View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Directory of Open Access Journals

Submitted 10 December 2018
Accepted 14 April 2019
Published 13 May 2019

Corresponding author
Hyukjun Gweon, hgweon@uwo.ca

Academic editor
Ciro Cattuto

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.194

© Copyright
2019 Gweon et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The k conditional nearest neighbor
algorithm for classification and class
probability estimation

Hyukjun Gweon', Matthias Schonlau” and Stefan H. Steiner’

! University of Western Ontario, London, Canada
? University of Waterloo, Waterloo, Canada

ABSTRACT

The k nearest neighbor (kNN) approach is a simple and effective nonparametric
algorithm for classification. One of the drawbacks of kNN is that the method can only
give coarse estimates of class probabilities, particularly for low values of k. To avoid this
drawback, we propose a new nonparametric classification method based on nearest
neighbors conditional on each class: the proposed approach calculates the distance
between a new instance and the kth nearest neighbor from each class, estimates posterior
probabilities of class memberships using the distances, and assigns the instance to the
class with the largest posterior. We prove that the proposed approach converges to
the Bayes classifier as the size of the training data increases. Further, we extend the
proposed approach to an ensemble method. Experiments on benchmark data sets show
that both the proposed approach and the ensemble version of the proposed approach on
average outperform kNN, weighted kNN, probabilistic kNN and two similar algorithms
(LMKNN and MLM-KHNN) in terms of the error rate. A simulation shows that kCNN
may be useful for estimating posterior probabilities when the class distributions overlap.

Subjects Data Mining and Machine Learning, Data Science
Keywords Nonparametric classification, Nearest neighbor, Probabilistic classifier

INTRODUCTION

Supervised classification is a fundamental problem in supervised learning. A common
approach to classification is to assume a distribution for each different class. Nonparametric
classifiers are often used when it is difficult to make assumptions about the class distribution
for the problem. The k-nearest neighbor (kNN) approach (Fix ¢ Hodges, 1951) is one of
the most popular nonparametric approaches (Wu et al., 2008). For an input x, the kNN
algorithm identifies k objects in the training data that are closest to x with a predefined
metric and makes a prediction by majority vote from the classes of the k objects. Although
the kNN method is simple and does not require a priori knowledge about the class
distributions, kNN has been successfully applied in many problems such as character
recognition (Belongie, Malik ¢ Puzicha, 2002) and image processing (Mensink et al., 2013).
A number of experiments on different classification problems have demonstrated its
competitive performance (Ripley, 2007). A detailed survey of the literature about kNN can
be found in (Bhatia ¢ Vandana, 2010).

How to cite this article Gweon H, Schonlau M, Steiner SH. 2019. The k conditional nearest neighbor algorithm for classification and
class probability estimation. Peer] Comput. Sci. 5:e194 http://doi.org/10.7717/peerj-cs.194

https://core.ac.uk/display/200929886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://peerj.com
mailto:hgweon@uwo.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.194
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

One of the drawbacks of kNN is that the method can only give coarse estimates of
class probabilities particularly for low values of k. For example, with two neighbours or
k =2 the estimated probabilities can only take the values 0%, 50% or 100% depending
on whether 0, 1 or 2 neighbors belong to the class. A probabilistic kNN method (PNN')
was proposed in (Holmes ¢ Adams, 2002) for continuous probability estimates. However,
PNN and kNN are comparable in terms of classification accuracy, and PNN has greater
computational costs than kNN (Manocha & Girolami, 2007).

Many other extensions of kNN have been proposed to improve prediction of
classification. One direction is to assign different weights to the k nearest neighbors based
on their distances to the input x. Higher weights are given to neighbors with lower distances.
Examples include weighted kNN (WkNN) (Dudani, 1976) and fuzzy kNN (Keller, Gray
& Givens, 1985). Another approach to improve the prediction of kNN is to use the class
local means. One of the successful extensions is the local mean based k nearest neighbor
approach (LMkKNN) (Mitani ¢ Hamamoto, 2006). For a new test instance x, LMkNN
finds the k nearest neighbors in each class and calculates the local mean vector of the k
nearest neighbors. The distance between x and each local mean is calculated and the class
corresponding to the smallest distance is assigned to x. Empirical evidence suggests that
compared to kNN, LMkNN is robust to outliers when the training data are small (Mitani
¢ Hamamoto, 2006). The idea of LMkKNN has been applied to many other methods such as
pseudo nearest neighbor (Zeng, Yang ¢ Zhao, 2009), group-based classification (Samsudin
¢ Bradley, 2010) and local mean-based pseudo k-nearest neighbor (Gou et al., 2014).
Recently, an extension of LMkNN, the multi-local means-based k-harmonic nearest
neighbor (MLM-kHNN') (Pan, Wang ¢ Ku, 2017), was introduced. Unlike LMkNN,
MLM-kHNN computes k different local mean vectors in each class. MLM-kHNN
calculates their harmonic mean distance to x and assigns the class with the minimum
distance. An experimental study showed that MLM-kHNN achieves high classification
accuracy and is less sensitive to the parameter k, compared to other kNN -based methods.
However, those local mean based approaches only produce scores for classification and
thus are not appropriate when class probabilities are desired.

In this paper, we propose a new nonparametric classifier, k conditional nearest neighbor
(kCNN), based on nearest neighbors conditional on each class. For any positive integer k,
the proposed method estimates posterior probabilities using only the kth nearest neighbor
in each class. This approach produces continuous class probability estimates at any value of
k and thus is advantageous over kNN when posterior probability estimations are required.
We show that classification based on those posteriors is approximately Bayes optimal
for a two-class problem. Furthermore, we demonstrate that the classification approach
converges in probability to the Bayes classifier as the size of the training data increases.
We also introduce an ensemble of <CNN (EkKCNN') that combines kCNN classifiers with
different values for k. Our experiments on benchmark data sets show that the proposed
methods perform, on average, better than kNN, WkNN, LMkNN and MLM-kHNN in
terms of the error rate. Further analysis also shows that the proposed method is especially
advantageous when (i) accurate class probabilities are required, and (ii) class distributions

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 2/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

overlap. An application using text data shows that the proposed method may outperform
kNN for semi-automated classification.

The algorithm proposed in this paper is meant for situations in which nearest neighbor-
type algorithms are attractive, i.e., for highly nonlinear functions where the training data
and the number of features are not too large. Other approaches such as Support Vector
Machines (Vapnik, 2000) and Random Forest (Breiman ¢ Schapire, 2001) are therefore
not considered.

The rest of this paper is organized as follows: in ‘Methods’, we present the details of the
proposed method. In ‘Experimental Evaluation’ , we report on experiments that compare
the proposed method with other algorithms using benchmark data sets. In ‘Exploring
Properties of the Proposed Method’ simulation, we investigate how the decision boundary
and probability field of the proposed method vary using simulation data. In ‘Application:
semi-automated classification using the Patient Joe text data’, we apply the proposed
method to semi-automated classification using “Patient Joe” text data. In ‘Discussion’, we
discuss the results. In ‘Conclusion’, we draw conclusions.

METHODS

K conditional nearest neighbor
In multi-class classification, an instance with a feature vector x € R1 is associated with one
of the possible classes cy,...,cr. We assume a set of training data containing N classified
instances. For any x and a given k, we denote by xi|; the kth nearest neighbor of class
¢ (i=1,...,L). Let d(x,xx|;) = |[x —Xx|;| be the (Euclidean) distance between x and x;.
Figure 1 illustrates this showing the distance between x and the second nearest neighbor
(i.e., k =2) of each class.

Consider a hypersphere with radius d(x,xy ;) centered at x. By the definition of xy;, the
hypersphere contains k instances of class c;, We may approximate the local conditional
density f (x|c;) as

f(xle) = (1)

NV

where Vy; is the volume of a hypersphere with radius d(x,x;) centered at x and N;
represents the number of instances classified as class ¢;. This approximation was also
introduced in Fukunaga ¢ Hostetler (1975). The approximation assumes that f (x|¢;) is
nearly constant within the hypersphere of volume Vj|; when the radius d(x,xy;) is small.
Using the prior p(c;) & % where N = ZI'L:1N1' and Bayes theorem, the approximate
posterior may be obtained as

pe)f(xle) 1k

pr(cilx) = o Fo NV (2)

Because Z{leﬁ(cﬂx) =1, we have f(x) = Z{le I\%k\, Then, ﬁk(ci|x) may be obtained as
k
beclx) = W dxxx) 71
M= kL _

(3)

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

® @
+
&+
°® +
+*
@
® Classc
© + Classc,
When k = 2,
d(X»X2|c1) < d(x,x2|62)

Figure 1 Anillustrative example of d (x,xy;), i = 1,2, when k = 2. Since the distance for class ¢, is
smaller, for the given query class ¢, has a larger posterior probability than c,.
Full-size & DOI: 10.7717/peerjcs.194/fig-1

since Vi) o d(x,X|i)?. The class with the shortest distance among the L distances has the
highest posterior.

The results in Eq. (3) are affected by the dimension of the feature space (g); the class
probabilities converge to binary output (1 if the distance is smallest and 0 otherwise) as g
increases. This implies the estimated class probabilities will be extreme in high-dimensional
data, which is not desirable especially when the confidence of a prediction is required.
Since smoothing parameters can improve predictive probability accuracy (e.g., LaPlace
smoothing for the Naive Bayes algorithm (Mitchell, 1997), we introduce an optional tuning
parameter r as follows:

d (%, xg;) 9"
i (xx)"

pr(cilx) = (4)

where r > 1 controls the influence of the dimension of the feature space q. As r increases,
each posterior converges to 1/L. That is, increasing r smoothes the posterior estimates.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 4/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-1
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

142 Bmeans A converges in probability to
B.

The k conditional nearest neighbor (kCNN) approach classifies x into the class with the
largest estimated posterior probability. That is, class ¢ is assigned to x if
¢ = argmax ﬁk(cilx).

i

The proposed classifier is equivalent to kNN when k = 1. We summarize the kCNN
classifier in Algorithm 1.

Note that r affects the class probabilities but not the classification. We will show in
‘Ensemble of kCNN’ that the tuning parameter affects the classification of the ensemble of
kCNN, which is presented in ‘Ensemble of kCNN’.

Algorithm 1: The k conditional nearest neighbor algorithm

Input: A training data set D, a new instance vector x with dimension g, a positive inte-
ger k, parameter r, a distance metric d
fori=1to Ldo
(a) From D, select xi|;, the k™ nearest neighbor of x for class ¢;
(b) Calculate d(x,xx|;), the distance between x and x;
end for
fori=1to Ldo

.ooA) d(X,Xk‘,')fq/Y
Obtain px(ci|x) < —Zled(x,xw)‘q/’
end for
Classify x into ¢ if ¢ = argmax ﬁk(ci|x)

i

Figure 2 illustrates an example of a two-class classification problem. For a given k, the
method calculates the distance between x and the kth nearest neighbor of each class. When
k=1 and k = 3, class ¢, has a larger posterior probability than ¢, as the corresponding
distance is shorter. When k = 2, however, the posterior probability for class ¢ is greater.

Convergence of kKCNN
The following theorem says that as the training data increase, KCNN converges to the
optimal classifier, the Bayes classifier.

Theorem (convergence of k<CNN): Consider a two-class problem with ¢; and ¢, where

plcr) > 0and p(c;) > 0. Assume that f (x|¢;) (i=1,2) is continuous on RY. If the following
k
min;N;

kCNN with r =1 converges in probability to the Bayes classifier.

conditions (a) k — 00, and (b)

— 0 are satisfied, then for any x where f(x) > 0,

Proof: Since kCNN makes predictions by approximate posteriors in Eq. (2), it is sufficient
to show that py(c;|x) converges in probability to the true posterior.

We first consider the convergence of the prior estimate p(c;) = N;/N. Let ¢'/)
be the class of the jth training instance. The prior estimate may be described as
f)(ci) = ﬁ]N: i (cY) = ¢;) where I is the indicator function. Hence, by the weak law

of large numbers, p(c;) A p(ci).

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 5/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

o /K dn)
\ Al +* +* “ | *
L
L L d
L] L]
® Classc; e Classc e Classc,
© + Classc, © + Classc, © + Classc,
Whenk=1, Whenk =2, When k =3,
d(x,x11¢,) > d(xx1yc,) d(x,xz1c,) < d(x %z, d(x x31¢,) > d(x X3c,)

Figure 2 Illustration of kCNN at different values of k. For any given k, class with a shorter distance has
a larger class probability.
Full-size Gal DOI: 10.7717/peerjcs.194/fig-2

We next show that the approximation f (x|¢;) in equation Eq. (1) converges in probability
to the true conditional density function. Let fy(x) = I\;‘—V be an estimate of the density
function f (x) where V is the volume of the hypersphere centered at x containing k training
instances. In Loftsgaarden ¢ Quesenberry (1965), it is showed that fy(x) converges in
probability to f (x) if k — oo and % — 0 as N increases. We may apply this result to the
convergence of the conditional density functions. By the second condition, both NLI and
NLZ converge to zero. Hence, p(x|c;) converges in probability to the true conditional density
function f (x|¢;).

Since ﬁ(ci) EN pci) andf(xlc,-) ﬂ>f(x|¢:1-),

2 2
f = "pe)f (xle) B D ple)f (xlei) = f (x).

i=1 i=1
Hence, the approximate posterior in Eq. (2) converges in probability to the true posterior.
This implies that kCNN converges in probability to the Bayes classifier. Bl
The theorem implies that a choice of k needs to be subject to conditions (a) and (b) as
the size of the data increases.

Time complexity of kKCNN

The time complexity of kNN is O(Ng+ Nk) (Zuo, Zhang & Wang, 2008) (O(Nq) for
computing distances and O(Nk) for finding the k nearest neighbors and completing the
classification). In the classification stage, kCNN (a) calculates the distances between the
test instance to all training instances from each class, (b) identifies the kth nearest neighbor
from each class, and (c) calculates posterior estimates by comparing the L distances and
assigns the test instance to the class with the highest posterior estimate. Step (a) requires
O(N1g+ ...+ Nrg) = O(Nq) multiplications. Step (b) requires O(N1k+...+Nrk) = O(Nk)
comparisons. Step (c) requires O(L) sum and comparison operations. Therefore, the time

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 6/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-2
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

® Class ¢y
+ Class ¢,

Figure 3 Illustration of classification by kCNN versus EKCNN. The vertical line is the true class
boundary and the target points A and B are to be classified. Based on the distance results, kCNN with
k = 1(k = 2) only predicts B (A) correctly. On the other hand, EkKCNN with k = 2 combines class
probability for each k value and predicts both A and B correctly.

Full-size Gal DOI: 10.7717/peerjcs.194/fig-3

complexity for kCNN is O(Ng+ Nk + L). In practice, the O(L) component is dominated
by the other components, since L is usually much smaller than N. That is, the difference
in the complexities between kNN and kCNN is small.

Ensemble of kKCNN

The illustrative example in Fig. 2 shows that the classification is affected by the choice of k.
Therefore, we propose an ensemble version of kCNN that combines the multiple KCNN
algorithms with different values of k. Ensembles are well known as a method for improving
predictive performance (Wu et al., 2008; Rokach, 2010). The ensemble of k conditional
nearest neighbor (EkCNN') method makes a prediction based on the averaged posteriors
for different values of k. These values are now indexed by w: w = 1,..., k. In the ensemble
EkCNN, k represents the number of ensemble members. Suppose that posterior probability
f)w(ci|x) is estimated by Eq. (4) for each w =1, ..., k. For a new instance x, the predicted
class ¢ is determined by

k
A 1 A
é= argglax p(cilx) = argmax % E 1pw(c,-|x).
w=

G
That is, EKCNN assigns x to the class with the highest average posterior estimate. Unlike
kCNN that ignores the first k — 1 nearest neighbors of each class, EKCNN takes into
consideration all k distances of each class. Using multiple values of k makes the prediction
less reliant on a single k. This may improve the prediction result when the estimated class
probabilities are highly variable as a function of k. An illustrative example in Fig. 3 shows
that kCNN predicts either point A or point B incorrectly depending on the choice k =1 or
k =2. However, EKCNN for k = 2 successfully predicts both A and B.

The complexity of EKCNN may be obtained analogously to steps (a)—(c) in “Time
complexity of kCNN’. The complexities of EkKCNN required in step (a) and (b) are

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 7121

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-3
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Table 1 Twenty benchmark data sets and their associated characteristics.

Name Features Classes Instances Class distributions
Voice 309 2 126 84/42

Wine 13 3 178 71/59/48

Parkins 22 2 195 147/48

Cancer 24 2 198 151/47

Sonar 60 2 208 111/97

Seeds 7 3 210 70/70/70
Haberman 2 306 225/81

Ecoli 8 336 143/77/52/35/20/5/2/2
Libras 90 15 360 24/24/...124/24
Musk 166 2 476 269/207

Blood 4 2 748 570/178

Diabetes 8 2 768 500/268

Vehicle 18 4 846 218/217/212/199
German 24 2 1,000 700/300

Yeast 8 10 1,484 463/429/224/163/51/44/35/30/20/5
Handwritten 256 10 1,593 1,441/152

Madelon 500 2 2,000 1,000/1,000

Image 19 7 2,310 330/330/.../330/330
Wave 21 2 5,000 1,696/1,657/1,647
Magic 10 2 19,020 12,332/6,688

the same as those of kCNN. In step (c), EKCNN requires O(kL) sum and comparison
operations. Hence, the complexity of EkCNN is O(Ng+ Nk +kL).

EXPERIMENTAL EVALUATION

Data sets

We evaluated the proposed approaches using real benchmark data sets available at
the UCI machine learning repository (Lichman, 2013). (We chose data sets to be
diverse; all data sets we tried are shown.) Table 1 shows basic statistics of each data
set including its numbers of classes and features. All data sets are available online at:
https://archive.ics.uci.edu/ml/datasets.html. The data sets are ordered by the number of
instances.

Experimental setup

We compared kCNN and EkKCNN against kNN, WkNN, PNN, LMkNN and
MLM-kHNN . Moreover, we considered an ensemble version of kNN (EkKNN). EKNN
estimates the probability for class ¢; as

k
R 1 R
plelx) = E;pw(qlx}

where p,, (¢;|x) is the probability estimated by kNN based on w nearest neighbors. Since
MILM - kHNN is an ensemble of LMkNN using the harmonic mean, no additional ensemble

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 8/21

https://peerj.com
https://archive.ics.uci.edu/ml/datasets.html
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

model was considered. For EKCNN, we used r = g where g is the number of features of the
data set. For kCNN and EkCNN, we added € = 1077 to each distance in equation Eq. (4)
to avoid dividing by zero when the distance is zero.

For evaluation, we choose error rate (or equivalently accuracy), since error rate is one
of the most commonly used metric and the skewness of the class distribution is not severe
for most of the chosen data sets. The percentage of the majority class is less than 80% for
most data sets (19 out of 20 data sets).

The analysis was conducted in R (R Core Team, 2014). For assessing the performance
of the classifiers, we used 10-fold cross validation for each data. In the experiments, we
varied the size of the neighborhood k from 1 to 15. For each method except PNN, the
optimal value of k has to be determined based on the training data only. To that end,
each training fold of the cross-validation (i.e., 90% of the data) was split into two random
parts: internal training data (2/3) and internal validation data (1/3). The optimal k was the
value that minimized classification error on the internal validation set. For PNN, Markov
Chain Monte Carlo (MCMC) simulated samples are required. Following Holimes ¢ Adams
(2002), we used 5,000 burn-in samples, and retained every 100th sample in the next 50,000
samples.

We applied the Wilcoxon signed-rank test (Wilcoxon, 1945; Demsar, 2006) to carry out
the pairwise comparisons of the methods over multiple data sets because unlike the t—test
it does not make a distributional assumption. Also, the Wilcoxon test is more robust to
outliers than the t-test (Demsar, 2006). The Wilcoxon test results report whether or not
any two methods were ranked differently across data sets. Each test was one-sided at a
significance level of 0.05.

Results
Table 2 summarizes the error rate (or misclassification rate) of each approach on each
data set. Parameter k was tuned separately for each approach. EkKCNN performed best on
8 out of the 20 data sets and kCNN performed best on 2 data sets. EkKCNN achieved the
lowest (i.e., best) average rank and kCNN the second lowest average rank. In the cases
where kCNN performed the best, EKCNN was the second best method. According to
the Wilcoxon test, EKCNN had a significantly lower (i.e., better) rank than kNN, EKNN,
WEKNN, LMKNN and kCNN with p-values less than 0.01. There was marginal evidence
that EKCNN had a lower average rank than MLM - kHNN (p-value = 0.0656). Also, KCNN
performed significantly better than kNN (p-value = 0.001), EKNN (p-value = 0.003),
WEKNN (p-value = 0.024), PNN (p-value = 0.003) and LMkNN (p-value = 0.041).
Equation (4) contains a tuning parameter r. As mentioned above, increasing r smoothes
posterior estimates. For the results of EKCNN presented in Table 2, we chose r = g for all
data sets. While not shown here, using » = g resulted in lower or equal error rates compared
with using r = 1 on 18 out of 20 data sets. Specifying r = q reduced the error rate up to 6%
relative to the error rate for r = 1.

lllustrating the choice of r on the sonar data set
We investigated the impact of and € on error rate of EKCNN (Classification by kCNN is
affected by neither r nor €.) for the sonar data set. Figure 4 shows that the error rate varied

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 9/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Table2 The lowest error rates of each method on benchmark data. “Ranking” refers to the average ranking score of each method over the twenty
data sets. Lower is better. Values in bold indicate the best performance in each row.

kNN EKNN WKNN PNN LMKNN MLM- kHNN kCNN EkCNN

Voice 0.3598 0.3625 0.3990 0.3701 0.4060 0.4316 0.3675 0.3941
Wine 0.2871 0.2748 0.2871 0.3110 0.2819 0.2361 0.2770 0.2534
Parkins 0.1783 0.1583 0.1750 0.1921 0.1983 0.1833 0.1783 0.1710
Cancer 0.2782 0.3130 0.2942 0.2675 0.3006 0.2927 0.2524 0.2410
Sonar 0.1815 0.1815 0.1815 0.2443 0.1820 0.1534 0.1767 0.1666
Seeds 0.1500 0.1500 0.1500 0.1423 0.0952 0.1000 0.1000 0.0901
Haberman 0.2769 0.2952 0.3128 0.2740 0.3305 0.3388 0.2572 0.2604
Ecoli 0.1365 0.1320 0.1370 0.1442 0.1482 0.1335 0.1394 0.1305
Libras 0.1528 0.1528 0.1428 0.1405 0.1500 0.1320 0.1360 0.1320
Musk 0.1493 0.1444 0.1182 0.1440 0.0832 0.0849 0.1388 0.1078
Blood 0.2438 0.2456 0.2397 0.2407 0.2433 0.3208 0.2432 0.2207
Diabetes 0.2643 0.2798 0.2736 0.2605 0.2629 0.2759 0.2616 0.2560
Vehicle 0.3666 0.3373 0.3721 0.3718 0.3028 0.3087 0.3643 0.3560
German 0.3200 0.3220 0.3312 0.3150 0.3200 0.3120 0.3020 0.3100
Yeast 0.4192 0.4291 0.4021 0.4024 0.4219 0.4200 0.4152 0.3943
Handwritten 0.0891 0.0752 0.0744 0.0901 0.0478 0.0415 0.0881 0.0625
Madelon 0.2733 0.2905 0.2939 0.2700 0.3209 0.3592 0.2625 0.2601
Image 0.0346 0.0366 0.0330 0.0524 0.0337 0.0316 0.0346 0.0346
Wave 0.1590 0.1664 0.1674 0.1320 0.1522 0.1606 0.1478 0.1520
Magic 0.1856 0.1833 0.1826 0.1890 0.1962 0.1859 0.1854 0.1780
Average 0.2253 0.2265 0.2284 0.2277 0.2239 0.2251 0.2164 0.2085
Ranking 5.25 5.38 5.08 5.05 5.22 4.35 3.55 2.13

little for small values of k. For this data set, larger values of r are consistently preferable to
smaller values. Note that error rates for r = 60 were almost identical to those for r = 100.

EXPLORING PROPERTIES OF THE PROPOSED METHOD

In the following subsections, we investigate kCNN’s decision boundary and posterior
probability using simulation. Further, we also discuss where kCNN beats kNN for posterior
estimation.

Decision boundary of KCNN and EKCNN with varying k

This section illustrates that the decision boundary between classes is smoother as k
increases for both k<CNN and EKCNN . We used a simulated data set from Friedman, Hastie
& Tibshirani (2001). The classification problem contains two classes and two real valued
features.

Figure 5 shows the decision boundary of kCNN with different k (solid curve) and the
optimal Bayes decision boundary (dashed red curve). Increasing k resulted in smoother
decision boundaries. However, when k is too large (e.g., k = 30 in this example), the
decision boundary was overly smooth.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 10/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

G
S 17 r=1
--A- =10
+- r=30
-%- =60
-=%-- r=100 o o
\O
o
(\')_ —
o
[}
A
o ,
[
S
T +
J/ %
N -
e e
o .
¥
/
. //
N /
/
/
/
/
8 I IA’(.///
S %
o] -
B % -
- , -
oo, . e
*\\\\ "A.//
‘\F\\ o *
L
T T T T T T T
2 4 6 8 10 12 14

Figure 4 Impact of the tuning parameter r on error rates using the sonar data set.
Full-size Gl DOI: 10.7717/peerjcs.194/fig-4

Analogously, Fig. 6 shows the decision boundary of EKCNN at r =2 and different
values k. Similar to kCNN,, the decision boundary was smoothed as k increased. However,
the magnitude of the changes was less variable. For example, the decision boundaries of
EKCNN at k =10 and k = 30 were similar, while those of kCNN were quite different.

Comparison of the posterior probability distribution of kNN and kCNN
Rather than considering classification, this section compares kKCNN with kNN in terms
of posterior probabilities. Probabilities are of interest, for example, when evaluating the
entropy criterion. Using the same data set as in ‘Decision boundary of kCNN and EKCNN
with varying k’, we plot the full posterior probability contours of kNN and kCNN in Fig. 7.
We set r =q =2 for kCNN. For k =1, as expected, the posteriors estimated by kNN was
always either 0 or 1. By contrast, KCNN provided less extreme posterior results even at

k =1. The posterior probabilities changed more gradually.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 11/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-4
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Figure 5 kCNN on the simulated data with different choices of k. The broken red curve is the Bayes de-
cision boundary. (A) kCNN (k =1), (B) kCNN (k =5), (C) kCNN (k =10), (D) kCNN (k = 30).
Full-size G DOI: 10.7717/peerjcs.194/fig-5

When k = 3, posterior probabilities from kNN jumped between four possible values
(0, 1/3, 2/3, 1), whereas those from kCNN were much smoother. The result shows
that unlike kNN, kCNN can produce smooth posterior probability fields even at small
values of k.

Under what circumstances does the proposed method beat kKNN?
kCNN (or EKCNN') may be useful when the true posterior distribution has a full range
of probabilities rather than near dichotomous probabilities (close to 0 or 1). This occurs
when the distributions of the classes substantially overlap. When the distribution of each
class is well separated, for any data point the classification probabilities will be (near) 1 for
one class and (near) 0 for the other classes. Otherwise, when the distributions overlap, the
classification probabilities will be less extreme.

We conducted a small simulation to illustrate that k<CNN is preferable to kNN when k
is small and the distributions of the classes overlap. Assume that instances from each class
are independently distributed following a multivariate normal distribution. Denote by u;
the mean vector and by) _; the covariance matrix of class ¢;. The parameters were given as

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 12/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-5
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Figure 6 EkKCNN on the simulated data with different choices of k. The broken red curve is the Bayes
decision boundary. (A) EKCNN (k =1), (B) EKCNN (k =5), (C) EKCNN (k =10), (D) EkKCNN (k = 30).
Full-size G DOI: 10.7717/peerjcs.194/fig-6

u=1(0,0,...,0), Y =1,
S S
Mz—(ﬁ,---,ﬁ), Zz— q

where I; is the g dimensional identity matrix. Note that s is the Euclidean distance between
the two means. Therefore, s controls the degree of overlap between the distributions of the
two classes.

In order to obtain less variable results, we used 10 independent replicates for each
parameter setting. The final outputs were obtained by averaging the results. We used 100
training and 1,000 test instances and the equal prior setting for the classes. Like Wu, Lin ¢
Weng (2004), we evaluated the posterior estimates based on mean squared error (MSE).
The MSE for the test data is obtained as

| Lo0o 2

MSE = MEZZ p(c,lx]) p(C1|X]))

j=1 i=1

where x; represents the jth test instance.
Table 3 shows the MSE for each method as a function of s and k when p = 2. The kCNN
method beat kNN for small values of s. Small values of s imply that the mean vectors are

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 13/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-6
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

r 1.0

08

r 0.6

04

0.2

0.0

r10

r 0.8

0.6

04

Figure 7 Contour plots of posterior probabilities of kNN and kCNN for k = 1and k = 3. (A) kNN
(k=1), (B) kCNN (k=1), (C) kNN (k =3), (D) kCNN (k =3).
Full-size) DOI: 10.7717/peerjcs.194/fig-7

Table 3 MSE as a function of k and s for kNN and kCNN. 100 training instances and p = 2 were used.
The results were the averages of 10 replicates. Values in bold indicate the best performance in each row.

k=1 k=5 k=10 k=20
s kNN kCNN kNN kCNN kNN kCNN kNN kCNN
0.1 0.504 0.074 0.115 0.017 0.065 0.011 0.038 0.006
0.5 0.483 0.080 0.094 0.022 0.046 0.019 0.025 0.016
1 0.449 0.113 0.082 0.054 0.042 0.053 0.028 0.058
1.5 0.308 0.104 0.056 0.064 0.024 0.073 0.016 0.085
2 0.211 0.096 0.045 0.082 0.024 0.094 0.016 0.113

close to each other, and hence there is more overlap between the two conditional densities.
The difference in performance between the two methods decreased as s or k increased.
Next, we considered the effect of feature dimension q on each method. Table 4 shows
the MSE for each method as a function of g and k when s=0.1. Throughout the range of
q> kCNN outperformed kNN As g increased the MSE for kCNN was less affected by the
choice of k.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194

14/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-7
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Table4 MSE as a function of k and q for kNN and kCNN. 100 training instances and s = 0.1 were used.
The results were the averages of 10 replicates. Values in bold indicate the best performance in each row.

k=1 k=5 k=10 k=20
kNN kCNN kNN kCNN kNN kCNN kNN kCNN
0.502 0.070 0.122 0.014 0.054 0.006 0.022 0.004
0.499 0.017 0.100 0.003 0.048 0.002 0.021 0.002
10 0.503 0.007 0.112 0.003 0.058 0.002 0.027 0.002
30 0.500 0.002 0.102 0.002 0.053 0.001 0.026 0.001
50 0.494 0.002 0.103 0.001 0.049 0.001 0.023 0.001

APPLICATION: SEMI-AUTOMATED CLASSIFICATION USING
THE PATIENT JOE TEXT DATA

In the previous section, we discussed situations where the proposed method is preferred
over kNN This section shows that the proposed algorithm is useful in the semi-automatic
classification of text data. In semi-automatic text classification, high prediction accuracy is
more important than fully automating classification; since somewhat uncertain predictions
are manually classified. We first distinguish between easy-to-categorize and hard-to-
categorize text instances. The easy-to-categorize texts are classified by statistical learning
approaches, while the hard-to-categorize instances are classified manually. This is needed
especially for text data from open-ended questions in the social sciences, since it is
difficult to achieve high overall accuracy with full automation and manual classification is
time-consuming and expensive.

The goal in semi-automatic classification is to obtain high classification accuracy for
a large number of text instances. Hence, a classifier needs to not only predict the correct
classes but also well order the text instances by the difficulty of classification.

For our application, we used a survey text data set (Martin et al., 2011) (we call the
data set “Patient Joe”). The data were collected as follows. The respondents were asked
to answer the following open-ended question: “Joe’s doctor told him that he would need
to return in two weeks to find out whether or not his condition had improved. But when
Joe asked the receptionist for an appointment, he was told that it would be over a month
before the next available appointment. What should Joe do?” In 2012, the Internet panel
LISS (http://www.lissdata.nl) asked the question in Dutch and classified the text answers
into four different classes (proactive, somewhat proactive, passive and counterproductive).
See Martin et al. (2011) and Schonlau ¢ Couper (2016) for more information about the
data set.

The original texts were converted to sets of numerical variables (preprocessing). Briefly,
we created an indicator variable for each word (unigram). The variable indicates whether
or not the word is present in a text answer. Then a text answer was represented by a binary
vector (each dimension represents a word). After converting the text answers in the Patient
Joe data set, we had 1758 instances with 1,750 total unigrams.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 15/21

https://peerj.com
http://www.lissdata.nl
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Table 5 Summary statistics for semi-automatic classification for the Patient Joe data. All numbers were the averages of 10 cross validation re-
sults. Values in bold indicate the best performance in each row.

Percentage of Accuracy
Automated
Classification
kNN EKNN EkCNN PNN

k=1 k=10 k=30 k=10 k=30 k=1 k=10 k=30
10% 0.5591 0.8267 0.80291 0.7653 0.7826 0.8909 0.9215 0.8993 0.7424
20% 0.6057 0.7685 0.7514 0.7628 0.7571 0.8628 0.8457 0.8228 0.7400
30% 0.6013 0.7371 0.69172 0.7184 0.7296 0.8147 0.7957 0.7598 0.7013
40% 0.6005 0.7014 0.6785 0.7114 0.7042 0.7742 0.7528 0.7157 0.6757
50% 0.6052 0.6779 0.6484 0.6996 0.6803 0.7315 0.7166 0.6666 0.6575
100% 0.6115 0.5932 0.5710 0.6086 0.5990 0.6132 0.6074 0.5841 0.5934

In semi-automated classification, test instances are ordered from the easiest-to-categorize
instance to the hardest-to-categorize instance based on the probability estimate of the
predicted class.

Figure 8 shows the accuracy of kNN, EKNN and EKCNN (at k = 1, 10 and 30) and PNN
as a function of the percentage of the test data that were classified automatically by each
method. (The other nearest neighbor based approaches, LMkKNN and MLM -kHNN, do
not produce class probabilities, and thus were excluded in the comparison.) Also, since
EKNN and kNN is equivalent at k = 1, the column for EKNN with k =1 is omitted. In
most cases, high accuracy was achieved when only a small percentage of text answers were
classified. However, as the percentage of automated classification increased and more
hard-to-categorize instances are included, accuracy tended to decrease. There was one
exception: for kNN with k = 1, accuracy did not increase as the probability threshold
for automatic classification increased. That is because for kNN at k =1 probability 1 is
assigned to the class of the nearest neighbor for each test instance. In other words, for k =1
kNN failed to prioritize the text answers. The EKCNN method, however, ordered the test
instances well even at k = 1.EKCNN with k =1 resulted in higher accuracy than k =10 or
k =30 when more than 20% of the data were classified automatically. From the figure it is
clear that EKCNN achieved higher accuracy than kNN at almost all percentages regardless of
the values of k. Equivalently, at a target accuracy, a larger number of the text answers could
be classified by EkCNN. Also EkKCNN at any value of k outperformed PNN'. The differences
in accuracy between the methods tended to be larger at lower percentages of automated
classification, i.e., when a substantial percentage of text was manually classified, which
is typical in semi-automated classification of open-ended questions. In semi-automated
classification this would lead to cost savings. The results are summarized in Table 5. EKCNN
was preferred to kNN, EKNN and PNN for semi-automated classification of the Patient
Joe data.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 16/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

S — kNN (k=1)
- - kNN (k=10)
--=+ kNN (k=30)
Ol —— EKCNN (k=1)
i’ < - - EKCNN (k=10)
i~ N\ ---+ EKCNN (k=30)
S ! A EKNN (k=10)
] k ---+ EKNN (k=30)
PNN
o |
o
a
©
5
3
<
~ |
o
o | | e e SRR
ed | AT e T T T
0 |
o

T T T T T T
0 20 40 60 80 100

Percentage of automated classification

Figure 8 Comparison of kNN, EKNN, PNN and EkKCNN with different choices of k for semi-
automatic classification on the Patient Joe data.
Full-size & DOI: 10.7717/peerjcs.194/fig-8

DISCUSSION

For the 20 benchmark data sets, EKCNN had the lowest and kCNN the second lowest
average error rate. In terms of statistical significance, EKCNN performed significantly
better than kNN, EKNN, WkNN, PNN, LMkNN and kCNN on error rate. For the same
data sets, kCNN performed significantly better than kNN, EKNN, WkNN, PNN and
LMKENN .

The ensemble method EkKCNN performed better than kCNN. For each k, kCNN uses
a single posterior estimate for each class, whereas EKCNN combines multiple posterior
estimates. This more differentiated estimate for posteriors may be the reason for the
greater classification accuracy. We therefore recommend EKCNN over kCNN for higher
classification accuracy.

We have shown that kCNN is asymptotically Bayes optimal for r = 1. It is interesting
that for the ensemble version EkKCNN, r = q is clearly preferable. While surprising, there is
no contradiction: the Bayes optimality only applies asymptotically and only for <CNN and
not for the ensemble version EKCNN.

While the tuning parameter r does not affect classification for kCNN, r does affect
classification for EkKCNN. For the empirical results presented in Table 2, we chose r =g
for all data sets. We also noted that in 18 of the 20 data sets r = g leads to a lower or equal
error rate as compared to r = 1. Rather than just tuning the parameter k, it would be
possible to simultaneously tune k and r. While this may further improve the error rates of
EkCNN, the improvement, if any, would come at additional computational cost and is not

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 17/21

https://peerj.com
https://doi.org/10.7717/peerjcs.194/fig-8
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

expected to be appreciably large. For example, for the sonar data set, we have demonstrated
in ‘Tlustrating the choice of 7 on the sonar data set’ that no improvement was obtained
when r > g.

The simulation study in ‘Decision boundary of kCNN and EKCNN with varying k’
showed that the decision boundary obtained by kCNN can be smoothed by increasing
k. Although this result seems similar to that of kNN, the reasons for smoothed decision
boundaries are different. As k increases, kNN considers more observations for classification
and thus the classification is less affected by noise or outliers. By contrast, KCNN always uses
the same number of observations (the number of classes) to make a prediction regardless
of k. The kCNN approach ignores the first k — 1 nearest neighbors from each class and this
makes the decision boundary less local.

Since EKCNN 1is a combination of multiple kCNN classifiers, its decision boundary is
also a combined result of multiple decision boundaries from kCNN. Because the decision
boundary obtained by kCNN is smoothed as k increases, that obtained by EKCNN is also
smoothed. However, the smoothing occurs more gradually, since the decision boundary
obtained at k is always combined with the k — 1 less smooth decision boundaries. This
implies that EkKCNN is more robust than kCNN against possible underfitting that may
occur at large k. The decision boundaries shown in ‘Decision boundary of kCNN and
EkCNN with varying k’ confirmed this.

An advantage of the proposed methods over kNN, especially when k is low, is that <CNN
(or EKCNN)) can estimate more fine-grained probability scores than kNN, even at low
values of k. For kNN, a class probability for a new observation is estimated as the fraction
of observations classified as that class. By contrast, KCNN estimates the posteriors based
on distances. We confirmed this in ‘Comparison of the posterior probability distribution
of kNN and kCNN’ using simulated probability contour plots.

A simulation in ‘Under what circumstances does the proposed method beat kNN?’
suggests that the greater the overlap among the posterior distribution of each class,
the more likely that kCNN beats kNN in terms of the MSE. In most applications class
distributions overlap, which partially explains why in the experiment in ‘Result’ kCNN
performed better than kNN in many cases.

The application in ‘Application: Semi-automated Classification Using the Patient
Joe Text Data’ showed that EKCNN outperformed kNN and PNN in semi-automated
classification, where easy-to-categorize and hard-to-categorize instances need to be
separated. When only a percentage of the text data was classified automatically (as is
typical in semi-automatic classification), EKCNN achieved higher accuracy than the other
two approaches.

Like all nearest neighbor approaches, limitations of kCNN include lack of scalability to
very large data sets.

CONCLUSION

In this paper, we have proposed a new nonparametric classification method, kCNN, using
conditional nearest neighbors. We have demonstrated that kCNN is an approximation of

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 18/21

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

the Bayes classifier. Moreover, we have shown that kCNN converges in probability to the
Bayes optimal classifier as the number of training instances increase. We also considered
an ensemble of kCNN called EKCNN. The proposed methods compared favorably to
other nearest neighbor based methods on some benchmark data sets. While not beating all
competitors on all data sets, the proposed classifiers are promising algorithms when facing
a new prediction task. Also, the proposed methods are especially advantageous when class
probability estimations are needed and when the class distributions highly overlap. The
proposed method appears especially useful for semi-automated classification.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Social Sciences and Humanities Research Council of Canada
(SSHRC # 435-2013-0128). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Social Sciences and Humanities Research Council of Canada: SSHRC # 435-2013-0128.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Hyukjun Gweon conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, performed the computation work, authored or reviewed drafts of the paper,
approved the final draft.

e Matthias Schonlau conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, approved the final draft.

e Stefan H. Steiner analyzed the data, authored or reviewed drafts of the paper, approved
the final draft.

Data Availability
The following information was supplied regarding data availability:
The R codes have been uploaded at GitHub: https://github.com/hgweon/kenn.
All data used in the manuscript are available at the UCI data repository: https:
/larchive.ics.uci.edu/ml/datasets.php.

REFERENCES

Belongie S, Malik J, Puzicha J. 2002. Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence
24(4):509-522 DOT 10.1109/34.993558.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 19/21

https://peerj.com
https://github.com/hgweon/kcnn
https://archive.ics.uci.edu/ml/datasets.php
https://archive.ics.uci.edu/ml/datasets.php
http://dx.doi.org/10.1109/34.993558
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

Bhatia N, Vandana . 2010. Survey of nearest neighbor techniques. International Journal of
Computer Science and Information Security 8(2):302-305.

Breiman L, Schapire E. 2001. Random forests. Machine Learning 45(1):5-32
DOI10.1023/A:1010933404324.

Demsar J. 2006. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7:1-30.

Dudani SA. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics SMC-6(4):325-327 DOIT 10.1109/TSMC.1976.5408784.

Fix E, Hodges J. 1951. Discriminatory analysis, nonparametric discrimination: consis-
tency properties. Technical report. USAF School of Aviation Medivine, Randolph
Field, Texas Project 21-49-004, Rept. 4, Contract AF41(128)-31.

Friedman J, Hastie T, Tibshirani R. 2001. The elements of statistical learning. Vol. 1.
Berlin: Springer.

Fukunaga K, Hostetler L. 1975. K-nearest-neighbor Bayes-risk estimation. IEEE
Transactions on Information Theory 21(3):285-293 DOI 10.1109/TTT.1975.1055373.

GouJ, Zhan Y, Rao Y, Shen X, Wang X, He W. 2014. Improved pseudo nearest neighbor
classification. Knowledge-Based Systems 70:361-375 DOI 10.1016/j.knosys.2014.07.020.

Holmes CC, Adams NM. 2002. A probabilistic nearest neighbour method for statistical
pattern recognition. Journal of the Royal Statistical Society B: Biological Sciences
64(2):295-306 DOI 10.1111/1467-9868.00338.

Keller JM, Gray MR, Givens JA. 1985. A fuzzy K-nearest neighbor algorithm.

IEEE Transactions on Systems, Man, and Cybernetics SMC-15(4):580-585
DOI 10.1109/TSMC.1985.6313426.

Lichman M. 2013. UCI machine learning repository. Available at http:// archive.ics.uci.
edu/ml.

Loftsgaarden DO, Quesenberry CP. 1965. A nonparametric estimate of a multi-
variate density function. The Annals of Mathematical Statistics 36(3):1049—1051
DOI 10.1214/aoms/1177700079.

Manocha S, Girolami M. 2007. An empirical analysis of the probabilistic K-nearest
neighbour classifier. Pattern Recognition Letters 28(13):1818—1824
DOI 10.1016/j.patrec.2007.05.018.

Martin LT, Schonlau M, Haas A, Derose KP, Rosenfeld L, Buka SL, Rudd R. 2011.
Patient activation and advocacy: which literacy skills matter most? Journal of Health
Communication 16(sup3):177—-190 DOI 10.1080/10810730.2011.604705.

Mensink T, Verbeek J, Perronnin F, Csurka G. 2013. Distance-based image classifi-
cation: generalizing to new classes at near-zero cost. IEEE Transactions on Pattern
Analysis and Machine Intelligence 35(11):2624-2637 DOI 10.1109/TPAMI.2013.83.

Mitani Y, Hamamoto Y. 2006. A local mean-based nonparametric classifier. Pattern
Recognition Letters 27(10):1151-1159 DOI 10.1016/j.patrec.2005.12.016.

Mitchell T. 1997. Machine learning. New York: McGraw Hill. Chapter 6.9.

Pan Z, Wang Y, Ku W. 2017. A new k-harmonic nearest neighbor classifier based on the
multi-local means. Expert Systems with Applications 67:115-125
DOI10.1016/j.eswa.2016.09.031.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 20/21

https://peerj.com
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/TSMC.1976.5408784
http://dx.doi.org/10.1109/TIT.1975.1055373
http://dx.doi.org/10.1016/j.knosys.2014.07.020
http://dx.doi.org/10.1111/1467-9868.00338
http://dx.doi.org/10.1109/TSMC.1985.6313426
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1214/aoms/1177700079
http://dx.doi.org/10.1016/j.patrec.2007.05.018
http://dx.doi.org/10.1080/10810730.2011.604705
http://dx.doi.org/10.1109/TPAMI.2013.83
http://dx.doi.org/10.1016/j.patrec.2005.12.016
http://dx.doi.org/10.1016/j.eswa.2016.09.031
http://dx.doi.org/10.7717/peerj-cs.194

PeerJ Computer Science

R Core Team. 2014. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing. Available at http:// www.R-project.org/.

Ripley B. 2007. Pattern recognition and neural networks. Cambridge: Cambridge
University Press.

Rokach L. 2010. Ensemble-based classifiers. Artificial Intelligence Review 33(1-2):1-39
DOI 10.1007/510462-009-9124-7.

Samsudin NA, Bradley AP. 2010. Nearest neighbour group-based classification. Pattern
Recognition 43(10):3458-3467 DOI 10.1016/j.patcog.2010.05.010.

Schonlau M, Couper M. 2016. Semi-automated categorization of open-ended questions.
Survey Research Methods 10(2):143—152 DOI 10.18148/srm/2016.v10i2.6213.

Vapnik VN. 2000. The nature of statistical learning theory. 2nd edition. New York:
Springer.

Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bulletin
1(6):80-83 DOI 10.2307/3001968.

Wu T-F, Lin C-J, Weng RC. 2004. Probability estimates for multi-class classification by
pairwise coupling. Journal of Machine Learning Research 5:975-1005.

Wu X, Kumar V, Quinlan J, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu
B, Philip S, Zhou Z. 2008. Top 10 algorithms in data mining. Knowledge and
Information Systems 14(1):1-37 DOI 10.1007/s10115-007-0114-2.

ZengY, Yang Y, Zhao L. 2009. Pseudo nearest neighbor rule for pattern classification.
Expert Systems with Applications 36(2):3587-3595 DOI 10.1016/j.eswa.2008.02.003.

Zuo W, Zhang D, Wang K. 2008. On kernel difference-weighted k-nearest neighbor
classification. Pattern Analysis and Applications 11(3—4):247-257
DOI 10.1007/s10044-007-0100-z.

Gweon et al. (2019), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.194 21/21

https://peerj.com
http://www.R-project.org/
http://dx.doi.org/10.1007/s10462-009-9124-7
http://dx.doi.org/10.1016/j.patcog.2010.05.010
http://dx.doi.org/10.18148/srm/2016.v10i2.6213
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1016/j.eswa.2008.02.003
http://dx.doi.org/10.1007/s10044-007-0100-z
http://dx.doi.org/10.7717/peerj-cs.194

