
*
 whddlf915@naver.com

Design of GPU Based Non-coherent Signal Tracking Module for
Real-time GNSS SDR

Jong-Il Park1,*, Kwi Woo Park1, and Chansik Park1

1Dept. of Control and Robotics Eng. Chungbuk National University, South Korea

Abstract.

In this paper, we design and implement GPU-based non-coherent GPS signal tracking module for

real-time SDR. When using CPU and GPU simultaneously, the signal tracking module should be

designed considering the memory bottleneck between the two processors. The basic non-coherent

module, which accumulates the 1msec correlation value 20 times, is changed to accumulate M(20/N)

times of Nmsec units. From the experiments using real GPS signals, the computational performance

of N=20 is improved by 80% compared to N=1. Therefore, the implemented SDR using notebook

computer can tracks more channels simultaneously in the real time.

1 INTRODUCTION

In Global Navigation Satellite System(GNSS), Software

Defined Radio(SDR) has replaced traditional receivers.

Hard-wired analog components of traditional receivers

are replaced with digital components in order to allow for

greater flexibility. SDR allows a user to change the

software to quickly modify how it operates, and better

maintenance than traditional receivers [1-2]. Also, real-

time GNSS SDR is possible as GPU and GPGPU

performance is improved [1].

GNSS signal can be used anywhere in the world,

however, GNSS signal is restricted from receiving if there

are obstacles such as high buildings, wood and etc. [6]. To

improve the performance of receiving GNSS signal, three

methods are commonly adopted: 1) extended Kalman

filter to signal tracking loop, 2) AGPS (Assisted GPS) and

3) non-coherent integration method for signal tracking

and signal acquisition [3]. In this paper, the non-coherent

integration method was used to improve the reception

performance of GNSS SDR.

Non-coherent integration signal tracking module

accumulates correlation values of 1msec GPS signals for

integration time (T). As the integration time increases, the

accuracy of measurements is increased, however, the loop

filter in DLL (Delay Lock Loop) and PLL (Phase Lock

Loop) should be redesigned to track the signal

continuously. To extract GPS navigation bit, 20msec is

maximum integration time. In GNSS SDR sudden

changes in integration time makes tracking loop unstable,

therefore, step by step changes are required. In this paper,

1, 2, 4, 5, 10, and 20msec integration times are used

sequentially. After navigation bit extraction, the

integration time is fixed to 20msec.

GPU-based non-coherent signal tracking module is

implemented to support parallel processing with CUDA

(Compute Unified Device Architecture). Computational

efficiency of parallel processing using GPU is affected by

3 factors: 1) memory copy from CPU to GPU, 2) kernel

call and operation time and 3) memory copy from GPU to

CPU.

To compare the computational efficiency of the GPU-

based signal tracking loop with 20msec integration time,

the elapsed time of above 3 factors are measured. As main

computational burden, memory bottleneck between CPU

and GPU is analysed by changing the load balance. The

20msec IF data is divided into N(msec) x (20/N) to

perform N parallel processing concurrently.

An experiment was conducted to compare the

computational efficiency of GPU-based signal tracking

loop by changing N.

2 Implementation of Non-coherent
integration SDR using GPU

2.1 Characteristics of CUDA operations

The CUDA platform is a software layer that provides

direct access to the GPU’s virtual command set and

parallel computation elements. The CUDA allow access

to the memory and command sets of parallel computing

elements of the GPU. If the calculations performed by the

program are suitable for parallel processing operations,

performance is improved by using GPU. Fig. 1 shows the

parallel processing computation process of CUDA.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 94, 03013 (2019) https://doi.org/10.1051/e3sconf/20199403013
ISGNSS 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200928928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Processing flow on CUDA

The CUDA processor operates in the order of the

number shown in the arrow. First, data related to parallel

computation is copied from main memory to global

memory of GPU. Second, the CPU instructs the GPU

process. Third, parallel operations are performed on the

core of the GPU using data stored in the global memory.

When parallel processing operations are performed, each

Streaming Multi-processor(SM) in the GPU generates

several blocks that perform parallel operations. Each

block produces many threads that perform the operation

in practice. The results are stored in the global memory

after performing the procedure. Finally, copy the results

stored in the global memory into the main memory.

2.2 Tracking structure of SDR

The SDR explained her is a real-time SDR based on GPU

that is integrated into our lab Fig. 2. Shows the tracking

loop behaviour of the implemented SDR. The white part

operates on the CPU and the painted part operates on the

GPU. The implemented SDR is a structure that tracks

1msec of IF signals. Copy received IF signal data to GPU,

correlate with parallel computation, and store data back to

CPU. Signal processing, such as PLL/DLL, bit extraction,

and navigation, using correlation values from GPU. The

tracking result is passed to the receiving part of the signal

data for use in the next 1msec IF signal processing.

Fig. 3 shows the correlation part of Fig. 2. Correlator,

which is mainly a repetitive operation, was implemented

using CUDA. Correlator uses IF signal data and channel

information stored in global memory of GPU. GPU

generates blocks and threads, and blocks produce as many

as the satellite number of successful signal acquisitions as

IE, IP, IL, QE, QP and QL, which are correlated values of

satellites. Each block has 1024 threads performing the

operation, because the maximum number of threads that

can be active on the GPU is 1024. The computation results

of 1024 threads on each block are transferred to the shared

memory, the shared memory is the memory shared within

each block. Reason for storing computational results in

shared memory is that data is sent to threads much faster

than global memory. After transfer to shared memory, add

1024 computational results to obtain correlation output.

Add 1024 computational results by reduction method. The

reduction method reduces the time complexity of

O(log
2
𝑛) that is faster than the existing O(n) . The

correlation value obtained by adding 1024 computational

results is sent to the global memory.

2.3 Non-coherent integration

Non-coherent integration is a method to integration

correlation values to improve reception of receivers. The

number set in integration time is an abbreviation of 20.

Fig. 2. Signal tracking processing

Fig. 3. Correlator implemented using CUDA

2

E3S Web of Conferences 94, 03013 (2019) https://doi.org/10.1051/e3sconf/20199403013
ISGNSS 2018

Because the GPS data transmission speed is 50 Bps and

takes as much as 20msec per bit. When the integration

time is T, T is defined as T = {1, 2, 4, 5, 10, 20}. If T is

set to a number other than the abbreviation of 20, the data

bit and the bit edge are unknown, so signal processing is

not possible[3].

Fig. 4. Modified signal tracking processing

Fig. 4 shows the addition of non-correct integration

using GPU in Fig. 2. New Block 1 is the part where non-

coherent integration is added. Framelock of New Block 1

checks the start of the satellite signal's bit and whether the

parity check of the satellite data have been completed. If
the bit start point is ignored and integrated, the bit edge is

unknown, so the data bit is unknown. If the Framelock is

verified, integrate the output of the correlator by Tmsec.

T increases to 20. Adjust the coefficient of the loop filter

according to the T value. Depending on the T, the natural

frequency and noise bandwidth of the loop filter change[2,

4].

2.4 Considering GPU operation non-coherent
integration

Parallel processing operations are suitable for calculations

where many data elements can run simultaneously in

parallel. So we implemented correlator as CUDA. To use

CUDA, data should be transferred from the CPU to the

GPU. Number of times data is transferred from CPU to

GPU should be reduced. It takes a lot of time to transfer

data. Also, CUDA is most efficient in processing a lot of

data with a lot of threads[5]. Therefore, to increase the

efficiency of the CUDA, it is necessary to reduce the

number of times data is transferred from the CPU to the

GPU to the CPU and compute a lot of data at once.

Implement the structure shown in New Block 2 of Fig.

4 to compare the computational efficiency of the GPU.

Comparison of the computational efficiency of GPU

operates when T=20. When T=20, the length(N) of the IF

signal data is changed. As the length of the IF signal data

changes, the integration number(M) of non-corrections

changes. NxM should be 20 to maintain the performance

of the non-coherent integration T=20. As N changes, the

number of times transferred from CPU to GPU and GPU

to CPU changes, and the amount calculated at once by the

GPU changes.

3 Experiment and Analysis

3.1 Experimental environment and purpose

Table 1 Laptop specification

OS Windows 10 Home K 64-bit

CPU Intel Core i7-7820HK

GPU Geforce GTX 1080

Memory DDR4-16GB

IDE MS Visual Studio 2013, C++

CUDA version Release 8.0

The experiment was conducted using the AORUS laptop.

The specifications of the AORUS laptop are shown in

Table 1. The specifications of the laptop, the OS is

Windows 10, CPU is Intel Core i7-7820HK and GPU is

GeForce GTX 1080. GPU has 2,560 cores, 1607MHz

clock, 10Gbps memory clock, and 256bit memory bus.

GPS signal data was obtained using an antenna installed

on the roof of E10 of Chungbuk National University. The

GPS signal's quantification bit is 16 bits and the sampling

frequency is 25MHz.

 Confirm the results of the two experiments using the

signal received. The first experiment verifies the

performance of the non-coherent integration method

according to the T to verify feasibility of implementation.
The performance of the non-coherent integration method

is checked if the Doppler frequency, which is the output

of the PLL, is properly tracked. The second experiment

compares the computational time by adjusting the N and

M of NxM in non-coherent Integration considering GPU

operation. Compare the operation time of non-correct

integration considering GPU operation and find the

optimal NxM.

3.2 Validation of non-coherent integration
implementation

3

E3S Web of Conferences 94, 03013 (2019) https://doi.org/10.1051/e3sconf/20199403013
ISGNSS 2018

Check the result of doppler frequency that is output when

non-coherent integration is added to the Signal Process

section of the signal tracking loop. Fig. 5 shows the

Doppler frequency output as T changes. In the experiment,

T was switched to 1, 2, 5 and 20, and as T increased, the

variance of Doppler frequencies was reduced. Fig. 5

shows a continuous decrease in the Doppler frequency.

This is because the satellite is moving. As a result, we

added non-coherent integration to confirm that signal

tracking performance is improved.

3.3 Comparison of computational time of non-
coherent integration using GPU

The computational efficiency of GPU varies depending

on number of data transfers and amount of data processing

at a time. The operation time is checked by dividing three

parts, the transfer time between CPU to GPU(A), kernel

call and correlation operation time(B), and the transfer

time GPU to GPU(C) in Table 2 and changing the NxM

Fig. 6 shows the operating time of the CUDA for each

satellite, changing the NxM, and Table 2 shows the

operating time ratio for each part. Table 2 shows the ratio

of operation time when NxM is 1x20. In all three parts, the

operation time decreases as the size of N increasing.

Compared to 1x20 and 20x1, the most time-reduced part

is kernel call and operation time(B). It decreased by 90%.

More than 80% of the operation time was reduced in all

three parts. Fig 6. can be confirmed that the total operation

time of GPU increases by N, which results in shorter

processing time per 20 msec. The increasing the N in all

three satellites, the shorter the time the GPU operates.

When NxM is 20x1, its operation time is the shortest and

its computational efficiency is the best.

Table 2. Operating time ratio in three parts

4 Conclusion

Non-coherent integration of SDR using GPU was

implemented to improve the computational efficiency of

GPS signal tracking loops. Non-coherent integration

reduced errors and improved tracking performance.

Integration period of 20msec (T=20) gives the best

tracking performance of the tracking loop. To evaluate the

performance of GPU-based signal tracking module, the

1msec x 20times basic non-coherent module is changed

to Nmsec x Mtimes module. By changing N, we compare

the operation time of the three parts: 1) memory copy

from CPU to GPU, 2) kernel call and operation time of

GPU and 3) memory copy from GPU to CPU. In all three

parts, the computation efficiency was improved as the size

of N increased. From the experiments using real GPS

signals, the computational performance of N=20 is

improved by 80% compared to N=1. Therefore, the

implemented SDR using notebook computer can tracks

more channels simultaneously in the real time.

References

1. C.-H. Kang, S.-Y. Kim, J.-H. Yang, & C.-G. Park,

Analysis of GPS signal acquisition algorithm for

SDR, Institute of Control, Robotics and

Systems(2011)

2. J. McGinthy, Captain, USAF, Global Navigation

Satellite System Software Defined Radio, Air force

Institute of Technology, Ohio(March 2010)

3. Nesreen I. Z., GNSS Receivers for Weak Signals,

pp.28-37, (2006)

4. E. D. Kaplan, C. J. Hegarty, Understanding

GPS/GNSS principles and applications, Third edition,

Artech House, (2017)

5. NVIDIA, CUDA C Best Practices Guide, Design

Guide, (October 2018)

6. K. H. Yoo, S. K. Sung, T. S. Kang, Y. J. Lee, E.-S.

Lee, et al., Analysis of GPS+QZSS Availability at

Uraban Canyon of Seoul , KSAS, (2008)

 1x20 2x10 4x5 5x4 10x2 20x1

A 1 0.52 0.32 0.27 0.21 0.17

B 1 0.51 0.30 0.25 0.18 0.11

C 1 0.50 0.31 0.32 0.21 0.14

Fig. 5. GPS doppler frequency shift (GPS No. 12)

Fig. 6. CUDA operation time according to NxM

4

E3S Web of Conferences 94, 03013 (2019) https://doi.org/10.1051/e3sconf/20199403013
ISGNSS 2018

