A putative mechanism of the Sodium/lodide Symporter regulation during repetitive administration of stable lodide described by a Systems Biology approach

David Cohen¹, Dalila Lebsir¹, Karine Tack¹, Marc Benderitter², and Maâmar Souidi¹

¹ Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-Santé/SESANE/LRTOX, 92262 Fontenay-aux-Roses, France

² Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-Santé/SERAMED, 92262 Fontenayaux-Roses, France

Abstract

A single dose of potassium iodide (KI) against a prolonged exposure to repeated radioactivity might not be effective enough to protect the thyroid. Our group have shown that a repetitive dose of KI for eight days offers efficient protection without adverse effects in male rats [1].

However, we also have shown that the expression of the genes involved in the Wolff-Chaikoff effect changes during this period. Notably, a decrease in the sodium/iodide symporter (nis) gene expression has been observed [1]. This effect may result in hypothyroidism due to a decrease in thyroid hormones.

NIS is responsible for the uptake of KI and thus plays an important role in the Wolff-Chaikoff effect. The mechanism of a single dose of KI on the toxicity of the thyroid is well known [2], in contrast to repetitive administration of KI for eight days.

In the present study, we try to understand the Wolff-Chaikoff regulation and its molecular constituents during repetitive administration of KI. For this purpose, we have constructed manually a biochemical reaction network that is visualised as a "geographical" map of a single thyrocyte cell depicting the iodide and thyroid hormone metabolism. In order to investigate any regulation circuits of *nis*, Cytoscape and the plugin BiNoM [3, 4] were used to perform path analysis of the network to investigate if a path exists from the node iodide going to the node representing "nis transcription". Subsequently, sequential network reduction has led to final model that might explain a putative mechanism behind *nis* regulation and repetitive iodide administration.

In addition, this map reviews the most-update information about iodide and thyroid hormone metabolism. Besides as a source of information, it can help to elucidate the mode of action of KI on gene transcription after repetitive KI administration.

References

 D. Lebsir, L. Manens, S. Grison, P. Lestaevel, T. Ebrahimian, D. Suhard, G. Phan, I. Dublineau, K. Tack, M. Benderitter, A. Pech, J.-R. Jourdain, M. Souidi. Mol. Cell. Endocrinol. (2018), doi: 10.1016/j.mce.2018.02.017

- 2. D. Carvalho, C. Dupuy. Mol. Cell. Endocrinol. 458, 6 (2017)
- 3. P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker. Genome Res. **13** 2498 (2003)
- E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot, A. Zinovyev. BMC Syst Biol. 1 7 (2013)