MT individuals. Next, to explore the
differences in lapses during SD between MT and ET individuals,
an independent-samples t-test (MT vs. ET) was performed on
transformed lapses (values between 11:00 p.m. and 07:00 a.m.)
during the SD session (Figure 2). Five subjects were eliminated
from the analysis (1 from the MT and 4 from the ET) since they
failed to complete the PVT hourly on the SD night because of
a technical error. The findings revealed more lapses among ET
individuals at 02:00 a.m. [t(1, 38) = −2.10, p < 0.05], 03:00 a.m.
[t(1, 38) = −2.17, p < 0.05], and 06:00 a.m. [t(1, 38) = −1.78,
p = 0.08, marginally significant] compared to MT individuals
(Figure 2). Thus, ET individuals may be at a disadvantage while
completing the PVT in the SD condition.

A repeated-measures ANOVA was also performed on the
subjective measures (ratings of sleepiness, mood, and task). The
ratings for sleepiness and each item on mood just before each
scanning session differed significantly between the two sessions
(Table S2). In comparison with RW, subjects presented increased
sleepiness and decreased mood parameters after SD. We also
observed a main effect of session on ratings of sleepiness, mood,
and task [effect on task difficulty was marginally significant,
F(1, 43) = 3.38, p = 0.07] during the scanning (Table S3).
Thus, SD significantly changed almost all subjective ratings
of sleepiness, mood, and task. Importantly, the main effect of
chronotype on the ratings of sleepiness [F(1, 43) = 10.38, p <

0.01], fresh–exhausted mood [F(1, 43) = 4.91, p < 0.05], and task
difficulty [F(1, 43) = 9.52, p < 0.01] were statistically significant,
with ET individuals showing significantly higher values than
MT individuals.

fMRI Results
A repeated-measures ANOVA for chronotype (MT vs. ET) and
session (RW vs. SD) revealed a significant interaction effect
between the two factors (two-tailed Gaussian random field
correction, voxel level: p < 0.001, cluster level: p < 0.05) in the
right lateral inferior frontal gyrus region [rIFG: Brodmann area
46, peak coordinate (45, 54, 12); peak intensity: 18.26; number
of voxels: 47; Figure 3A], which was closely associated with the
execution of response inhibition.

For the ROI analysis, there was a significant chronotype ×
session interaction effect on the rIFG region [F(1, 43) = 17.86, p<

0.001; Figure 3B]. Then, a simple effect analysis were performed.
The results (Figure 3B) were as follows: in MT participants, the
cerebral responses induced by successful inhibition (NGS > GS)
in the rIFG decreased [t(1, 23) = 2.01, p = 0.06] in SD compared
to RW sessions; in ET participants, the rIFG activity significantly
increased [t(1, 20) = −3.66, p < 0.005] in SD compared to

FIGURE 2 | Mean ± standard deviation change in the transformed

Psychomotor Vigilance Task (PVT) lapses (
√
lapses+

√
lapses+ 1) determined

hourly during the period from 11:00 p.m. to 07:00 a.m. on the 24-h sleep

deprivation (SD) night in morning-type (MT) and evening-type (ET) participants.

The differences (MT vs. ET) on transformed PVT lapses were investigated

using t-tests for independent samples. Five participants were eliminated from

the analysis (1 from the MT, 4 from the ET) owing to failure to complete the

PVT hourly at the SD night. Condition effect *p < 0.05; +: the effect was

marginally significant.

RW sessions. In addition, rIFG activity in MT participants was
significantly higher compared with ET participants at RW [t(1, 43)
= 3.02, p < 0.005], whereas rIFG activity in ET participants
was significantly higher compared with MT participants after SD
[t(1, 43) =−2.78, p < 0.01].

Brain-Behavior Correlation Results
To examine whether the subjective ratings (sleepiness, mood,
and task-related factors) and objective task performance (PVT
and go/no-go task) are predictive of the inhibition-related rIFG
activation in each session, we performed a correlation analysis
between behavioral indices (subjective ratings, objective task
performance) and rIFG activation at RW and following SD in the
two chronotypes. In MT individuals, rIFG activity was positively
correlated with subjective ratings for task difficulty (r = 0.45, p <

0.05) and negatively correlated with hit RT (r =−0.43, p < 0.05)
during the RW session. However, rIFG activity and behavior
indices showed no correlation during the SD session. Among ET
individuals, rIFG activity was negatively correlated to the mean
RT of the PVT during the RW session (r = −0.45, p < 0.05)
and positively correlated to subjective ratings of sleepiness just
before the scanning (r= 0.44, p= 0.06) and the effort put into the
task (r = 0.55, p < 0.05; the correlation analysis was computed
with 19 data pairs due to two outliers of neural activity in the
rIFG) during the SD session (Figure 4). Obviously, a relationship
between rIFG activity and attention (hit RT of the go/no-go task
or mean RT of the PVT) was only detectable during RW but not
after SD. This suggests that SD altered the association between
inhibition-related activation and attention.

DISCUSSION

We investigated the interindividual differences in the
neurobehavioral functions associated with response inhibition
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FIGURE 3 | (A) Brain regions showing an interaction effect between chronotype and session during response inhibition (NGS vs. GS) in the right lateral inferior frontal

gyrus [rIFG; Brodmann area 46, peak coordinate (45, 54, 12); peak intensity: 18.26; number of voxels: 47; two-tailed Gaussian random field correction, voxel level: p

< 0.001, cluster level: p < 0.05]. (B) For ROI analysis, the results showed that inhibition-related (NGS vs. GS) response in rIFG decreased from the rested wakefulness

(RW) session to the sleep deprivation (SD) session in morning-type (MT) participants, whereas rIFG activity significantly increased from the RW session to the SD

session in evening-type (ET) participants. Condition effect **p < 0.01, ***p < 0.005; +: the effect was marginally significant.

FIGURE 4 | The correlation analysis showed that the rIFG activity in ET participants was positively related to subjective ratings of sleepiness [(A); Karolinska

Sleepiness Scale, KSS] and the effort put into the task (B) after SD.

between MT and ET individuals after SD. Behaviorally, SD
led to an increase in hit RT, more attentional lapses, increased
sleepiness, and worse mood indices. However, SD did neither
impair the hit rate nor the stop rate. Regardless of the presence
of SD, ET individuals demonstrated a lower stop rate, as well as
higher subjective ratings of sleepiness, exhausted mood, and task
difficulty compared to MT individuals. On the neural level, SD
resulted in decreased inhibition-related rIFG activation in MT
individuals and in increased rIFG activation in ET individuals.
Moreover, the rIFG activation in ET individuals after SD was
positively correlated to the subjective ratings of sleepiness and
effort put into the task. These findings suggest that ET individuals
demonstrate an increased rIFG activation after SD, which is
consistent with previous studies (8, 37) and can be interpreted as
a compensatory response to SD. Together, the present findings
thus provide a new chronotype-related perspective to explore the
differential SD-induced effects on cognition.

Consistent with the results of previous studies (37, 43), the
subjects in this study experienced a significant increase in hit RT

after SD. Studies have shown that SD leads to a general slowing of
response times of attention (44, 45), and a meta-analysis reported
that after SD, reaction time is more vulnerable than accuracy
(46). As expected, the increase in hit RT was accompanied by
increased lapses in vigilance, greater sleepiness, and worse mood,
which is consistent with previous research (43, 47). SD did not
impair the inhibition performance in the study, which could be
attributable to the fact that scanning was not performed in the
early morning hours which are regarded as a sensitive time-
window for SD (48). Studies have suggested that SD should
particularly impair executive functions (2, 3), such as response
inhibition (5, 8, 37, 43). By contrast, other studies have shown
that the inhibition performance does not differ between RW and
SD sessions (49, 50). In the future, more studies are necessary
to identify which components of executive functions are reliably
impaired by sleep loss.

Interestingly, in comparison to MT individuals, ET
individuals showed a significantly lower stop rate during RW
and following SD. This finding suggested that ET individuals
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were probably particularly vulnerable to response inhibition.
Furthermore, ET individuals scored higher in non-planning
factors on the BIS and the inhibition factor on the DEX.
Previous studies have shown that ET individuals are correlated
with increased impulsivity, enhanced disinhibition, and
impaired response inhibition (trend level) in comparison to MT
individuals (51–53). However, another study could not confirm
an effect of chronotype on the inhibition performance assessed
by the stop-signal task in a synchronous effect paradigm (54).
We hypothesized that differences in task paradigm, experimental
design, and study population may have contributed to the
dissimilarity in findings. Additionally, the heterogeneous factors
defining impulsivity, which represents a broad concept, predict
psychological outcomes (55), and inhibitory control is not a
unitary construct (56). Considering the complex interactions
between behavioral inhibitory control and the self-reported
trait impulsivity (56), future studies should further examine the
detailed relationships among chronotype, inhibitory control, and
impulsivity (57).

In our study, ET individuals also scored higher than MT
individuals in the subjective ratings for sleepiness, exhausted
mood, and task difficulty, regardless of whether the participants
underwent SD. Additionally, ET individuals exhibited in
comparison to MT individuals a worse subjective sleep quality as
assessed by the PSQI, which is consistent with previous findings
(58–60). We hypothesized that the increases in sleepiness and
exhausted mood in ET individuals, which may be attributable to
poorer sleep quality, could have contributed to the higher ratings
for task difficulty and the impaired inhibition performance. Due
to common social standards in everyday life, ET individuals have
to work in the morning which conflicts with their preferred
time of activities. This social jetlag, i.e., the asynchrony between
social and biological rhythms, occurs chronically throughout
an individual’s learning and working life (61), which directly
leads to less sleep in ET individuals on weekdays (62–64) and
probably influences the sleep quality and pattern. Therefore,
environmental factors such as early work or school starting times
may result for ET individuals in sleep and circadian disturbances
like social jetlag or disturbed sleep that act on neuropsychological
mechanisms such as response inhibition or impulsivity (65).
Moreover, researchers highlight the importance of utilizing
longitudinal studies to specifically determine the direction of
effects among chronotypes, social jetlag, and psychological
outcomes in the future (66).

On the neural level, the whole-brain activation results
indicated significant interaction effects in the rIFG region which
is consistent with prior studies (36, 37). Previous findings suggest
that the role of the rIFG is critical for inhibiting response trends
(18) and is related to both response and attentional control
(67, 68). The rIFG has also been characterized as a “brake,” and
it can be initiated in both total (to outright suppress a response)
and partial (to pause the response) conditions (18).

Crucially, the current study revealed significant interaction
effects of chronotype and SD on the cerebral activation patterns
of response inhibition, i.e., a decreased rIFG activation pattern
in MT participants but an increased rIFG activation in ET
participants for SD in comparison to RW. The prevailing

hypothesis proposes that functioning of the frontal lobe is
particularly affected by sleep loss (1). In the present study, a
decreased prefrontal activity during SD was only apparent in MT
participants. By contrast, ET participants demonstrated increased
rIFG activation following SD, which was positively related to
subjective ratings of sleepiness (trend level) and effort put into
the task. Researchers have insisted that effort is closely linked to
the concept of motivation, and the degree of effort is probably
particularly elevated when individuals are motivated or perceive
the trends of poor task performance (69). In addition, the PVT
findings indicated more attentional lapses among ET individuals
during the SD night, especially at 02:00 a.m., 03:00 a.m.,
and 06:00 a.m. (trend level), compared to the corresponding
values for MT individuals. Thus, the effects of SD appear to
differ across cognitive domains in the two chronotypes. ET
individuals may show vulnerabilities on sustained attention, but
could also show increased inhibition-related cerebral activation
as a compensatory response after SD. However, the results
were inconsistent with the previous study (16), in which
participants were instructed to follow a fixed sleep-wake schedule
(different from personal preferred sleep schedules). Then, both
chronotypes performed a simple reaction time test hourly
during 36 h of extended wakefulness under constant routine.
Consequently, ET individuals maintained optimal alertness
(fastest 10% reaction time) throughout the night, but MT
individuals did not.We surmised that differences in experimental
design, study population, and dependent variable may have
contributed to the dissimilarity in findings. Importantly, the
individual differences of chronotypes in sustained attention
after SD should be explored in a larger sample size in the
future. Finally, we hypothesized that the ET individuals in
our study probably experienced a negative impact on attention
after SD. In addition, these individuals demonstrated increased
sleepiness, more exhausted mood, higher task difficulty, and
poorer inhibition performance, thus needing to put more
effort into the task which leads to increased rIFG activation
acting as a compensatory response. In SD session, the time of
testing started at 08:00 a.m. which differed from the preferential
time of ET individuals. This adverse circadian time may have
exaggerated the compensatory trend. However, this response
in ET individuals was not sufficient to reverse the adverse
effects on inhibition performance in SD. Alternatively, the short
task duration caused differences in cerebral activation after SD
without detectable behavioral changes (48). By contrast, MT
individuals exhibited relatively decreased sleepiness, fresh mood,
lower task difficulty, and better inhibition performance. We
hypothesized that MT individuals may have experienced only a
subtle negative SD impact and detected that the task was not
difficult, hence it was unnecessary to increase the brain activation
to maintain performance.

Recent studies have persistently indicated significant
individual differences in homeostatic sleep responses and
cognitive performances after SD (70, 71), and the PERIOD3
(PER3) polymorphism has been related to individual differences
after total SD (72, 73). Compared to individuals with the
shorter allele (PER34/4), those expressing the longer allele
(PER35/5) showed a greater cognitive decline (72–74) and a
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more widespread reduction in task-related (working memory
task, 3-back) cortical activations following SD (75). It has
been suggested that PER35/5 may mediate the differential
susceptibility via its impact on sleep homeostasis (72, 76).
Furthermore, the PER3 polymorphism is correlated with the
chronotype, PER35/5 is associated with MT and PER34/4 with
ET (77–79), although the correlation of chronotypes and PER3
genotypes is not consistently verified (80, 81). Meanwhile, it is
essential to note an assumption in which the interactions among
genotype, phenotype, and social constraints should be taken
into consideration (48). In the present study, ET individuals
perhaps exhibited vulnerabilities on sustained attention after
SD, which was probably influenced by social constraints such as
social jetlag. Compared with the abundance of studies focusing
on individual genotype-related differences after SD, studies
addressing phenotype-related differences are relatively rare. To
better reflect real-life situations and to acquire more information
about social jetlag, it is essential to pay more attention in the
future to individual chronotype-linked differences in SD-related
neurobehavioral studies, which could be assessed using the
Munich Chronotype Questionnaire (82).

The present results should be understood in the context
of several limitations. First, the sample size in our study was
relatively small. Therefore, the results need to be verified in a
larger sample. Second, the task were scheduled according to
external clock time, not according to the personalized preferential
waketime of the participants. Consequently, the masking effects
on circadian and homeostatic processes for the two chronotypes
were not fully controlled. Moreover, the physiological circadian
and homeostatic indicators of participants were not assessed in
the study. Therefore, an exact correlation of the SD-induced
inhibition impairment with the chronotype-associated circadian
and homeostatic changes could not be established. Future studies
should schedule the testing periods according to individual time
plans and consider utilizing a combination of techniques from
the fields of physiology, psychology, and cognitive neuroscience,
especially when focusing on a chronotype-related difference
in the SD paradigm. Third, the total SD is probably not the
most appropriate paradigm for chronotypes, and future studies
should verify the differences in chronotypes by means of a
chronic sleep restriction paradigm. It will also be interesting
to explore the chronotype-related differences in recovery from
sleep loss. Many studies have targeted the differences between
subjects in susceptibility to the neurobehavioral changes after SD

within a cognitive domain, and future studies should pay more
attention to within-subjects and between-domain differences in
susceptibility (83).

In summary, these findings indicate that ET individuals were
vulnerable to inhibition, and the poorer inhibition performance
was accompanied by higher subjective ratings of sleepiness,
exhausted mood, and task difficulty. In addition, ET individuals
exhibited a worse attention performance on the SD night.
Importantly, the individual differences in inhibition-related
cerebral activation after SD were influenced by chronotypes,
with decreased rIFG activation in MT individuals, but increased
rIFG activation in ET individuals, which was considered as a
compensatory mechanism to cope with the SD-induced adverse
effects such as more attentional lapses, although changes in
regional responses preceded the behavioral modifications in
the present study. Accordingly, it is essential to take into
consideration the chronotype in SD-related neurobehavioral
research and sleep medicine in the future.
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