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Abstract. In this paper, we present a visual-inertial odometry (VIO) with an online calibration using a stereo 

camera in planetary rover localization. We augment the state vector with extrinsic (rigid body transformation) 

and temporal (time-offset) parameters of a camera-IMU system in a framework of an extended Kalman filter. 

This is motivated by the fact that when fusing independent systems, it is practically crucial to obtain precise 

extrinsic and temporal parameters. Unlike the conventional calibration procedures, this method estimates both 

navigation and calibration states from naturally occurred visual point features during operation. We describe 

mathematical formulations of the proposed method, and it is evaluated through the author-collected dataset 

which is recorded by the commercially available visual-inertial sensor installed on the testing rover in the 

environment lack of vegetation and artificial objects. Our experimental results showed that 3D return position 

error as 1.54m of total 173m traveled and 10ms of time-offset with the online calibration, while 6.52m of 

return position error without the online calibration. 

1 Introduction  

Ego-motion estimation is one of the most crucial tasks for 

unmanned vehicles such as planetary rovers or 

autonomous driving cars to successfully carry out their 

missions. However, to deal with the absence or outage of 

GNSS signals, alternative navigation algorithms should 

be considered. For instance, NASA’s Martian rovers are 

equipped with stereo cameras and localize itself by the 

vision-based navigation called visual odometry (VO) [1]. 

While VO suffers from the well-known error 

accumulation, visual-inertial odometry (VIO) decreases 

its rate by filling a gap between small baselined images 

using IMU readings [2]. A fusion of a camera and IMU is 

an attractive solution due to their complementary features. 

Most of the visual-inertial fusion algorithms assume 

that output data from a camera and IMU is timely 

synchronized and the sensors are spatially well aligned. 

However, this causes significant estimation errors when 

time-delay of a camera is not negligible or a camera-IMU 

system is not well calibrated since the measurement 

model is linearized around the currently available 

estimate referenced at the camera frame. Even if a 

camera-IMU system is calibrated in advance, this cannot 

reflect uncertainties on calibration parameters to an 

estimator. In the worst case, calibration parameters could 

be changed due to external shocks. 

Many efforts to deal with the above issue has been 

made. The authors of [3] showed that the cam-IMU 

extrinsic parameter, the scale factor, and the global 

gravity is observable with the global pose measurements.  

 

Fig. 1. Testing rover mounted the visual-inertial sensor 

 

However, the measurement model which assumes that 

images output global poses was somewhat unrealistic. 

Guo et al. in [4] proved that cam-IMU extrinsic parameter 

is observable using the proposed basis functions under the 

known depth (feature point) assumption. The work of [5] 

focused on the temporal calibration of a cam-IMU system. 

They theoretically showed that time-offset between cam-

IMU system can be recovered, while practically 

implemented the online calibration algorithm in the 

extended Kalman filter (EKF) framework. Also in [6], 

camera intrinsics, as well as IMU intrinsics (misalignment, 

g-sensitivity) was modeled in the estimator.  

In this paper, we exploit the theoretic results of [4,5] 

and formulate EKF-based VIO algorithm using feature 

point measurements obtained from the stereo camera. 

Specifically, we augment the state vector with the time-
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offset and extrinsic parameter. Fig. 1 shows the testing 

rover equipped with the visual-inertial sensor to record the 

dataset which lacks artificial object and vegetation.  

2 The filter description 

The error state vector of the presented algorithm consists 

of the 15th order of IMU state, the calibration parameters: 

cam-IMU time-offset, extrinsic parameter and the sliding 

window pose/velocity as in Eq. (1). 
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In this expression, we denote the global frame as {G}, the 

camera frame as {C}, the body (IMU) frame as {B}, and 

the number of sliding window as N. Also, we define the 

error state as �̃� = 𝐱 − �̂�  where �̂� means estimated value. 

For instance, �̃�𝐺𝐵  is an attitude error expressed in a 3-

dimensional vector, G �̃�𝐵  and G �̃�𝐵  are a position and 

velocity error expressed in {G}. Also, �̃�𝐶𝐵  and C�̃�𝐵  are 

extrinsic parameter error in a cam-IMU system, 𝑡𝑑  is a 

cam-IMU time-offset due to latency in sensors defined as 

in [5]. Note that we include the sliding window velocity 

in the state vector since the measurement Jacobian matrix 

requires the current estimate of the velocity.  

1.1 Prediction step 

The IMU measurements are modeled as Eq. (3) with the 

zero-mean white Gaussian noise process (n), and the 

random walk process (b). 
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Where G 𝐚(t)  is the true acceleration of the sensing 

platform, G𝐠 is the global gravity that is approximately 

 
T 20 0 9.81 m / s  . The error-state continuous time 

propagation is as follow, while calibration-related states 

are assumed to be constant. 
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In Eq. (4), 𝐧𝑤𝑎  and 𝐧𝑤𝑔  are zero-mean white Gaussian 

noise processes. The nominal IMU state is integrated 

through the closed-form state-transition matrix derived in 

[7]. 

1.2 Calibration parameter error modeling 

To deal with the calibration parameters of a cam-IMU 

system, their error state should be modeled in the 

measurement model. Note that the extrinsic parameter is 

observable under the point features [4], and the time-

offset is also observable up to the time referenced at an 

IMU [5]. These motivate us to jointly estimate the 

parameters along with the navigation solution in a stereo 

vision scenario which provides reliable depth information. 

In order to build constraints among multiple views for 

point features, sliding window poses/velocity should be 

augmented to the state vector. Propagating the current 

IMU state up to the time-offset (𝑡𝑑), the sliding window 

state is as follow, 
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Accordingly, the Jacobian matrix with regard to the IMU 

state is  

9 9 6 9 6 9 ( )
i dS t I dt t 

   x I 0 0 J 0 x        (6) 

Where 
dt

J is the Jacobian related to the time-offset, and 

can be derived using 1st order approximation, 
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Assuming that a stereo camera is well calibrated in 

advance, the point feature measurement model is  
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with zero-mean white Gaussian noise process, 
zn . The 

linearized measurement model is given by, 

ˆ ˆ ˆˆ( ) ( ) ( ) ( )d d d zt t t t t t t      r z z H x n         (9) 

where H matrix is the measurement Jacobian matrix. 

Specifically, this matrix is computed from the left and 

right measurements,  
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To compute Eq. (10), the global pose is perturbed up to 

the 1st order Taylor series expansion with respect to the 

time-offset, 
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The linearization in Eq. (11) enables us to model the time-

offset in the measurement model. 

3 Experimental results 

The testing rover in Fig. 1 consists of Pioneer3-AT (rover 

platform), Xsens MTi-300 (IMU), ZED stereo camera, 

and the on-board computer for the purpose of data 

recording. While IMU outputs its data at 200Hz, the 

stereo camera gives 1280x720 grey images at 15Hz. 

Although both sensors are timestamped under the ROS 

environment, the nature of the separate system motivates 

us to estimate the time-offset. The initial guess of the 

extrinsic parameter was computed using Kalibr toolbox 

[8]. Also, a human pilot drove the testing rover returning 

to the starting point to quantify return position error. The 

typical environment of the site is shown in Fig. 2 which 

lacks artificial object and vegetation.  

In what follows, we describe details of the vision front-

end implementation and field testing results. 

3.1 Vision front-end design 

Features are provided to the estimator when either 

tracking fails or the number of tracks exceeds a user-

defined maximum sliding window. To obtain reliable sets 

of feature tracks, we design a stereo feature tracker shown 

in Fig. 2 as similar to [9]. Assuming that the feature 

correspondence at tk-1 is obtained, features on the left 

image are tracked to the next time step tk, then 8-point 

RANSAC eliminates outlier sets. Survived inliers on the 

left image are kept tracked to the right image. Again, 8-

point RANSAC detects outliers between temporal right 

images at tk-1 and tk . In the only case when the feature is 

successfully tracked both the temporal and static tracking, 

the feature is fed to the estimator. In contrast to a 

monocular case, the stereo features give scale information 

due to the baseline. Specifically, we triangulate feature 

points from the farthest two-view; for instance, the oldest 

frame in the left and the latest frame in the right before the 

multi-view triangulation. This strategy enables us to 

compute the feature depth, even the sensors are in static. 

 

Fig. 2. Feature tracking strategy using stereo images 

3.2 Field testing results 

To test the presented VIO, the testing rover shown in Fig. 

1 traveled the total distance of 173m for 224 seconds 

commanded by the human pilot. The testing site mainly 

consisted of soil with small rocks where typical images 

are shown in Fig .2. To compute an initial attitude with 

respect to the navigation frame (NED-frame), outputs of 

the accelerometer at the first 2 seconds were used. Also, 

the testing rover started from the static state; the initial 

velocity was set to zero.  

To quantify the performance of the algorithm, we 

compare return position errors among three cases: “full 

calibration (td + extrinsic)”, “partial calibration (only td)” 

and “no calibration”. Table. 1 shows 3D return position of 

3 cases in the Cartesian coordinate in which the starting 

point was  
T

0 0 0 m . As expected the full calibration 

yields the best performance (2-norm) that is 76.4% error 

decrease when compared to the no calibration. It is 

interesting to note that the z-axis position of the partial 

calibration drifted up to -4.07m. We argue that this is due 

to the inaccurate extrinsic parameter that is computed 

beforehand. Also, Fig. 3 plots the entire estimated 2D 

trajectories of all cases. It is clearly seen in Fig. 3 that the 

no calibration largely drifts after the first 180 deg turning 

when compared the others. 

Fig. 4 plots the estimated time-offset with its 3-sigma 

envelopes in the full calibration scenario. After quick 

convergence at the beginning, it converges to -10.3ms. 

Remind that the sampling time of images is 66.7ms 

(15Hz), thus the time-offset is not negligible.  

 

Table 1. 3D return position errors for 3 cases 

 
No 

Calibration 

Partial 

Calibration 

Full 

Calibration 

xyz Return 

position [m] 

-0.8229; 

 3.3352; 

-5.5402 

0.3627; 

0.1956; 

-4.0725 

-1.1922; 

  0.5711; 

-0.7856 

2-norm 

[m] 
6.52 4.09 1.54 

 

 

 

Fig. 3. Estimated 2D trajectory with the online calibration 
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Fig. 4. Estimated cam/IMU time-offset with 3-sigma envelope 

 

 
Fig. 5. Cam/IMU relative attitude 3-sigma envelopes 

 
Fig. 6. Cam/IMU relative position 3-sigma envelopes 

 

Fig. 5 and 6 show 3 standard deviations for the 

cam/IMU extrinsic parameter for each axis in the full 

calibration. We set the initial standard deviation as 1deg 

and 5mm respectively to cover the calibration uncertainty. 

Although we do not have the true value, the standard 

deviations are decreased as the filter is updated that is 

consistent results to the observability analysis in [4]. 

4 Conclusion 

In this paper, we have presented the online calibration 

stereo VIO using naturally occurring point features in 

which the state vector is augmented by the time-offset and 

extrinsic parameters. To evaluate the presented VIO, the 

testing rover with the commercially available visual-

inertial sensor recorded the dataset. Our experimental 

results have shown that when fusing independent sensors 

their extrinsic calibration is important; the online 

calibration method reduced the rover’s return position 

error by 76.4% with respect to the no calibration method. 

Moreover, we experimentally showed that the time-offset 

and extrinsic parameter were observable under point 

features that is consistent with the observability analysis. 

This work was supported by the Ministry of Science and ICT of 

the Republic of Korea through the Space Core Technology 

Development Program under Project NRF-2018M1A3A3A02 

065722. 
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