
*
 Corresponding author: djjwo@mail.ntou.edu.tw 

Windowing Design and Performance Assessment for Mitigation 
of Spectrum Leakage 

Dah-Jing Jwo 1,*, I-Hua Wu 2 and Yi Chang1 

1 Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University 
2 Pei-Ning Rd., Keelung 202, Taiwan 

2 Bison Electronics, Inc., Neihu District, Taipei 114, Taiwan 

Abstract. This paper investigates the windowing design and performance assessment for mitigation of 

spectral leakage. A pretreatment method to reduce the spectral leakage is developed. In addition to selecting 

appropriate window functions, the Welch method is introduced. Windowing is implemented by multiplying 

the input signal with a windowing function. The periodogram technique based on Welch method is capable 

of providing good resolution if data length samples are selected optimally. Windowing amplitude modulates 

the input signal so that the spectral leakage is evened out. Thus, windowing reduces the amplitude of the 

samples at the beginning and end of the window, altering leakage. The influence of various window 

functions on the Fourier transform spectrum of the signals was discussed, and the characteristics and 

functions of various window functions were explained. In addition, we compared the differences in the 

influence of different data lengths on spectral resolution and noise levels caused by the traditional power 

spectrum estimation and various window-function-based Welch power spectrum estimations.  

1 Introduction  

The spectrum analysis [1-4] is a critical concern in many 

military and civilian applications, such as performance 

test of electric power systems and communication 

systems, detection of mechanical vibration, testing the 

linearity of components.  

Anti-jamming techniques [5,6] have been adopted 

to enhance the reliability and effectivity of Global 

Navigation Satellite System (GNSS). As a technique 

based upon Capon works and Neyman–Pearson theory, 

the amplitude domain processing (ADP) is an anti-

jamming method to suppress multitone continuous wave, 

sweep continuous wave and narrowband interference 

without convergence problems, and therefore has been 

widely utilized to the GNSS receivers. Using ADP in 

frequency domain (FADP) will distort useful navigation 

signal while suppressing interference. FADP filter 

possesses superior performance, while induces some 

problems, such as the spectrum leakage of the frequency 

domain. 

To relieve the performance deterioration, the 

spectral leakage suppression algorithms [6,7] for the 

DFT-based spectrum analysis is extensively studied, 

such as digital filtering, high-order spectral analysis, 

leakage compensation in frequency domain and 

weighting the time samples by a suitable window 

function. Window function method is the most widely 

used. However, window functions are varied and have 

different characteristics. How to choose suitable window 

function for different applications requires professional 

knowledge. Due to computer capacity and limitations on 

processing time, only limited time samples can actually 

be processed during spectrum analysis and data 

processing of signals, i.e., the original signals need to be 

cut off, which induces leakage errors. In spread spectrum 

system, frequency-domain interference suppression 

algorithms always use data windows to reduce the 

spectral leakage associated with truncation, and employ 

overlap to lessen the SNR degradation due to 

windowing.  

Direct truncation equals rectangular window 

shaping. Rectangular time window has narrow main lobe 

and wide side lobe with small main lobe to side lobe 

ratio, which results in serious side lobe leakage. A 

method is proposed to mitigation the influence of 

spectral leakage of the Fourier transform spectrum by 

selecting appropriate window functions. Some windows 

with narrow side lobe, such as Blackman, Hanning, and 

Kaiser windows are usually employed in engineering 

instead of the rectangular one.  

Periodogram is a method of estimating the 

autocorrelation of finite length of a signal, which 

possesses limited ability to produce accurate power 

spectrum estimation. The nonparametric Welch method 

[8,9] is an improvement on the periodogram spectrum 

estimation method where signal to noise ratio is high and 

reduces noise in the estimated power spectra for 

reducing the frequency resolution.  

This paper is organized as follows. In Section 2, 

preliminary background on the Fourier transform is 

reviewed, including the discrete Fourier transform, and 
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the fast Fourier transform. The spectrum leakage is 

introduced in Section 3. In Section 4, windowing 

functions for spectrum leakage suppression is discussed. 

In Section 5, simulation experiments are carried out to 

evaluate the performance for various designs. 

Conclusions are given in Section 6. 

2  Fourier transform  

The Fourier transform is important in engineering, 

mathematics, and the physical sciences. The Fourier 

transform is a generalization of the complex Fourier 
series, defined by 
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The discrete counterpart of the Fourier transform is the 

Discrete Fourier Transform (DFT). The DFT is 

ubiquitous in digital signal processing for the spectrum 

analysis, which can be efficiently realized by fast Fourier 
transform (FFT). 

2.1 Discrete Fourier transform 

The discrete Fourier transform converts a finite 

sequence of equally-spaced samples of a function into a 

same-length sequence of equally-spaced samples of the 

discrete-time Fourier transform (DTFT), which is a 

complex-valued function of frequency. DFT is the 

equivalent of the continuous Fourier Transform. DTFT is 

continuous (and periodic), and the DFT provides discrete 

samples of one cycle. If the original sequence is one 

cycle of a periodic function, the DFT provides all the 

non-zero values of one DTFT cycle. The DTFT foe the 

time domain signal ][nx  is given by: 
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We could regard each sample ][nx  as windowing 
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Here we definition signal N of ][nxN  is complete signal. 

The DFT is the sampled Fourier Transform and therefore 

does not contain all frequencies forming an image, but 

only a set of samples which is large enough to fully 
describe the spatial domain image. 

 

2.2 Fast Fourier transform 

As the efficient calculation of DFT, the fast Fourier 

transform (FFT) has been widely used for many 

applications. The implementations of DFT usually 

employ efficient fast Fourier transform algorithms, so 

that the terms FFT and DFT are often used 

interchangeably. Table 1 provides comparison of 
workload for DFT and FFT. 

Table 1. Comparison of workload for DFT and FFT. 

N DFT FFT 

2 4 1 

4 16 4 

8 64 12 

16 256 32 

32 1024 80 

256 4096 192 

3  Spectrum leakage 

Spectral leakage is a problem that arises in the digital 

processing of signals. Signal in practical is always 

limited in time domain, namely truncated by time 

window, which results in spectrum leakage of signal.  

Leakage causes the signal levels to be reduced and 

redistributed over a broad frequency range, which is 

important for implementing digital signal processing 

properly.  

 The Fourier transform of a function of time, x(t) is a 

complex-valued function of frequency, and X(f) is 

referred to as a frequency spectrum. The flow charrt of 

the DFT calculation is shown as in Fig. 1. Direct 

truncation equals rectangular window shaping. 

Rectangular time window has narrow main lobe and 

wide side lobe with small main lobe to side lobe ratio, 

which results in serious side lobe leakage. Fig. 2 shows 

the discrete spectrum due to signal windowing truncation. 
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Fig. 1. Flow chart of the DFT calculation. 

 

 
Fig. 2. Discrete spectrum due to signal windowing truncation. 

2

E3S Web of Conferences 94, 03001 (2019) https://doi.org/10.1051/e3sconf/20199403001
ISGNSS 2018



 

 

3.1 Spectrum leakage suppression - periodic 
truncation 

The sampling signal length is not integer multiple of the 

signal period length, and through the Fast Fourier 

transform (FFT), the sampling signal is going to make 

larger distortion, therefore it makes many unpredictable 

spurious components and spectral leakage in discrete 

spectrum. In conclusion, when signal period is 0T  and 

sampling period is sT  and sampling point is N , it is 

chosen to satisfy the relation   
 

          0 / sLT T N                             (6) 

 The FFT algorithm takes the small amount of 

captured data and repeats it, in order to perform the 

Fourier Transform and produce a frequency spectrum. In 

this case, the signal is periodic, and the resulting 

frequency spectrum will have no leakage. Since most of 

measured signals will possess non-periodic signals, the 

problem is how to minimize leakage in these cases. Figs. 

3 and 4 show magnitude (in dB) of the DFT spectrum 

using a periodic and non-periodic truncation, 

respectively. 

 

Fig. 3. Magnitude (in dB) of the DFT spectrum using a 

periodic truncation. 

 

 

Fig. 4. Magnitude (in dB) of the DFT spectrum using a non-
periodic truncation. 

 

3.2 Spectrum leakage suppression - enlarging 
the data length in windowing function  

Windowing is implemented by multiplying the input 

signal with a windowing function. Windowing amplitude 

modulates the input signal so that the spectral leakage is 

evened out. Thus, windowing reduces the amplitude of 

the samples at the beginning and end of the window, 

altering leakage. An input signal can be of any number 

of dimensions and can be complex. For complex-values 

a complex multiplication is required.  

 As data length increase, the rate of fluctuation in this 

is also increase. The variance of the periodogram is 

reduced by applying a window to the autocorrelation 

estimate to decrease the contribution of unreliable 

estimates to the periodogram. Increasing the width of 

window function is equivalent to enlarge the length of 

segment with large main lobe to side lobe ratio, which 

results in less side lobe leakage. Figs. 5 and 6 show the 

magnitude (in dB) of the DFT spectrum using a simple 

length-32 (N=32) and length-64 (N=64), truncation 

windows, respectively. The quality of the estimate 

increases as the length N of the data increase. 

 

 

Fig. 5. Magnitude (in dB) of the DFT spectrum using a simple 

length-32 truncation window (N=32). 

 

 

Fig. 6. Magnitude (in dB) of the DFT spectrum using a simple 
length-64 truncation window (N=64). 
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4 Windowing functions for spectrum 
leakage suppression 

The method of windowing functions is most popular 

method for inhibition of spectral leakage. Windowing 

functions are also called tapering functions or 

apodization functions. Many different window functions 

have been developed for truncating and shaping a length-

N signal segment for spectral analysis. It inhibits the 

spectral leakage by cutting the signal when the period is 

delay and two-side is continuous. There are many 

common windowing functions. The special techniques 

like window function and rectangular, Hanning, 

Blackman, and Kaiser window to extract the unwanted  

noise  from  the  signal. 

 
4.1 Rectangular window 

A function that is constant inside the interval and zero 

elsewhere is called a rectangular window. Direct 

truncation equals rectangular window shaping. The 

simple truncation window has a periodic sinc DTFT. It 

has the narrowest main-lobe width, 2 /N at the -3 dB 

level and 4 /N between the two zeros surrounding the 

main lobe, of the common window functions, but also 

the largest side-lobe peak, at about -13 dB. The side-

lobes also taper off relatively slowly. The truncation to a 

length 1M   is equivalent to multiplying the signal by a 

rectangular window. Expression of normal rectangular 

time window is defined as 
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Fig. 7 gives the time domain amplitude and magnitude 

spectrum with rectangular window. The rectangular 

window has good resolution characteristics for sinusoids 
of comparable strength.  

 
 

Fig. 7. Time domain amplitude and magnitude spectrum with 

rectangular window. 

 

 Rectangular time window has narrow main lobe and 

wide side lobe with small main lobe to side lobe ratio, 

which results in serious side lobe leakage. The minimum 

stopband attenuation is 21dB. 

 

4.2 Blackman window 

The Blackman method is used to reduce variance of the 

estimator. If we compare Blackman window with other 

windows there is better improvement in stopband 

attenuation. Blackman window has good characteristics 

for audio work. The Blackman window in time domain 

is defined as 
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The frequency domain is given by 
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Fig. 8 shows the time domain amplitude and magnitude 

spectrum with Blackman window. 

 
Fig. 8. Time domain amplitude and magnitude spectrum with 

Blackman window. 

 

The maximum side lobe for the Blackman window is 

57dB lower than main lobe, while which is three times 

as that of rectangular window, and the minimum 

stopband attenuation is 74dB. 

4.3 Hanning window 

The Hanning window (also called the Hanning window) 

is also known as a raised-cosine window due to its shape 

and form. The advantage of using Hanning Window 

method is that it reduces the side lobes. It has good 

frequency resolution over other window method like 

rectangular window. The Hann window takes the form: 
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The frequency domain is defined as 
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It has a main-lobe width considerably larger than 

the rectangular window, but the largest side-lobe peak is 

much lower, at about -31.5 dB. The side-lobes also taper 

off much faster. For a given length, this window is worse 

than the boxcar window at separating closely-spaced 

spectral components of similar magnitude, but better for 
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identifying smaller-magnitude components at a greater 

distance from the larger components. It has a main-lobe 

width (about 3 / N at the -3 dB level and N/8
between the two zeros surrounding the main lobe. Fig. 9 

provides the time domain amplitude and magnitude 

spectrum with Hanning window. 
 

 
 

Fig. 9. Time domain amplitude and magnitude spectrum with 
Hanning window. 

 

 The Hamming window is use to minimize the 

maximum nearest side lobes, which has a form similar to 

the Hann window but with slightly different constants. 

Since it is composed of the same Fourier series 

harmonics as the Hann window, it has a similar main-

lobe width, but the largest side-lobe peak is much lower, 

at about -42.5 dB. However, the side-lobes also taper off 

much more slowly than with the Hann window. For a 

given length, the Hamming window is better than the 

Hann windows at separating a small component 

relatively near to a large component, but worse than the 

Hann for identifying very small components at 

considerable frequency separation.  

 

4.4 Kaiser window 

The Kaiser window is a simple approximation of the 

DPSS window using Bessel functions, discovered by 

James Kaiser. As compared to the other window 

functions the Kaiser Window has maximum attenuation 

according to the given width of the main lobe. That is 

why it is also known as optimal window. The Kaiser 

Window function can be written: 
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where )(0 I is the zero-th order modified Bessel function 

of the first kind. The variable parameter   determines 

the tradeoff between main lobe width and side lobe 

levels of the spectral leakage pattern. 
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Fig. 10 gives the time domain amplitude and magnitude 

spectrum with Kaiser window. 
 

 
Fig. 10. Time domain amplitude and magnitude spectrum with 

Kaiser window. 

 
4.5 The Welch method 

The periodogram technique based on Welch method 

is capable of providing good resolution if data length 

samples are selected optimally. Welch's method is also 

called the periodogram method for estimating power 

spectra. The approach is carried out by dividing the time 

signal into successive blocks, forming the periodogram 

for each block, and averaging. As a non-parametric 

estimator of the power spectral density (PSD) of a 

random signal, the periodogram is not consistent due to 

the fact that its variance does not converge towards zero 

even when the length of the random signal is increased 

towards infinity. The Welch method is usually employed 

to overcome this problem, based on the following 

procedure: (1) split the random signal into segments; (2) 

estimate the PSD for each segment; and (3) average over 

these local estimates. The averaging reduces the variance 

of the estimated PSD. The Welch’s method is a 

generalization using windowed overlapping segments. 

A good resolution in power spectrum estimation 

(PSE) may be achieved by using optimum size of data 

sample. PSE has been performed using various 

windowing functions with the Welch method. Welch  

method is nonparametric  method  that  include the 

periodogram that  possesses  the  advantage  of  possible 

implementation using the fast Fourier  Transform. In this 

section, the Welch method gives the result on power 

spectrum estimation with different windows. In DSP, 

Welch method is used to find the PSD of a signal with 

reducing the effect of noise.  

A classical periodogram approach is an estimate of 

the spectral density of a signal, as shown in Fig. 11. Fig. 

12 provides the flowchart of Welch method. An input 

signal can be of any number of dimensions and can be 

complex. 

 

 

Signal input  

FFT 
( )X k   

2
( )X k   

1/N 

 IN(k) 

Fig. 11. Folw chart of the classical periodogram approach. 

 

 

Signal input windowing 
FFT 

( )X k   2
( )X k   

Split the 
signal 
into 
segments 

1/N 

 IN(k) 

 Fig. 12.  Folw chart of the Welch method. 
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5   Results and Discussion 

To investigate the capability of various window function 

for inhibition of spectral leakage, various windowing 

functions incorporated into the Welch power spectrum is 

carried out. Some results based on the numerical 

simulation are provided. 

 

5.1 Spectra of a sine wave using various 
windowing functions 

In the first test example, the continuous sinusoid signal 

)2sin()( fttx  , is employed, where 2.5f Hz, and the 

sampling frequency is 100sf Hz, Truncate length  N = 

64. The rectangular window has admirable resolution 

characteristics for sinusoids of comparable strength. 

The original time domain sinusoid signal and its 

magnitude spectrum are shown as in Fig. 13. Fig. 14 

provides the rectangle windowed sinusoid and its 

magnitude spectrum. Figs. 15-17 provide the time 

domain signal and the corresponding magnitude spectra 

using the Blackman, Hanning, and Kaiser window, 

respectively. 

 

 

Fig. 13. Original time domain sinusoid signal and its 
magnitude spectrum. 

 

 

Fig. 14. The rectangle windowed sinusoid and its magnitude 
spectrum. 

 
Fig. 15. Time domain signal with Blackman window and its 
magnitude spectrum. 

 
Fig. 16. Time domain signal with Hanning window and its 

magnitude spectrum. 

 

 

Fig. 17. Time domain signal with Kaiser window and its 
magnitude spectrum. 

 

5.2 spectrum estimation using Welch method 
with various windowing functions 
 

The simulation employed a signal is a sine signal with 

frequency 300Hz plus another sine signal with frequency 

500Hz as the input. A Gaussian-white sequence is added 

into the signal, where the signal-to-noise ratio is 10dB. 

The sampling frequency is 3000Hz with the number of 

sampling points 3000. The data length of FFT is 512. 
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The characteristics of window function are analyzed 

from spectrum resolution and noise level. Simulation 

based on the periodogram method and then the Welch 

method using the rectangular, Blackman, Hanning 

window, and Kaiser windows (all with length 511) are 

performed for power spectrum estimation. 

The selection and use of window function in Welch 

algorithm are analyzed. Power spectrum estimation 

using the periodogram is shown as in Fig. 18. Figs. 19-

22 provide the power spectrum magnitude using Welch 

method with rectangular, Blackman, Hanning, and 

Kaiser windows, respectively. Comparison of Spectral 

estimation using various approaches is summarized in 

Table 2. 

The rectangular window has the clear peak in the 

graph showing the power spectrum estimation. The 

spectral resolution of rectangular window and Kaiser 

window is higher, but the noise level near the signal 

frequency is higher. It is considered that both rectangular 

window and Kaiser window are suitable for high 

precision spectrum estimation of signals with high signal 

to noise ratio. Hanning window has better effect on 

spectrum leakage suppression, but the frequency 

resolution is relatively low, suitable for general 

frequency estimation of signals with low signal to noise 

ratio. 

 

 

Fig. 18. Power spectrum estimation using the periodogram. 
 

 

Fig. 19. Power spectrum magnitude using Welch method with 

rectangular window. 

 

 

Fig. 20. Power spectrum magnitude using Welch method with 

Blackman window.  
 

 

Fig. 21. Power spectrum magnitude using Welch method with 

Hanning window. 

 
Fig. 22. Power spectrum magnitude using Welch method with 
Kaiser window.  

6   Conclusions 

This paper investigates the spectrum leakage 

suppression algorithm. The power spectrum estimation 

has been performed using various windowing functions 

with the Welch method.  
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Resolution is the ability to discriminate spectral 

feature and is a key concept on the analysis of spectral 

estimator performance. Estimation with low spectrum 

resolution causes the signal easily disturbed by the noise, 

leading to the failure of the detection. The performance 

of DFT method inherently suffers from the spectral 

leakage, which is caused by the non-coherent sampling 

in the practical acquisition system. The superiority on 

spectrum leakage suppression algorithm is verified by 

comparing with the traditional spectrum analysis based 

on the DFT with windowing. The quality of the estimate 

increases as the length N of the data increase. 

Windowing amplitude modulates the input signal so 

that the spectral leakage is evened out. The windowing 

functions in this paper including the rectangular, 

Blackman, Hanning, and Kaiser windows have been 

employed to extract the unwanted noise from the signal. 

The effect of windowing functions on power spectral 

density is investigated by applying the Welch method. 

The Welch algorithm splits the random signal into 

segments before DFT to reduce the spectral leakage, 

which used a modified version of Bartlett method in 

which the portion of the series contributing to each 

periodogram are allowed to overlap. The Welch method 

gives the result on power spectrum estimation with 

different windowing functions in the window method to 

estimate the power spectral density of a signal, with less 

effect caused by noise.  

 
Table 2. Comparison of Spectral estimation using various 

approaches. 
 

Windowing 

function 

Average 

spectral 

error (Hz) 

Average 

noise 

power (dB) 

spectral leakage 

mean power 

(dB) 

Rectangular 

window 
1.3672  -29.4467 -23.4521 

Blackman  

window 
2.4038  -25.1630 -25.9652 

Hanning  

window 
2.8646  -26.1223 -26.2241 

Kaiser  

window 
1.4625  -28.2806 -25.2102 
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