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Abstract. Vibration signals used for rotating machinery fault diagnosis often constitute large 
amount of data. It is a big challenge to extract faults feature information from these data. Recently, 
a new sampling framework called compressed sensing has been proposed, which enables the 
recovery from a small set of measured data if the signals are sparse or compressible. In reality, the 
sparseness of the signals is not very well due to noise, so it is difficult and unavailing to recover 
the whole signal. Thus, a new mechanical fault diagnosis method is proposed in this paper. First, 
the machine fault vibration signals are pretreated by stochastic resonance. By this way, the fault 
signal drowned by noise is amplified and the sparseness of the signals is enhanced, which make it 
possible to apply compressed sensing. Second, fault features are extracted directly from the 
compressed data without recovering completely, which reduces the dimensionality of the 
measurement data and the complexity of algorithm. Finally, the effectiveness of the proposed 
method is proved by the experiments. 
Keywords: rotating machinery, weak fault diagnosis, feature extraction, compressed sensing, 
stochastic resonance. 

1. Introduction 

Rotating machinery is one of the most important equipment in industrial fields. Condition 
monitoring and fault diagnosis is important to ensure safe and stable operation for rotating 
machinery equipment. Vibration based method is the most effective to monitor the faults of 
rotating machinery [1, 3]. The acquisition of vibration signal is usually based on the Shannon 
sampling theory which requires the least twice sampling rate of the signal. With the rapid growing 
demand of information for complex mechanical systems, the large amount of data has been 
produced. For example, a wind turbine condition monitoring system, which has been installed in 
an operational Vestas V47 wind turbine, captures 2-TB data/month [4]. The huge data makes a 
heavy burden on the transmission, storage and processing of signals. Recently, a new sampling 
theory compressed sensing (CS) is proposed, which pointed out that the signal can be recovery 
from far few measurements than the Shannon sampling theory if the signal is sparse or 
compressible [5-7]. 

The CS has been applied in many areas. Many scholars have begun to attempt applying the CS 
technology to mechanical vibration signal. For example, Wang et al. developed a compressed 
detection strategy of roller bearing fault based on multiple down-sampling method [8]; Du et al. 
presented a new mechanical feature identification method, which extracted fault features directly 
from compressed domain [9]; Tang et al. proposed a compressed sensing frame of characteristics 
harmonics to detect roller bearing faults [10]; Hang et al. proposed a bearing fault diagnosis 
method under fluctuate conditions based on compressed sensing theory [11]; Tang developed a 
sparse classification method for rotating machinery faults based on compressed sensing strategy 
[12]. These studies have proved the effectiveness of CS in mechanical fault detection. However, 
weak fault feature identification of vibration signals mingled with heavy noise is still a challenging 
issue in rotating machinery fault diagnosis. In order to solve this problem, a new mechanical 
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feature identification method is proposed in this paper based on the CS theory and compressed 
feature detection techniques. In the method, we use stochastic resonance (SR) to pre-processing 
the vibration signal.  

SR is a nonlinear phenomenon which means that a signal can be improved when the noise 
level is increased or when specific noise is added to the system. Since the SR concept was 
proposed by Benzi et al. in 1981 [13], it has been widely applied in signal processing, physics, 
biology, large mechanical fault diagnosis, and other fields [14-16]. In recent years, the application 
of SR in mechanical fault diagnosis has been widely used. For example, Han et al. designed a SR 
model with parameter compensation and wavelet transform to detect the signal characteristics of 
a multi-frequency weak signal [17]; Li et al. present a multi-stable SR method to enhance the 
processing capability of SR for weak [18]; Qin et al. built an adaptive SR method based on dyadic 
wavelet transform and least squares, which increased the calculation speed and improve the weak 
feature detection performance [19]; Zhang et al. proposed a bearing fault enhancement detection 
method based on signal cepstrum pre-whitening and stochastic resonance [20]. In contrast to 
traditional de-noising methods, SR utilizes noise instead of eliminating it, to improve the signal-to 
noise ratio and allow for detection of weak signals. In our method, the sparsity and the failure 
feature are enhanced after treated by SR and it becomes suitable for the CS. Then, the CS theory 
is used to compressed sample. At last, faults features are directly extracted from the compressed 
data. Its main advantage is that weak fault features mixed in noise are detected directly in the 
compressed measurements domain without sacrificing accuracy. The experiments are performed 
to prove the reliability and effectiveness of the proposed method. 

This paper is organized as follows. In Section 2, we introduce the theory of the CS and 
stochastic resonance. Then, the algorithm framework for machine fault diagnosis is presented in 
detail. Section 3 made two experiments and the results are presented, which demonstrates that the 
method is valid to many kinds of mechanical fault detections. Finally, the conclusions are given 
in Section 4. 

2. The method for weak feature identification 

In this section, the basic concepts of compressed sensing and stochastic resonance are 
introduced, and the weak fault diagnosis method for rotating machinery is presented. 

2.1. Compressed sensing 

CS is a new sampling method, which is proposed to solve the big data problem. In CS, the 
signal can be recovered from far fewer samples than required by the Shannon sampling theory [5]. 
There are two conditions for CS Technology. First, the signal must be sparse in some domain. 
Second, the signal is incoherence, which is applied through the isometric property and is sufficient 
for sparse signals. The matrix representation of compressed sensing is shown in Fig. 1. 

 
Fig. 1. The matrix representation of compressed sensing 

For the original signal, the first step is to transform the original signal to a sparse signal: 
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𝑥 = 𝜓 ⋅ 𝜃,   𝜃 = 𝜓 ⋅ 𝑥, (1) 

where 𝑥 is 𝑁×1 vector; 𝜓 is sparse matrix, which is an orthogonal matrix of 𝑁×𝑁; 𝜃 is sparse 
vector of 𝑁 ×1, which can be said 𝐾 -sparse if the vector contains only 𝐾  non-zero values  (𝐾 ≪ 𝑁). 

Then, it is the dimension reduction and can be represented as: 𝑦 = 𝜙 ⋅ 𝜃 = 𝜙 ⋅ 𝜓 ⋅ 𝑥 = 𝐴 ⋅ 𝑥, (2) 

where 𝜙 is the observation matrix of 𝑀 × 𝑁, (𝑀 ≪ 𝑁); The compressed data 𝑦 is 𝑀×1 vector; 𝐴  is the matrix of 𝑀×𝑁 (𝐴 = 𝜙 ⋅ 𝜓 ). 
The most important step of signal reconstruction is the recovery of 𝜃. The solution can be 

shown as follows: min‖𝜃‖   subject  to  𝑦 = 𝜙 ⋅ 𝜃. (3) 

Owing to the sparsity of 𝜃  and the incoherence between 𝜓  and 𝜙 , the vector 𝜃  can be 
reconstructed with a high probability based on a reconstruction algorithm. After that, the original 
signal can be obtained by Eq. (1). 

The dimension of the vector y is determined by: 𝑀 ≥ 𝐶𝜇 𝐾log𝑁, (4) 

where 𝐶  is a positive constant; and 𝜇  is the correlation between 𝜓  and 𝜙 , which can be 
represented as: 𝜇 = √𝑁 ⋅ max, 𝜙 , 𝜓 , (5) 

where 𝜙 is the random matrix, which is uncorrelated with any other matrix. The sparse matrices 
are usually the Fourier, DCT or wavelet matrices. In the following experiments, random matrices 
and Fourier matrices were used as observation matrices and sparse matrices, respectively. 

2.2. Stochastic resonance 

Stochastic resonance occurs in a nonlinear system with noise and periodic input signal, which 
can be described by the Langevin equation: 𝑥 = −𝑈 (𝑥) + 𝑠(𝑡) + Γ(𝑡), (6) 

where 𝑠(𝑡) is the periodic input signal; Γ(𝑡) denotes a Gaussian white noise with a zero-mean, 
which satisfies ⟨Γ(𝑡)⟩ = 0 and ⟨Γ(𝑡), Γ(0)⟩ ≥ 2𝐷𝛿(𝑡), where 𝐷 is the noise intensity and 𝛿(𝑡) is 
the unit impulse function; 𝑈(𝑥) is the traditional bistable potential function and is shown in Fig. 2. 
The barrier parameters 𝑎 and 𝑏 in 𝑈(𝑥) are positive real parameters: 

𝑈(𝑥) = − 𝑎2 𝑥 + 𝑏4 𝑥 ,   𝑎 > 0,   𝑏 > 0. (7) 

According to Eq. (7), the barrier height is Δ𝑈 = 𝑎 /4𝑏, and the steady state of the system is at: 

𝑥 = ± 𝑎𝑏.  

Then, Eq. (6) can be written as: 
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𝑥 = 𝑎𝑥 − 𝑏𝑥 + 𝑠(𝑡) + Γ(𝑡). (8) 

The periodic signal can be presented as 𝑠(𝑡) = 𝐴cos2𝜋𝐹𝑡. When the periodic signal and the 
noise are acting at the same time, the periodic signal will induce a periodic change to the system 
potential wells and synchronize the noise-induced switching. 

 
Fig. 2. The potential function 𝑈(𝑥)(𝑎 = 𝑏 = 1) 

In the case that the amplitude of 𝑠(𝑡) is smaller than the critical value of the barrier height 𝐴 = 4𝑎 27𝑏⁄ , the particles can cross from the original potential well to another potential well 
at Kramer’s rate 𝑟 = (𝑎/√2𝜋)exp(−Δ𝑈/𝐷) . What’s more, the system output is switched 
between the two potential wells by the frequency 𝜔  of the signal; the switching speed 
synchronizes the output signal with the weak periodic signal. When the transition rate matches the 
period of the input signal (2/𝑟 = 1/𝐹), the frequency 𝜔 is equal to 𝐹, the component of the 
frequency 𝐹 n the output 𝑥(𝑡) is enhanced. That is why stochastic resonance can strengthen the 
weak signal and improve the sparsity. The transition of particles between two potential wells is 
shown in Fig. 3. 

 
Fig. 3. The diagram of the transition between two potential wells of stochastic resonance 

2.3. The proposed method 

CS has been applied in many areas, such as nuclear magnetic resonance, image processing, etc. 
But CS is still little application in mechanical fault diagnosis field. The main problem is the poor 
sparsity of mechanical signal caused by the noise. Even worse, the useful fault feature information 
may be buried in noise, especially at the initial fault stages. As for the fault detection section, the 
traditional idea is to recover the whole signal from the compressed data, and then extract the fault 
characteristics from the whole signal, just like the workflow shown in Fig. 4(a). For the real 
vibration signals, this process is tedious and impossible because of the complex noise. So, there is 
a question, if it is possible to extract the faults directly from the compressed data rather than 
reconstruct the whole signal, just like the process shown in Fig. 4(b). The reconstruct methods of 
the signal are usually consisted of greedy pursuit’s algorithm, convex relaxation algorithm and 
combinatorial algorithm [21]. In this paper, Compressed Sampling Matching Pursuit (CSMP) 
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algorithm is applied to reconstruct the signal, which is one kind of greedy pursuit’s algorithm. 
CSMP invokes the idea of iteratively to reconstruct the signal [22]. The current approximation 
induces a residual in each iteration. The samples are updated to reflect the current residual with 
the processing of algorithm. These samples construct a proxy for the residual, and it is useful to 
identify the large components in the residual. This step yields a tentative support for the next 
approximation. The samples to estimate the approximation on the support set. This process is 
repeated until we have found the recoverable energy in the signal. What’s more, CSMP needs to 
know the sparseness of the target signal in advance, which is very suitable for us to extract the 
fault feature frequency. 

 
Fig. 4. The compare of fault identification process between whole signal and compressed signal 

Table 1. The steps for extracting fault feature frequency from compressed data 𝐶𝑆𝑀𝑃(𝜑, 𝑦, 𝑠) 
Input: Sampling matrix 𝜙, compresseddata 𝑦, sparsity level 𝑠; 

Output: An 𝑠-saprse approximation 𝛼 of the target signal 𝛼 ← 0 (Trivial initial approximation) 𝑣 ← 𝑦 (Current samples = input samples) 𝑘 ← 0 
Repeat: 𝑘 ← 𝑘 + 1 𝑦 ← 𝜙∗ ⋅ 𝑣 (From signal proxy) 𝛺 ← 𝑠𝑢𝑝𝑝(𝑦 ) (Identify large components) 𝑇 ← 𝛺 ∪ 𝑠𝑢𝑝𝑝(𝑎 ) (Merge supports) 𝑏| ← 𝜙 ⋅ 𝑦 (Signal estimation by least-squares) 𝑏  ← 0 𝑎 ← 𝑏  (Prune to obtain next approximation) 𝑣 ← 𝑦 − 𝜙 ⋅ 𝑎  (Update current samples) 

Until halting criterion true 

The steps for extracting fault feature frequency from compressed data are shown in Table 1 
(Algorithm 1. CSMP recovery algorithm). 
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For the problem of weak feature identification under noise in mechanical fault diagnosis, the 
paper proposes a new method of weak feature identification based on CS and SR. In the method, 
we use stochastic resonance system to enhance the fault frequency and weaken the noise, so the 
sparseness of the signal gets better, and it is suitable to apply it to compressed sensing. First, we 
design a stochastic resonance system to process the vibration signal. Then, sparse transformation 
and compression sampling were taken. Finally, we use the CSMP algorithm to reconstruct the 
fault feature frequency from the compressed data. The flow chart of the method is shown in Fig. 5. 

 
Fig. 5. The workflow of the new method of the paper 

3. Experiment and results 

In this section, two experiments are performed with fault rings of roller element bearings to 
verify the effectiveness of the proposed method.  

3.1. Inner ring Fault identification of a roller bearing 

The original data of this case is come from the rolling bearing fault simulation platform of 
Case Western Reserve University [23]. As shown in Fig. 6, the test platform consists of a 2 hp 
motor (left), a torque transducer/encoder (center), a load motor (right). The test platform bearing 
comprises a drive end bearing and a fan end bearing. The bearing type of the motor housing used 
in the experiment is SKF6205, the bearing speed is 𝑁 = 1797 r/min, the sampling frequency is 
12 kHz. The status is the inner ring fault and the other information is shown in Table 2. 

Table 2. The dimensions of the drive roller bearings 
Inner diameter 

/ mm 
Outer diameter 

/ mm 
Pitch diameter 𝐷 / mm 

Contact angle 𝛽 / (°) 
Number of  

balls 𝑛 
Balls diameter 𝑑 / mm 

25.001 51.999 39.040 0 9.000 7.940 

According to the formula: 

𝑓 = 𝑛𝑁120𝑑 1 + 𝑑cos𝛽𝐷 . (9) 

The theoretical value of the fault feature frequency of the inner ring 𝑓 = 162.18 Hz. Fig. 7 
presents the waveform and spectra of bearing inner ring fault signal. Fig. 7(a) shows the waveform 
which exists a fault feature and the sparseness of the signal is poor. In Fig. 7(b), the spectral energy 
distributes over a wide frequency range and the fault feature frequency is submerged by other 
frequency signals. What’s more, the sparseness is poor too. So, it’s necessary to use SR to process 
the signal. After analyzing the fault feature frequency, we set the coefficients 𝑎 = 1, 𝑏 = 5, 𝐷 = 0.2, and we use this system to process the vibration signal. 

We use the proposed method to identify the fault signal. Fig. 8(a) shows the waveform after 
stochastic resonance. Fig. 8(b) shows the spectrum, which is also the sparse signal after sparse 
transformation. It’s clear that the fault feature frequency is enhanced, and the sparseness of the 
signal has been improved. It becomes feasible to use the CS to sample and then extract the fault 
feature frequency. 
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Fig. 6. Rolling bearing test platform of West University 

 
a) Data sequence 

 
b) Frequency (Hz) 

Fig. 7. The waveform and spectrum of bearing inner ring fault signal:  
a) the waveform, b) the spectrum 

 
a) Data sequence 

 
b) Frequency (Hz) 

Fig. 8. The waveform and spectrum after SR processing:  
a) the waveform after SR, b) the spectrum after SR 

 
Fig. 9. Compressed sampling signal 

In this step, we select a compressible sampled signal section from that of Fig. 8 (a), which is 
presented in Fig. 9, with 400 samples compared to 4000 in Fig. 8. Here the sampling is not in a 
tradition way. Instead, it is obtained by multiplying the observation matrix, which is shown in 
Eq. (2). In this case, 𝜓 is a Fourier matrix of 4000×4000 and 𝜙 is a random matrix of 400×4000. 
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Next, it is time to extract the fault feature frequency. 
In Fig. 10, the extracted signal is shown. Fig. 10(a) shows the sparse signal, which is recovered 

from the compressed data using CSMP algorithm. It is clear that the signal only contains the fault 
feature frequency component of 162 Hz. Fig. 10(b) shows waveform of extracted signal. This 
experiment presents that the proposed method is feasible. 

 
a) Frequency (Hz) 

 
b) Data sequence 

Fig. 10. The extracted fault feature signal: a) the frequency spectrum of  
extracted signal, b) the waveform of extracted signal 

3.2. Outer ring fault identification of roller bearing 

The experimental data is come from the middle speed shaft outer ring of rotating machinery 
fault diagnosis test platform, which is shown in Fig. 11. In this case, the bearing model is ER-16K, 
and we select the data of working condition 29. The measuring point is the middle speed end near 
the motor end. The speed ratio and load ratio are 80 %. The fault feature frequency characteristic 
of the middle speed shaft of the working condition 29 is 41.435 Hz. In the experiment, the 
maximum speed of the motor is 3000 rpm, the maximum frequency is 50 Hz, the motor speed is 
calculated: 3000×80 % = 2400, and the sampling frequency is 12 kHz. In Fig. 12, the bearing 
outer ring fault signal is presented. Fig. 12(a) shows the waveform and Fig. 12(b) shows the 
spectrum of the vibration signal. It is obvious that fault feature information is submerged in the 
noise and there is no way to identify the fault feature. What’s more, the sparseness of the signal is 
poor not only in time domain but also in frequency domain. So, it is necessary to use stochastic 
resonance to process the vibration signal. In this case, we set the coefficients 𝑎 = 1, 𝑏 = 5, 𝐷 = 0.2. 

 
Fig. 11. The test platform 

Fig. 13(a) shows the waveform after stochastic resonance while Fig. 13(b) presents the 
spectrum. It’s clear that the fault feature frequency is enhanced, and the sparseness of the signal 
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has been improved. It becomes feasible to use the CS to sample and then extract the fault feature 
frequency. 

 
a) Data sequence 

 
b) Frequency (Hz) 

Fig. 12. The waveform and spectra of bearing outer ring fault signal:  
a) the waveform of original signal, b) the spectrum of original signal 

 
a) Data sequence 

 
b) Frequency (Hz) 

Fig. 13. The waveform and spectra of the signal after stochastic resonance processing:  
a) the output waveform of SR, b) the spectrum of SR 

Same as case 1, the compressed data 𝑦 is shown in Fig. 14, with 400 sample points compared 
to 4000 in Fig. 13. It is obtained by multiplying the observation matrix, which is shown in Eq. (2). 
In this case, 𝜓 is a Fourier matrix of 4000×4000 and 𝜙 is a random matrix of 400×4000.  

 
Fig. 14. Compressed sampling for fault diagnosis 

Fig. 15 shows the extracted signal. Fig. 15(a) shows the sparse signal, which is recovered from 
the compressed data using CSMP algorithm. Fig. 15(b) presents the waveform of extracted signal. 
It is clear that the signal only contains frequency of 42 Hz, which is very close to the fault feature 
frequency of 41.435 Hz. This case presents that the proposed method is feasible. 
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a) Frequency (Hz) 

 
b) Data sequence 

Fig. 15. The extracted signal of fault feature frequency: a) the frequency spectrum  
of extracted signal, b) the waveform of extracted signal 

4. Conclusions 

In this paper, a weak fault identification method is proposed based on CS theory and SR. The 
machine fault vibration signals are pretreated by stochastic resonance. By this way, the fault signal 
drowned by noise is amplified and the sparseness of the signals is enhanced, which make it 
possible to apply compressed sensing. One most outstanding advantage of the method is to extract 
the mechanical fault feature directly from the compressed data without recovering completely, 
which reduces the dimensionality of the measurement data and the complexity of algorithm. 
Another advantage of the method is to defect fault feature directly from far fewer measurements 
than the Shannon sampling theory requires. The effectiveness of the method has been validated 
by two experiments. 
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