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Abstract. This paper presents the integration of inertial navigation system (INS) with electromagnetic-log 
(EM-log) as an underwater navigation system using H-infinity filter for robustness from the uncertainty of 
the sea current model. In underwater environments, the electromagnetic signals are attenuated rapidly, so that 
the global navigation satellite system is not available in general. Thus, INS is usually chosen for underwater 
navigation, and other aiding sensors are also used to complement its accumulative errors, one of which is EM-
log. Since an EM-log provides the relative velocity to seawater, the integrated navigation cannot be performed 
accurately unless the sea current speed is compensated properly. Generally, the INS and EM-log can be 
integrated using extended Kalman filter (EKF). However, EKF guarantees its performance when the 
stochastic properties of the system’s process and measurement noises are perfectly known. In other words, in 
the presence of sea current modelling errors, the integration using the EKF is not expected to show good 
performance. On the other hand, H-infinity filter is a robust filter which can tolerate such uncertainties. In 
this paper, the integration of INS and EM-log using H-infinity filter is studied. The performance is compared 
with that of the EKF case by proper computer simulation. 

1 Introduction 

Autonomous underwater vehicles (AUVs) have been 
developed since 1970s, they are being operated to carry 
out their own missions. To achieve a successful operation, 
the vehicles need their position or attitude information, so 
called navigation solutions. Global navigation satellite 
system (GNSS) is one of the most popular navigation 
system on the ground. In water, however, the signals 
transmitted from the GNSS satellites are attenuated 
rapidly, hence, the system is seldom chosen for 
underwater navigation. 

On the other hand, inertial navigation system (INS) is 
self-consistent, so that it is usually chosen for underwater 
navigation system. Nevertheless, it has a critical 
limitation of cumulatively increasing positioning error 
with time [1]. Therefore, in most cases, INS is integrated 
with other sensors or systems to overcome this advantage. 
Long baseline (LBL), short baseline (SBL), and ultrashort 
baseline (USBL) have been adopted as such systems [2]. 
But in order to operate those baseline systems, their own 
infrastructure must be already constructed. Doppler 
velocity log can be another choice [3-5], which provides 
the vehicle’s velocity information the device mounted on. 
Owing to the depth range of the sensor, however, it is also 
not versatile enough. 

To the point of this view, even though it is not popular 
as other sensors, electromagnetic log (EM-log) can appeal 
its advantage of self-consistency. EM-log is a sensor that 

provides velocity information, but unlike that of DVL, the 
output is relative velocity to water rather than absolute 
velocity, since the principle of EM-log is based on 
Faraday’s law which states electromagnetic induction.  

Vaisgant et al. [6] proposed a method verifying EM-
log measurements and further, if need, excluding them to 
improve INS/EM-log integration. They focused on the 
effect of the low-pass filter employed in the EM-log 
which is for the purpose of reducing measurement noise. 
The integration was conducted by means of Kalman filter, 
which requires accurate stochastic characteristics of 
process and measurement noises to be known [7]. In other 
words, the integration of INS and EM-log is optimal only 
when the stochastic dynamic model of sea current is 
perfectly known. Unfortunately, it is very hard to model 
the dynamics of sea current accurately. 

In this paper, the integration of INS and EM-log using 
H-infinity filter is presented. H-infinity filter, also called 
the minimax filter, is one of the basic robust filters which 
can tolerate such uncertainties, that is, the influence of 
uncertainty in sea current model which can be severe to 
performance of the EKF is reduced. 

The remaining parts are organized as follows; the 
system model including sea current model and 
measurement model are presented in section 2. Then, 
section 3 develops H-infinity filter for INS/EM-log 
integration. The performances of EKF and H-infinity 
filter are compared via computer simulation and discussed 
in section 4, and the last section concludes this paper. 
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2 System and measurement model  

2.1. System model  

In this subsection, the system model including INS model 
and sea current model is presented. 

2.1.1 INS error model 

It is well-known that the vertical channel is very weakly 
coupled with the horizontal channels. Hence, we 
separated down-axis velocity and height states from 
general 15th order INS model and constitutes 3rd order 
damping loop in conjunction with depth gauge [8]. Since 
we used NED navigation frame, INS state vector is 

,  ,  ,  ,  ,  ,  , , , ,  ,  ,  
T

INS N E x y z x y zL l v v           x

(1) 

where L  and l  denotes latitude and longitude, v  is 
velocity along the subscripted direction, north and east, 

,  ,      are Euler angles, roll, pitch, and yaw in order, 

and  ,   are accelerometer and gyro bias, respectively. 
We assumed that these biases are all random constant. 

Eventually, we can define the corresponding system 
matrix INS error dynamic model INSF  and process noise 

covariance INSQ  which are 13×13 matrices [1]. 

2.1.2 Sea current model 

As mentioned above, EM-log measures the relative 
velocity of the vehicle to the sea water, so that it is 
required to augment sea current velocities as states. They 
will be denoted by 

N E

T

C C Cv v   x                          (2) 

In general, sea current is modelled by 1st order Markov-
model [9], that is, 
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                      (3) 

where Cv  is sea current along the subscripted direction, 

north and east, C  is root mean square (RMS) current 

speed, CT  is the correlation interval of current speed, and 

  is white noise following standard normal distribution. 

Hence, the system matrix CF  and process noise 

covariance CQ  for sea current can be determined. 

To add a comment, CT  is related to the tendency of 

the sea current, so that if CT is large, the speed of sea 

current varies slowly, and vice versa. On the other hand, 

C  is related to the roughness of the sea current, so that if 

C  is large, the sea current becomes more rough, and vice 

versa. Figure 1 shows the example of sea current created 
by Eq. (3).  

 
Fig. 1. Example of created sea current. 

2.1.3 Total system model 

There are no correlation between INS states and the sea 
current states, so that the total state vector, system matrix 
and process covariance matrix are difined as 
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where 0m n  means zero matrix in m n  dimension. 

2.2. Measurement model  

The measurement of EM-log is not only the relative 
velocity of the vehicle to the water, but also that in body 

frame  B . In our research, we only used longitudinal 

direction measurement, which is on the x-axis of forward-
right-down body frame we used. Hence, coordinate 
transformation matrix is used in order to mediate the state 
and the measurement. Therefore, considering the 
perturbation of attitude, the observation matrix for total 
states is obtained by 

 1 2 12 13 1 6 150 0H H H H                 (7) 

where 

 12

1 0
1 0 0 0 1

0 0

b
nH C

 
   
 
 

                   (8) 

   13 1 0 0 b n n
n CH C v v                     (9) 

 15

1 0
1 0 0 0 1

0 0

b
nH C

 
    
 
 

               (10) 

0 1 2 3 4 5 6

time (hr)

-3

-2

-1

0

1

2

3

4
T

C
=2hr, 

C
=0.5m/s

T
C

=12hr, 
C

=0.5m/s

T
C

=2hr, 
C

=2.5m/s

T
C

=12hr, 
C

=2.5m/s

2

E3S Web of Conferences 94, 01013 (2019) https://doi.org/10.1051/e3sconf/20199401013
ISGNSS 2018



 

3 H-infinity filter for INS/EM-log  

3.1. Basic formulation of H-infinity filter 

The formulation of H-infinity filter is summarized as [7] 

k k kLz x                            (11) 

T
k k k kS L S L                               (12) 
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         (13) 
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       (15) 

where kz  is our interest, kS is a weight matrix for kz , 

and   is the user-specified performance bound. In 
addition, ky  is a measurement, and â  denotes the 

estimate of a . 
Here, we should be careful that if we set   too large, 

it will broke a positive-definiteness of 1kP   in Eq. (15), 

which violates the peroperty of covariance matrix. 

3.2. INS/EM-log integration 

We used Eqs. (5-10) for Eqs. (13-15). In our system and 
measurement models, the most uncertain parameters are 
related to the sea current velocities, so that we chose kL  

as 

 2 13 20kL I                      (16) 

where nI  denotes identity matrix of dimension n n . 

And then, we set kS  as large as possible fixing the value 

of  , which means increasing the robustness of 1kP   in 

Eq. (15). 

4 Simulation 

4.1. Simulation condition 

In order to verify the performance of H-infinity filter, it is 
compared to the optimal and suboptimal EKF. As 
mentioned in the introduction, it is hard to accurately 
parameterize the sea current model. In this simulation we 
used 2hrCT   and 0.5m/sC   for the true sea current 

model, and the optimal filter was adopted with the same 
parameters while 0.2m/sC   was used in the 

suboptimal filter. For a fair comparison, we also used 
0.2m/sC   in H-infinity filter. 

The navigation trajectory was generated as shown in 
Figure 2, which is 24 hours long and contains stop in place 
motion, acceleration and deceleration, and pitching and 
turning maneuvers. Then, Monte-Carlo simulation with 
32 runs were performed to consider random conditions. 

 

Fig. 2. 3D trajectory of simulation. 

4.2. Simulation result 

Figure 3 shows normalized latitude and longitude errors 
of each filter. The reason why the errors are normalized is 
that our interest is only in their relative magnitude. As 
shown in the figure, the performance of the optimal EKF 
is the best, which is natural result. In the suboptimal EKF 
case, which is conducted with inaccurate process noise 
model of sea current, the position estimation errors were 
found to increase more since 4 hours after the start of 
navigation. It is because using inaccurate sea current 
model, the filter cannot reflect its true speed, hence, the 
sea current estimation errors are propagated to the 
position estimation errors through the observation matrix. 
Likewise, the H-infinity filter also performs worse in 
position estimation than the optimal filter. Nevertheless, 
it shows better results than suboptimal filter, since the 
designed H-infinity filter considers the uncertainty in the 
stochastics of the sea current model. 

Figure 4 shows further obvious difference among filter 
performance. The error metric presented in the figure is 
normalized time circular error probability (TCEP), which 
is defined as 

     
1
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            (17) 

 

Fig. 3. Normalized latitude and longitude errors of optimal EKF, 
suboptimal EKF, and H-infinity filter. 
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Fig. 4. Normalized time circular error probability of pure INS, 
optimal EKF, suboptimal EKF, and H-infinity filter. 

where  N i ,  E i  are the root mean squared error of 

north and east position estimates at time step i , 
respectively. Since high-grade INS has several error 
oscillations such as Schuler oscillation of 84.4 minutes 
and earth loop oscillation of 24 hours, the position errors 
at the final point are not always the worst. Therefore, an 
error metric that takes this effect into account is needed, 
of which TCEP is one. 

The normalized TCEP and its accuracy rate of 
increase compared to the pure navigation of each filter at 
6, 12, 18, and 24 hours from the start are shown in table 1.  
The optimal EKF steadily improves the TCEP compared 
to the pure navigation over time, which is due to the fact 
that the biases of the inertial sensors are properly 
estimated by the EM-log measurement. On the other hand, 
those of the suboptimal filters do not so owing to the 
uncertain sea current model. Still, in all time domains, H-
infinity is found to outperform the suboptimal EKF. 

5 Conclusion 

In this paper, the integration of INS and EM-log using H-
infinity filter has been studied. In the presence of 
uncertainty in the process and measurement noise 
stochastics, the EKF does not guarantee the performance 
as desired. Since EM-log measures not the absolute 
velocity but the relative of the vehicle to the sea water, the 
estimation errors of north and east sea current velocities 
are augmented to the filter states. Nonetheless, the system 
model of the sea current states is not easy to design. That 
is, the inaccurate system model of the sea current degrades 
the performance of EKF. Therefore, H-infinity filter, one 
of the most popular robust filter, has been adopted to 
integrate those two systems. In our research, we have 
designed the filter to focus on the estimation of sea current, 
and the required parameters are proposed in this paper. A 
proper computer simulation has been conducted and 
shown that even though the robust filter is not good as the 
optimal filter naturally, it outperforms the suboptimal 
EKF during all navigation time. The positioning errors are 
compared by using TCEP metric. The designed filter 
needs to be verified using real data as a future work. 

Table 1. Normalized TCEP and accuracy rate of 
increase compared to the pure navigation of each filter 

Time step Pure INS EKF-opt EKF-sub H-infinity 

6 hr 
1 0.8403 0.8968 0.8862 

- 15.97% 10.32% 11.38% 

12 hr 
1.3950 1.1029 1.3256 1.2905 

- 20.94% 4.96% 7.5% 

18 hr 
1.6734 1.3171 1.6094 1.5632 

- 21.29% 3.82% 6.58% 

24 hr 
1.9561 1.5181 1.8333 1.7877 

- 22.40% 6.28% 8.61% 

This study was supported by the research project “A Study on 
Multi Sensors Aided Navigation for Underwater Environment” 
of Agency for Defense Development. 
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