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Abstract. Determination of the primary particle mass using air fluorescence or a Cherenkov detector array
is one of the most difficult task of experimental cosmic ray studies. The information about the primary parti-
cle mass is a compound of the produced particle multiplicity, inelasticity, interaction cross-section and many
other parameters, thus it is necessary to compare registered showers with sophisticated Monte-Carlo simulation
results. In this work we present results of the studies of at least three possible ways of extrapolating proton-
Nucleus and Nucleus-Nucleus cross sections to cosmic ray energies based on the Glauber theory. They are
compared with experimental accelerator and cosmic ray data for the proton-air cross section. We also present
results of the EAS development with the most popular high-energy interaction models adopted in the CORSIKA
program with our cross section extrapolations. The average position of the shower maximum and the width of
its distribution are compared with experimental data and some discussion is given.

1 Introduction

The hadronic interaction cross section is one of the param-
eters playing a major role during an Extensive Air Shower
development. Calculations of hadronic cross sections at
ultra high energies require their extrapolation from lower
energies where accelerator data are available. Such extrap-
olations forces the building of a phenomenological mod-
els based e.g. on Glauber diffraction theory [1, 2]. Glauber
approximation consists of introducing an eikonal function,
χ, representing all phase-shifts related to all possible scat-
tering acts. Eikonal χ(b) also represents the opacity of two
colliding objects. The scattering amplitude in impact pa-
rameters space is given by:

F(s, t) = i

∞∫

0

J0

(
b
√
−t
)
Γ(s, b) b db =

i

∞∫

0

J0

(
b
√
−t
) {

1 − exp
[−χ(s, b)

]}
b db, (1)

Finally, a knowledge on the form of hadron matter dis-
tribution allows for calculations of elastic, inelastic and
total cross sections.

σtot(s) = 2
∫ [

1 −�(eiχ(b,s))
]

d2b (2)
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σel(s) =
∫ [

1 − eiχ(b,s)
]2

d2b (3)

σinel(s) =
∫

1 −
[
eiχ(b,s)

]2
d2b (4)

2 Theoretical description of
Proton-Nucleus and Nucleus-Nucleus
scattering

2.1 Proton - Nucleus scattering

The essence of the Glauber approximation is the natural
assumption that the resulting amplitude phase shift of the
collision is the sum of all possible A individual nucleon-
nucleon phase shifts.

The scattering amplitude is

F(t) =
i

2π

∫
eitbd2b

∫
|ϕ({d})|2

{
1 − eiχA(b,{d})

} A∏
j=1

d2d j

(5)
where the function ϕ is the wave-function of the nucleus
with the nucleons distribution given by {d}. This general
formula is a subject of subsequent approximations lead-
ing to the set of consecutively simpler equations for the
collision cross sections. We assume that there is no space
correlation between nucleons. Using a universal nucleon
distribution within the nucleus ρ we have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200928735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

EPJ Web of Conferences 208, 08016 (2019)	 https://doi.org/10.1051/epjconf/201920808016
ISVHECRI 2018

|ϕ({d})|2 =
A∏

j=1

ρ j(d j) (6)

with the following normalization:
(∫
ρ j(r j)d3r j = 1

)
.

The next quite obvious approximation is that individ-
ual sub-collisions are the same, having universal nucleon-
nucleon phase-shifts dependences χ. With this we have

F(t) =

i
2π

∫
eitbd2b

1 −
∫ A∏

j=1

ρ j(d j)eiχ(b−d j)d2d j

 (7)

On the other hand, the scattering process can be treated
as a single collision process with its own nuclear phase
shift χopt(b)

F(t) =
i

2π

∫
eitb
{
1 − eiχopt(b)

}
d2b (8)

The comparison of Eqs. (7) and (8) leads to the re-
lation between the opacity for the nucleus and the single
nucleon:

eiχopt(b) =

∫
|ϕ({d})|2ei

∑A
j=1 χ j(b−d j)d2d j =

〈
eiχ(b,{d})

〉
(9)

To calculate the integral in Eq. 9 we used the fluctua-
tion of the nucleus shape ρA(d) adopted from Lund model
[3] in the form of Woods-Saxon (2-parameter Fermi) dis-
tribution leading us to following form of eikonal function:

χopt(b) = i
∫

d2d ρA(d)
(
1 − eiχ(b−d)

)
(10)

2.2 Big nucleus, point nucleon approximation

We can use the approximation that the number of nucle-
ons in nuclei is relatively big. The number of nucleons
(A) can go to infinity keeping the nucleus opacity con-
stant (normalisation). Opacity of the nucleon is the sum
of many (small, point-like) scattering centers. Using the
optical theorem we obtain:

χopt(b) =
1
2
σtot

ppρA(b) (11)

This can be substituted in Eq. 4 and the inelastic cross
section can be described by:

σ
pA
inel =

∫ 1 −
[
1 − σtot

pp
ρA(b)

A

]A d2b. (12)

2.3 Nucleus - Nucleus scattering

The treatment of nucleon-nucleus presented above can be
extended to the case of nuclei collisions with the amplitude
defined as

F(t) =
i

2π

∫
eitbd2b

{
1 −

∫
d2di ρAB(di) eiχ(b−di)

}

(13)

Using Eq.(8) we can define the overall nucleus-nucleus
opacity

eiχAB(b) =

∫
d2di ρAB({d})ei

∑A
i=1 χ(b−di) =

〈
eiχ(b,{dA},{dB})

〉

(14)
Thus the nucleus-nucleus scattering amplitude is, with

the analogy to Eq.(8)

F(t) =
i

2π

∫
eitb
(
1 − eiχAB(b)

)
d2b . (15)

The "big nucleus" and "point nucleon" approximation
can also be used in this case leading to

σAB
inel =

∫ 1 −
[
1 − σtot

pp
ρAB(b)

AB

]AB
 d2b . (16)

2.4 Probabilistic framework

One of the existing ways in the literature to describe
nucleus-nucleus interactions is the probabilistic formalism
(see, e.g., [4]). It assumes that the collision between indi-
vidual nucleons of colliding nuclei are not correlated and
do not interfere with each other.

If there are AB pairs of nucleons which could take part
in the interaction the probability of having n inelastic in-
teractions is

p(n, b) =
(
AB
n

) [
ρAB(b)

AB
σ

pp
inel

]n [
1 − ρAB(b)

AB
σ

pp
inel

]AB−n

,

(17)
The summation over n can be performed and the result
with the integration over b gives the value of the so-called
"production cross section":

σAB
inel =

∫
d2b

1 −
[
1 − ρAB(b)

AB
σ

pp
inel

]AB
 , (18)

which is quite similar to the result in Eq.(16), but withσinel
in place of σtot.
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Figure 1. p-Air inelastic cross-section calculated using Glauber
theory, point-nucleon approximation and probabilistic frame-
work compared with experimental data [5]
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We can use the approximation that the number of nucle-
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Figure 1. p-Air inelastic cross-section calculated using Glauber
theory, point-nucleon approximation and probabilistic frame-
work compared with experimental data [5]
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Figure 2. Fe-Air inelastic cross-section calculated using Glauber
theory, point-nucleon approximation and probabilistic frame-
work.

3 Calculated σinel Cross-Sections

We present inelastic cross sections calculated using three
previously discussed ways. Cross sections for p-Air and
Fe-Air collisions are presented separately in Figs 1 and
2 respectively. In the case of p-Air cross-section, re-
sults are presented with available experimental data. Re-
sults in both cases are compared with cross-section values
currently existing in three high-energy interaction mod-
els CORISKA – EPOS-LHC [6], Sibyll 2.3c [7, 8] and
QGSJETII-04 [9].

The basis of the approach to the calculation of inelas-
tic Proton-Nucleus and Nucleus-Nucleus cross sections is
more precisely described in section 2 [10].

4 Simulations of Xmax parameter

We used the calculated σinel cross section in the COR-
SIKA program for simulations of the longitudinal develop-
ment of an EAS. Simulations were performed using three
quite popular high-energy intraction models - EPOS-LHC,
QGSJETII-04 and Sibyll 2.3c. As a result we present plots
of Xmax position versus primary energy for each case com-
pared with results for cross sections currently existing in
CORSIKA and experimental data (Fig. 3). Additionally
we present RMS parameters of calculated values. The
following plots concerns EAS simulations with modified
σinel

pN and σinel
NN cross sections, not modifications of high

energy models. All simulations have been performed us-
ing the NKG lateral disribution function. Simulations in 4
points on energy scale consist of the following statistics:
1011 GeV - 100 showers, 1010 GeV - 250 showers, 109

GeV - 500 showers, 108 GeV - 500 showers. Results are
compared with experimental data [11–14] (Fig. 3).

The presented results of Xmax parameters concerns
simulations with new inelastic cross sections instead of
those originally existing in the EPOS-LHC, QGSJETII-04
and Sibyll 2.3c models. Implementation of our cross sec-
tions was only one modification made in CORSIKA for
these simulations.
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Figure 3. (top): Position of Xmax simulated using QGSJETII-04
model with different σinel. Results for our Glauber calculations
(dotted line) are compared with point-nucleon and probabilistic
approximations (dashed lines) and original σinel in QGSJETII-
04 model (solid line), (bottom): σ parameter of obtained Xmax

values.

5 Conclusions

We present revised results of inelastic cross-sections
(σinel) calclations based on the Glauber diffraction theory
and point-nucleon and probabilistic approximations. Dif-
ferences between results of Glauber theory and approxi-
mations are increasing with energy. For all discussed mod-
els our σinel in the Glauber case are a little bit higher than
commonly used in CORSIKA (Fig. 1). It forces faster
EAS development than we can observe in results of Xmax

simulations (Figs. 3 - 5). Simulations with new Glauber
σinel provides a better agreement with measured Xmax for
protons as the primary particle. Simulated Xmax values
have been obtained using CORSIKA with NKG option
only. In future the presented σinel cross sections will be
implemented in CONEX [15] code and simulations will
be repeated with EGS and higher statistics. Exact deter-
mination of nuclear cross-section is very difficult because
of a lack of knowledge about nucleus hadron matter dis-
tribution especially at the highest energies. This kind of
consideration is very important for correct interpretation
of cosmic ray data.
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Figure 4. (top): Position of Xmax simulated using EPOS-LHC
model with different σinel. Results for our Glauber calculations
(dotted line) are compared original σinel in EPOS-LHC model
(solid line), (bottom): σ parameter of obtained Xmax values.
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Figure 5. (top): Position of Xmax simulated using Sibyll 2.3c
model with different σinel. Results for our Glauber calculations
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