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Abstract. In this paper, we analyze the position errors of the pedestrian dead reckoning (PDR) system using 

foot-mounted IMU attached to each foot, and implement PDR system using dual foot-mounted IMU to reduce 

the analyzed error. The PDR system using foot-mounted IMU is generally based on an inertial navigation 

system (INS). To reduce bias and white noise errors, INS is combined with zero velocity update (ZUPT), 

which assumes that the pedestrian shoe velocity is zero at the stance phase. Although ZUPT could compensate 

the velocity and position, the heading drift still occurs. When analyzing the characteristics of the position 

error, the error shows a symmetrical characteristic. In order to reduce this error, the previous researches 

compensate for both positions by applying feet position constraints. The algorithm consists of applying a 

conventional PDR system to each foot and fusion algorithm combining both. The PDR system using foot-

mounted IMU, one on each foot, is based on integration approach separately. The positions of both feet should 

be in a circle with a radius as step length during walking. The designed filter is constrained so that the position 

of both feet are in a circular boundary. The heading error that is symmetrically drifted is corrected by the 

position constraint when the pedestrian moves straight. Experimental results show the performance and 

usability of each previous algorithm to compensate for symmetric heading errors. 

1 Introduction 

As interest in indoor location service increases, various 

studies have been conducted on the technique of 

estimating the position of a pedestrian in real time. 

Among them, the pedestrian navigation system using the 

inertial measurement (IMU) -mounted on the shoes is 

being actively studied because it provides the high 

accuracy position even with the inertial sensor without 

any device is installed in advance. 

Pedestrian positioning techniques are classified as a 

method using the infrastructure and method that are not. 

The method with the infrastructure to estimate the 

pedestrian position uses Wi-Fi, BLE or IMUs instead of 

using an infrastructure. The pedestrian dead reckoning 

(PDR) system based on the IMU has an advantage in that 

it can estimate the pedestrian position without needing 

prior information [1-9]. Since MEMS-IMU is compact, it 

has been used in PDR systems. However, since the 

measurement performance of the MEMS-IMU is poor, 

various studies have been conducted to improve the 

estimation error of a PDR system caused by sensor error. 

One of the PDR system using the IMU is parametric 

approach, which estimates the pedestrian position by 

accumulating the step length and direction of movement. 

This method is mainly used when the sensor is attached to 

the waist or held by hand [1-6]. The other PDR system is 

integration approach, which consists of INS, which is 

applied when the sensor is attached to the shoe [7-9]. 

Because it is based on INS, there is a disadvantage that 

error of integration approach accumulates due to sensor 

measurement error. To reduce estimate error by 

measurement errors, the INS is combined with zero-

velocity update (ZUPT) at the stance phase. Foxlin 

proposed PDR system using the extended Kalman filter 

(EKF) to estimate and subtract errors with ZUPT during 

the stance phase. This algorithm uses the assumption that 

the velocity is zero when the shoe stuck to the ground. 

This approach is known as ZUPT-aided INS or INS-EKF-

ZUPT. 

Although the bias and white noise errors of the sensor can 

be reduced through integration approach, it can also be 

caused by the unexpected gait characteristics [10]. The 

heading error cannot be calibrated in the method of 

integration approach. In this paper, IMUs are attached to 

both feet and PDR system is performed. We analyze the 

characteristics of the estimated position error using the 

experimental results. Based on the results of the analysis, 

we applied the previous research to compensate position 

error to the PDR system. Experiments show that the 

characteristics of the analyzed position error are 

compensated by the prvious algorithm. 

2 Methodology 

2.1 Sensor 

We use the MTw from xsens for data acquisition. 

Table 1. Specification sensor mounted beside foot 

 Gyro Accelerometer 
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White noise 0.05 / sec/ Hz  0.03 /g Hz  

Turn-on bias 20 / hr  - 

 

 
Fig 1. Location of sensor on shoe 

 

 
Fig 2. The PDR system with INS-EKF-ZUPT 

The sensor specifications are summarized in Table 1. For 

the data analysis, the sampling rate of the sensor was set 

to the maximum value of 150 Hz. The sensors are attached 

to both shoes, as shown in Fig. 1.  

2.2 Implementation of INS-EKF-ZUPT 

The PDR system uses a foot-mounted IMU based on INS 

to estimate pedestrian position. INS uses angular rate and 

acceleration measured from IMU to calculate attitude, 

velocity, and position. Unfortunately, the INS is diverging 

because of bias and white noise. In general, EKF and 

ZUPT (zero velocity update) are combined in order to 

solve this problem. Assuming that the speed is zero when 

the bottom of the shoe is stacked on the ground, the 

estimation error can be reduced through ZUPT. Whenever 

it is determined that the shoe is stacked to the ground, the 

EKF updates the velocity measurements using the ZUPT. 

The error state in a general PDR system consists of nine 

or 15 error states. The 15 error states include gyro and 

accelerometer bias, attitude, position, and velocity error. 

In this paper, we used 12 error states in the INS-EKF-

ZUPT system. The error states are expressed as follows: 

 

 , , ,ax v b r                        (1) 

 

which contains the errors of attitude ( ), velocity ( v ), 

acceleration bias(
ab ), and position( r ).The state 
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where n

bC  is the rotation matrix that transforms values 

from the body (b) to the navigation (n) frame, dt  is the 

sampling time between two successive samples, and S  is 

the skew-symmetric matrix for accelerations in the 

navigation frame. The velocity error is used for the error 

measurement update in EKF. The error measurement is 

 ˆ 0 0 0v  , v̂  is the estimated velocity and 

 0 0 0  is the zero velocity, because the velocity of the 

foot is nearly zero during the stance phase. The 

measurement matrix is given as: 

 

 3 3 3 30 0 0H I                        (3) 

 

The block diagram of the algorithm used for the test is 

shown in Fig. 2. Stance phase detection is required in 

order to use ZUPT. The stance phase is the moment when 

the bottom of the shoe is attached to the ground in step 

motion. We have modified the stance phase detection 

method using the magnitude and variation of acceleration 

and angular rate. The reason for subtracting the gyro bias 

error from the state is that there is no way to calibrate them 

using a filter. 

3. Error analysis about both feet 

Using INS-EKF-ZUPT can reduce errors caused by 

sensors. Experiments with sensors attached to both feet 

show the error characteristics of both shoes. Fig. 1 shows 

the position of the sensor attached to the shoe for the 

experiment. The first experiment attached the sensor to 

the side and the second experiment attached the sensor to 

the shoe. 

Fig. 3 (a) shows the results of the first experiment. The 

pedestrian moved about 32 [m] straight. The heading 

angle for the first five steps was averaged to match the 

initial moving direction. The bias was removed through 

the initial alignment for about 10 [sec] to minimize the 

error caused by the gyro bias. Equation (4) is the result of 

attitude error estimation by gyro bias after alignment. 

RW  is the random walk of the gyro output, and 
align  is 

the standard deviation of the bias removed from the initial 

alignment. When moving about 32 [m], an heading error 

of 0.0097 [deg] occurs. If this is converted into position 

error, it becomes 0.0059 [m]. Since the estimated position 

error due to the gyro bias is smaller than the error mean 

shown in Table 2, it can be seen that an element other than 

the sensor error exists. 

 

0.0097[deg]align t RW t               (4) 

 

Red is the estimated trajectory by the sensor mounted on 

the left shoe and blue is the estimated trajectory by the 

sensor mounted on the right shoe. The tendency of the 

position error is symmetrical with the sensors attached to 

each shoe. Table 2 shows the error mean and standard 

deviations of the final position by each shoe. The mean 

error due to left foot is negative and the error due to right 

foot is positive, so each error is symmetric. The same 

experiment was carried out by attaching a sensor on the 

shoe. Fig 3.(b) and Table 3 show the experimental results. 

Similar to when the sensor is attached to the side, the 
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position error appears symmetrically depending on the 

right and left shoes in which the sensor is attached. 

Comparing two experimental results, It can be inferred 

that position error has a symmetrical tendency according 

to the left and right shoe attached to the sensor, but 

depending on the mounting position of the sensor, the 

direction of drift may be different. 

4. Applying dual foot-mounted PDR 
system 

There is a PDR system in which an IMU is attached to 

both shoes as a method of compensating the position error 

analyzed in Section 3. In order to compensate the position 

error by the heading drift that is symmetrical form, the 

position of both shoes can be bounded through the 

constraints of each other. There are several prior studies, 

in which the basic concept is to use a constraint that the 

relative position of the two shoes is less than the 

maximum step length of the pedestrian. In Fig. 4, when 

the right foot is stepped, the estimated position due to 

heading drift exceeds the maximum step length (  ). At 

this time, it is possible to prevent the position error from 

diverging due to the heading drift by correcting the 

estimated position into the maximum step length [11-14]. 

4.1 Single foot-mounted IMU 

In each foot, a PDR system is constructed by the INS-

EKF-ZUPT method. Detailed algorithms are described in 

section 2. The PDR system operates independently on 

each foot. 

4.2 Dual foot-mounted IMU 

The estimated positions in each PDR system are 

combined in the stance phase. As shown in Fig. 4, when 

the left foot is in the stance phase and the right is in the 

swing phase, the position of the right foot is corrected. 

The conditions for correction are as follows: 

 

ˆ ˆ( )l r

k k kd norm p p                           (5) 

 

kd  is the relative position of both feet, ˆ i

kp  is the 

estimated position of the { , }i left right  side foot. 

When the above condition is satisfied, the filter is updated 

with the position of the right foot considering the 

constraint.  

One way to determine the measurements is to correct the 

position with the maximum step length (Method 1). The 

measurement is determined by Eq. (6). This method was 

proposed by G. V. Prateek [11, 12]. 
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, { , }i j left right and i j  is satisfied. 

The second method is to determine a measure that meets 

the minimum value of the cost function (Method 2). The 

measured value satisfying this is expressed as Eq. (8) This 

method was proposed by R. Girisha [13, 14]. 
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(a) Attached to the side 

 

 
(b) Attached to the top 

Fig 3. The estimated trajectory 

 

Table 2. Y-axis position error (side) 

 Mean [m]   [m] 

Left -0.4157 0.5484 

Right 0.1688 0.3874 

 

Table 3. Y-axis position error (top) 

 Mean [m]   [m] 

Left 0.4411 0.3804 

Right -0.0419 0.2675 

 

 

 
Fig 4. Movement of each foot and maximum step length 

 

We define measurement matrix H  as follows: 

 

 3 3 3 30 0 0H I                       (9) 
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The algorithm of the previous study was applied to the 

data analyzed in Section 3. Table 4 shows the error mean 

for the end positions. It can be confirmed that the mean of 

the position error estimated from both feet becomes 

smaller when using the method 1 and 2. Fig. 4 shows the 

results of one experiment. The y-axis position is diverged, 

but dual foot-mounted IMU algorithm with method 1 and 

2 make y-axis position is bounded. 

However, fig. 4. (b) shows the limitation of the previous 

study. The position of both feet is compensated to midway 

through the constraint. If the symmetrical position error 

of both feet is not similar, and the degree of divergence of 

one foot is steeper, The position corrected by the filter is 

biased in the direction of the foot that is steeply diverging. 

Since the positional error of the left foot was more biased 

than the right foot, the corrected position was also biased 

downward without estimating it as a straight line (Fig 

4.(b)) 

 

Table 4. Y-axis position error mean for each method 

 Left Right 

None -0.4157 [m] 0.1688 [m] 

Method 1 -0.3414 [m] 0.0713 [m] 

Method 2 -0.3505 [m] 0.0952 [m] 

 

 
(a) Case 1 

 
(b) Case 2 

Fig 4. The estimated trajectory with each method 

 

5 Conclusion 

The purpose of this paper is to analyze the tendency of 

heading drift and to apply previous studies to reduce 

estimation error due to drift. To analyze the heading drift, 

IMU were attached to both feet and we collected data 

through several experiments. The analysis showed that 

both side heading drifts were symmetrical regardless of 

sensor location. To compensate for symmetric heading 

drift, previous studies use a constraint that the relative 

distance of the estimated position of each foot cannot be 

greater than the maximum step length. By using these 

constraints to compensate for position in the filter, the 

position is bounded. We confirmed that the method 

applied through experiment was valid and shown the 

limitation of previous studies 
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