
An Efficient Solution Towards Secure Homomorphic Symmetric Encryption
Algorithms

Khalil Hariss1,2,∗, Hassan Noura3,∗∗, Abed Ellatif Samhat1,∗∗∗, and Maroun Chamoun2,∗∗∗∗

1Lebanese University, Faculty of Engineering-CRSI, Hadath, Lebanon
2Saint Joseph University, ESIB-CIMTI, Mar Roukoz, Lebanon
3American University of Beirut, Department of Electrical and Computer Engineering, Hamra, Lebanon

Abstract. In this paper, we consider Homomorphic Encryption (HE) to process over encrypted data in order
to achieve user privacy. We present a framework solution to provide a high level of security for the symmetric
HE algorithms. The proposed solution introduces a dynamic structure and dynamic diffusion’s primitives that
enhance existing symmetric HE algorithms and overcome their weaknesses. We apply this solution to a well
known symmetric homomorphic approach, the PORE (Polynomial Operation for Randomization and Encryp-
tion) approach. The security analysis of the proposed solution shows that it ensures a high level of security
without performance degradation. It is also evaluated against different attacks. This leads to secure and efficient
HE Algorithms for practical implementations.

1 Introduction

After the significant changes in modern systems, providing
an implementation with a high level of security becomes
a big challenge. In this paper, we ensure users privacy by
securing data processing. This can be attained by using a
new kind of encryption called HE that permits third par-
ties to process over encrypted data without the need of de-
crypting cipher-texts. HE is required in several real world
modern applications such as Cloud Computing [1], e-Vote
applications [2], Medical Applications [3], etc. As an im-
plementation of HE in modern real world applications is
given in Figure 1, an illustration of Cloud querying using
HE is given in Figure 2.

Figure 1: HE in a Cloud Based Scenario

A crypto-system that satisfies both addition and multi-
plication is known as Fully Homomorphic Encryption
(FHE):

1. Addition

[EK(x) + EK(y)] modN = [EK(x + y,modN)] modN
(1)

∗e-mail: khalil.hariss@net.usj.edu.lb
∗∗e-mail: hn49@aub.edu.lb
∗∗∗e-mail: Samhat@ul.edu.lb
∗∗∗∗e-mail: maroun.chamoun@usj.edu.lb

Figure 2: Cloud Querying using HE

2. Multiplication

[EK(x) × EK(y)modN] modN

= [EK(x × y,modN)] modN (2)

where x, y ∈ ZN , E is the encryption function and K is a
secret key. Thus, the main idea of FHE is that any speci-
fied party (could be untrusted) may compute E(x + y) and
E(x × y) from E(x) and E(y) without knowing any in-
formation about x and y. Different FHE algorithms are
given in the literature [4] and decomposed into asymmet-
ric algorithms such as RSA (Rivest, Shamir, Adelman) [5],
DGHV (Dijk, Gentry, Halevi, Vaikuntanathan) [6] , BGV
(Brakerski, Gentry, Vaikuntanathan) [7], etc and symmet-
ric schemes such as NOHE (Not Operation for Homo-
morphic Encryption) [1], DF (Domingo Ferrer) [8], etc.
The asymmetric ones suffer from computational complex-
ity and high storage overhead, while the symmetric ones
suffer from weak immunity against attacks and especially
chosen and known plain-texts ones, thus designing and im-
plementing a FHE practical for real world application is a
real challenge. In our previous work [9], the MORE ap-

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200928656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

proach was described and a dynamic platform (dynamic
structure and dynamic diffusions primitives) is applied
over it, giving birth to a new homomorphic encryption al-
gorithm called the Enhanced MORE. Security analysis and
performance of the Enhanced MORE in [9] has shown a
high resistance to several attacks. In this paper, We extend
the solution shown in [9] to PORE approach [10] to pro-
vide a new HE algorithm candidate that is based on differ-
ent mathematical rules compared to MORE. In addition,
the proposed solution called “Enhanced PORE” can over-
come the different weaknesses of original PORE. Further-
more, a security analysis demonstrates that the proposed
solution ensures a high level of security without perfor-
mance degradation as the “Enhanced MORE”. This leads
to providing a second secure and efficient HE algorithm
candidate for practical application.
The rest is organized as follows, Section 2 explains PORE
approach. Section 3 describes the dynamic implementa-
tion listed in [9] over the PORE approach. The security
analysis and performance evaluation of the resultant al-
gorithm (Enhanced PORE) are given in Section 4 with a
comparison to PORE, MORE, Enhanced MORE, in term
of execution time and storage overhead. Conclusions are
presented in Section 5.

2 MORE And PORE Approaches
In this section, we give a brief explanation of the MORE
Approach and a detailed one for the PORE approach.

Table 1: MORE Approach

Secret Key Invertible matrix K in ZN

Public Parameters No Public Parameters
Plain-text Space set of x in ZN .

Encryption Process Enc(x)= K
[
x 0
0 r

]
K−1, r random

Cipher-text Space set of matrices C = [ci j], ci j ∈ ZN

Decryption Process
[
x 0
0 r

]
=K−1Enc(x)K.

Fully Homomorphism verified by a matrix calculations

2.1 MORE Approach

The MORE approach is investigated in [9, 10], based on
invertible matrix equation, and summarized in Tab.1.

2.2 PORE Approach

PORE Approach stands for Polynomial Operations for
Randomization and Encryption [10]. It is a FHE algo-
rithm that satisfies both addition and multiplication prop-
erties. The proposed algorithm is based on the following
operations:

2.2.1 Encryption Parameters

The symmetric key (v1, v2) is selected from secret large
integers v1 and v2 mod(N). Using this key, the public poly-
nomial PP(v) of variable v is computed to calculate the
public parameters b and c:

PP(v) = (v − v1)(v − v2) = v2 − (v1 + v2)v + v1v2 = v2 + bv + c.

where, b = −(v1 + v2) mod(N)
and, c = (v1v2) mod(N)

(3)

b and c are known by the third party to perform homomor-
phic computations over encrypted data.

2.2.2 Encryption Process
The encryption of a plain-text xi in ZN is done as follows:
- The sender picks a large random integer rimod(N) for a
given plain-text xi and should solve a linear system with
two unknowns ai and di:

aiv1 + di = xi

aiv2 + di = ri
(4)

- The encryption of xi is E(xi)=(ai, di) and calculated as
follow:

ai = (
xi − ri

v1 − v2
)mod(N)

di = (
riv1 − xiv2

v1 − v2
)mod(N). (5)

As we know the division in a ring structure is not sup-
ported, we will develop during this work a new algorithm
that makes the encryption possible.
2.2.3 Decryption Process
Having the secret key (ai, di), the receiver can recover the
plain-text by applying this decryption process:

xi = aiv1 + di. (6)

2.2.4 Homomorphic Properties
Given two different cipher-texts E(x1) = (a1, d1) and
E(x2) = (a2, d2), Homomorphic properties are discussed
as follow:

1. Addition

E(x1) + E(x2) = (a1 + a2, d1 + d2) = E(x1 + x2)
because, a1v1 + d1 + a2v1 + d2

= (a1 + a2)v1 + d1 + d2.
(7)2. Multiplication

We recall the two public parameters
b = −(v1 + v2)mod(N) and c = (v1v2)mod(N)
known by the third party introduced in (3).
Departing from a cipher-text (A,D) =

((a1 +d1))(a2 +d2)−a1a2(1+b)−d1d2, d1d2−a1a2c).
By applying the PORE decryption process listed in
Equation (6) on (A,D) we obtain:
Av1 +D = ((a1 +d1)(a2 +d2)−a1a2(1+b)−d1d2)v1 +

d1d2 − a1a2c = a1a2v1
2 + (a1d2 + d1a2)v1 + d1d2

= (a1v1 + d1)(a2v1 + d2) = x1x2mod(N).
We can conclude that the PORE homomorphic Mul-
tiplication is given by:E(x1) × E(x2) = (A,D) =

((a1 + d1))(a2 + d2) − a1a2(1 + b) − d1d2,

d1d2 − a1a2c). (8)
2.2.5 PORE Security Analysis
PORE suffers from vulnerabilities because it is built on
linear transformations and it has two public parameters
b = −(v1 + v2)mod(N) and c = (v1 × v2)mod(N).

3 Dynamic Implementation
A dynamic implementation similar to the one applied in
[9] over MORE approach, is used in this paper to enhance
the PORE approach. A detailed explanation of this frame-
work is explained in the next subsections.
3.1 Enhanced PORE Implementation
The proposed solution employs a dynamic structure in ad-
dition to dynamic diffusion primitives. Figure 3 shows the
different steps of Enhanced PORE algorithm that are ex-
plained below.

2

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

Figure 3: Enhanced PORE Flow Chart

3.1.1 Dynamic Key Generation

The two end hosts should agree on two secret parameters:
a secret key and an initial vector (IV). Using a secure hash
algorithm, a Dynamic Key (DK) of 64 bytes is created.
Three different keys are picked and used to form three dif-
ferent cipher layers as follows (Figure 3) :

1. DKp: Permutation DK (23 bytes).
2. DKd: Diffusion DK (16 bytes).
3. DKs: Selection DK (23 bytes).

3.1.2 Permutation Box

Using DKp, a Permutation Box (PBox) is generated and
applied over the input plain-text. PBox creation is done
similar to [11], where a key dependent permutation tech-
nique is employed that preserves homomorphic properties.
The homomorphic behavior is shown by using a PBox
called π of dimension N defined by: π=[pi]1≤i≤N .
Two plain-texts X and Y of dimension N are given: X =

[xi]1≤i≤N and Y = [yi]1≤i≤N .
After permutation π(X) = [xpi]1≤i≤N and π(Y) = [ypi]1≤i≤N .
Suppose that � is a law defined over the plain-texts by:
X�Y = [xi]1≤i≤N�[yi]1≤i≤N = [xi�yi]1≤i≤N = [zi]1≤i≤N = Z.
π(X � Y) = π(Z) = [zpi]1≤i≤N = [xpi � ypi]1≤i≤N .
And π(X) � π(Y) = [xpi]1≤i≤N � [ypi]1≤i≤N

= [xpi � ypi]1≤i≤N .
Since π(X�Y)=π(X)�π(Y), We can deduce the homomor-
phic behavior of π.

3.1.3 Dynamic Block Encryption

As shown in Figure 3, the permuted plain-texts are decom-
posed into a G blocks, where G =

⌈
l
n

⌉
, and n is the block

size. Each block of dimension n is encrypted with PORE
approach using an encryption key (v1, v2) chosen dynami-
cally from a secret key bank based on a dynamic selection
algorithm.

3.1.4 Secret Pseudo-Random Sequence Generation

Based on equation (4), the encryption of a plain-text xi

requires a random integer ri. Thus, we should generate
blocks of pseudo-random integers for the encryption of
plain-texts blocks. DKd can be employed as a seed for a
cipher algorithm (like RC4) to build a secret sequence R of
l random integers. Similar to the permuted plain-texts, the
sequence R is decomposed into G blocks where G =

⌈
l
n

⌉
.

To perform encryption using Enhanced PORE each block
of random integers is used to encrypt a block of plain-texts
as shown in Figure 3.

3.1.5 Secret Key Bank Generation
As stated above, a key is chosen dynamically from a secret
key bank during the dynamic encryption of each block.
Based on equation (5), any key (v1, v2) is built such that
(v1 − v2) is invertible by the multiplicative law in ZN . We
propose a generation algorithm to create a shared secret
key bank having the following form (vk

1, v
k
2, (v

k
1 − v

k
2)−1),

where 1 ≤ k ≤ H. H is the secret bank length (H < G) .
The two algorithms 1 and 2 represent the generation of
kth secret key of the bank (vk

1, vk
2). The generation of H

keys requires the repetition of these two algorithms H it-
erations. The two end hosts start by generating a secret
sequence s of length αH. The secret parameter v1

k is gen-
erated based on the pseudo code of algorithm 1.

Algorithm 1 vk
1 Generation

1: procedure (vk
1, s)=vk

1_Generation(DKd,k,α,H)
2: s← RC4(DKd, α,H)
3: i← k
4: while si = 0 do
5: i = i + 1
6: end while
7: vk

1 = si

8: return (vk
1, s)

9: end procedure

Once v1
k is chosen as in algorithms 1, v2

k is chosen such
that (v1

k − v2
k) is invertible by the multiplicative law. The

invertible (v1
k−v2

k) generation is based on the pseudo code
of algorithm 2. In the Pseudo-Code of algorithm 2, af-
ter generating the secret sequence s listed in algorithm 1,
the two end hosts pick from it a parameter u(k, j) to build
an invertible multiplicative element (v1

k − v2
k) in ZN . Now

(v1
k − v2

k) and v1
k are ready, v2

k is simply calculated.
In general the number of invertible multiplicative elements
in ZN is limited. This leads to a limited number of encryp-
tion keys (vk

1, v
k
2), but our key generation dynamic approach

strengthens this implementation, because in each session
the H secret keys are generated dynamically in different
order based on DK.

3.1.6 Dynamic Key Selection algorithm
The DK selection is given in Figure 4 and can be summa-
rized by:
Based on DKs and a stream cipher algorithm like RC4, an-
other permutation box ∆ = {δi, i = 1, 2, 3, ...,G} is gener-
ated. (G is the number of blocks, and δi ∈ {1, 2, 3, ...,H}).

3

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

Algorithm 2 (vk
1 − v

k
2) Generation

1: procedure (vk
1 − v

k
2)=(vk

1 − v
k
2)_Generation(k,s)

2: (vk
1 − v

k
2)−1 ← 0

3: j← 0
4: while (vk

1 − v
k
2)−1 = 0 do

5: u(k, j)← s3×(k−1)+1+ j

6: product ← 1 + N × u
7: i← 2
8: while i ≤ N − 1 do
9: if mod(product, i) = 0 then

10: (vk
1 − v

k
2)−1 ← i break

11: else
12: i = i + 1
13: end if
14: end while
15: j = j + 1
16: end while
17: (vk

1 − v
k
2)← mod(

product
(vk

1 − v
k
2)−1

,N)

18: return (vk
1 − v

k
2)

19: end procedure

For the kth block, the index δk is chosen from ∆ and based
on it, a secret key (v1

δk , v2
δk) from the secret key bank is

chosen.

Figure 4: DK Selection Algorithm

3.1.7 Decryption Process
As any symmetric scheme, the decryption process is the
inverse of the encryption. Having DK and IV , all secret
parameters can be generated. The decryption process is
based on the following steps:

1. First Step Based on DKs and DKd, the receiving
end host can pick for each block number k the key
(v1

k, v2
k), such that 1 ≤ k ≤ G.

2. Second Step After retrieving the decryption key for
each block, the receiving end host applies the equa-
tion (6), to perform the decryption process.

3. Third Step The receiving end host generates the in-
verse secret permutation vector π−1 by using DKp

and the following transformation:

π−1[π[i]] = i, where i ∈ {1, 2, 3, ..., l} (9)

4 Security Analysis and Performances
To evaluate the performance of the Enhanced PORE, the
same security analysis given in [9] is implemented. A
simulation under Matlab is done where a set of plain-texts
in Z256 is taken . A comparison between the Enhanced
PORE, PORE, MORE and Enhanced MORE is done in
terms of execution time and performances. In the upcom-
ing results, the Enhanced PORE cipher-text is the couple
(a, d) where a is known as first cipher and d the second
one.

4.1 Resistance Against Statistical Attacks
To resist against statistical attacks, the proposed scheme
should ensure the Uniformity and Independence criterion.

4.1.1 Uniformity Property
The Uniformity criterion can be examined by applying the
two different tests given in Tab. 2.

Table 2: Uniformity Property

Required Test Procedure Purpose
Distribution Test Plotting distribution Uniform distribution

Entropy Test
∑2M−1

i=0 p(mi)log2
1

p(mi)
Uncertainty

(a) (b) (c)

Figure 5: Distribution Test: (a)- Original message, (b)-Enh
PORE Cipher 1 (c)-Enh PORE Cipher2

Distribution Test: a Gaussian plain-text distribution with
a mean value equal to 128 and standard deviation equal to
16 is taken in Figure 5 (a), and the distribution of the ob-
tained set of cipher-texts is illustrated in Figure 5 (b), (c).
Comparing the different results of Figure 5, the cipher-text
distribution after applying the encryption process is close
to uniform distribution. As a conclusion the Enhanced
PORE can strongly resist against any statistical attack.
Entropy Test: The entropy of a source message m is given
in Tab. 2, where p(mi) represents the probability of occur-
rence of symbol mi and 2M is the total states of informa-
tion source. A truly random source entropy is equal to M.
In our implementation the cipher values are in Z256, the
ideal value of the entropy should be equal to 8 (28 = 256).
The entropy values for 10000 cipher-texts or iterations has
shown that the mean values are close to 8 for both ciphers
(mean1 = 7.936 and mean2 = 7.9321) with a low stan-
dard deviations (S td1 = 0.005153 and S td2 = 0.0116).
The resultant cipher-texts of our scheme are considered a
truly random source.
4.1.2 Independence Property
To examine Independence Property, we need to validate
the three different tests given in Tab. 3.
Recurrence Test: Figure 6 shows the correlation between
xi(t) and xi(t+1) for the original and the encrypted data re-
spectively. Figure 6 (a) represents the correlation among
a set of plain-texts with mean value equal to 128 and a
low standard deviation equal to 16. Figure 6 (b) and (c)
shows the variation between xi(t) and xi(t + 1) for the En-
hanced PORE. The cipher-text space presents a high level
of randomness, and no clear pattern is shown after the en-
cryption process.
Correlation Test: Correlation is calculated as given in
Tab. 3, where E(x) represents the Mean value, and D(x)
represents the Variation. The correlation values for our al-
gorithm for 10000 iterations have given mean values close
to zero (mean1 = 0.0002386 and mean2 = 8.854 × 10−5)

4

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

Table 3: Independence Property

Required Test Procedure Purpose
Recurrence Test Variation between a data xi = x(i,1), ...x(i,m) and its delayed version xi(t) = x(i,t), ...x(i,mt) Randomness

Correlation Test ρx,y =
cov(x, y)√

D(x) × D(y)
, where cov(x, y) = E[{x − E(x)}{y − E(y}] Independence

Difference Test Difference at the bit level between cipher-texts and plain-texts Independence

(a) (b) (c)

Figure 6: Recurence Test: (a)- Original message, (b)-Enh
PORE Cipher 1 (c)-Enh Pore Cipher 2

with low standard deviations(S td1 = 0.01779 and S td2 =

0.01756), which means that the cipher-texts of the pro-
posed algorithm do not reveal any information about the
plain-texts.
Difference Test: To evaluate this difference, in our simu-
lation we calculate the difference at the bit level between
10000 cipher-texts and plain-texts. The different simu-
lations have shown mean values close to 50 (Mean1 =

50.004 and Mean2 = 50.0005) with low standard devi-
ations (S td1 = 0.312 and S td2 = 0.3177). The En-
hanced PORE algorithm satisfies the difference property
and presents a high level of independency between the
cipher-texts and the plain-texts.
4.2 Resistance Against Several Kinds of Key

Attacks
The main purpose of this section is to show that our en-
cryption algorithm can resist against several types of key
attacks.
4.2.1 Weak Keys
In this dynamic implementation, the proposed key deriva-
tion function produces a set of dynamic sub-keys with a
high degree of randomness. Indeed, Different cipher layers
such as the permutation layer and the diffusion layer are
related to the dynamic key to achieve the desirable crypto-
graphic performance. Suppose, for example, a weakness
exists in any dynamic key, it will not alter the previous
and the next processed data. As a conclusion, the used dy-
namic approach provides a good resistance degree against
the weak keys.
4.2.2 Key Sensitivity
The Key Sensitivity (KS) refers to a big change in the
cipher-text due to a slight change in the encryption key.
Let all the elements of K‘

w be equal to those of Kw, except
a random Least Significant Bit (LSB) of a random byte,
and Tb being the length of the original and cipher packets
(in bits), the sensitivity is calculated as follows:

KS w =

∑T
k=1 EKw

⊕ EK′w

T
× 100%,

w = 1, 2, . . . , 1000. (10)

A good cryptosystem should give a key sensitivity close
to 50. KS test is done for 10000 iterations; the mean val-
ues are also close to 50 (mean1 = 50.0025 and mean2 =

49.999) with a low standard deviations (S td1 = 0.3105
and S td2 = 0.3151). As a conclusion, the resultant al-
gorithm provides a high resistance against related key at-
tacks.

4.3 Enhanced PORE Zero Homomorphic Test

The PORE encryption equations given in (5) impose that
during the random pick of ri, it should always be different
from the plain-text xi; otherwise the encryption is useless
because the second cipher di will be equal to xi (i.e first ci-
pher ai should always be different from zero). A constraint
is added to solve this limitation and indicates that ri is al-
ways different than ai. The remaining problem can simply
be discovered by focusing on homomorphic operations of
equations (7) and (8). As an example in the homomorphic
addition listed in (7), it is sure that a1 , 0 and a2 , 0 but
a1 + a2 , 0 is not guaranteed. The same problem exists in
equation 8. To evaluate the effect of this vulnerability in
Enhanced PORE, this test is proposed: two different vec-
tors of plain-texts are taken, then encrypted using homo-
morphic Enhanced PORE. The two resultant cipher-texts
are added and multiplied using homomorphic operations,
and the probability that the first cipher is equal to zero is
calculated. The test is done for 10000 iterations.
The analysis of Figure 7, shows that the probability of the
first cipher being equal to zero is negligible with a low
standard deviations for homomorphic addition and multi-
plication. The investigated problem does not decrease the
security performance of the Enhanced PORE since its oc-
currence is rare.

(a) (b)

Figure 7: Zero PORE Homomorphic Test: (a) Zero test for
addition (b) Zero test for multiplication

4.4 Performance Analysis

The performance of any crypto-system resides in its low
storage overhead and latency. The performance evaluation
of the two resultant algorithms is studied in the next sub-
sections.

4.4.1 Storage Overhead

The new dynamic approach did not affect the storage over-
head of the resultant algorithm (i.e the storage overhead
of the PORE its Enhanced version is the same). The en-
cryption of m bytes of plain-text using PORE or Enhanced
PORE gives 2 × m bytes of cipher-text.

5

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

4.4.2 Execution Time
Different implementations are done under MATLAB us-
ing Toshiba Laptop having the following specifications:
Processor Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz,
2301MHz, 2 Core(s), 4 Logical Processor(s). In this work,
we implemented the Enhanced PORE and the PORE at the
block level (i.e for each plain-text block different encryp-
tion key is chosen during the encryption form the secret
key bank), the same implementation can be done for the
PORE and the Enhanced PORE at the byte level (i.e for
each byte or plain-text in Z256 a different secret key is cho-
sen from the secret key bank) which improves the secu-
rity performances. The execution time of MORE and En-
hanced MORE are taken from [9]. The execution time is
studied by varying plaintexts vector size from 800 bytes
to 8000 bytes with a step equal to 800, and measuring for
each plaintext size the mean execution time for 10000 iter-
ations as in [9]. The execution time is shown in Figure 8,
where the PORE Approach at the block level is taking the
lowest execution time, then comes the Enhanced PORE at
the block level and its execution time is still much smaller
than the PORE at the byte level, MORE and Enhanced
MORE. The PORE Approach at the byte level is taking
the highest execution time.

Figure 8: Execution Time

4.5 Enhanced MORE and Enhanced PORE
comparison

The Enhanced MORE can be applied in a non trusted
cloud scenario because it does not have any public param-
eters, while the Enhanced PORE should be applied in a
trusted cloud scenario due to public parameters b and c.
In term of storage overhead, the cipher-text size of the En-
hanced MORE is related to the matrix dimension as ex-
plained in [9] (Given a plain-text of m bytes and a matrix
of dimension n × n the output cipher is m × n), while the
Enhanced PORE is fixed (plain-text of m bytes will output
a cipher-text of 2 × m bytes).
5 Conclusion
Homomorphic encryption becomes an efficient solution
for different modern systems and applications for preserv-
ing users privacy. Indeed, in this paper, we extend the pre-
vious solution of [9], design and realize a dynamic solu-
tion explained into the PORE approach towards overcom-
ing its original vulnerability. According to the presented
security analysis, Enhanced PORE with its dynamic ap-
proach has shown a high degree of security. Benefiting

from its dynamic implementation, comes with using short
encryption sessions and a dynamic p − boxes selection at
the message level. A comparison between the Enhanced
PORE and the Enhanced MORE is given in term of la-
tency, security and storage overhead, which indicates that
similar cryptographic and efficiency performances are ob-
tained between them. Therefore, the main goal of this pa-
per is to provide a new HE algorithm candidate.

Acknowledgment
This work has been partially funded with support from the
Lebanese University.

References

[1] K. Hariss, H. Noura, A.E. Samhat, M. Chamoun,
Design and Realization of a Fully Homomorphic
Encryption Algorithm for Cloud Applications, in
Risks and Security of Internet and Systems, edited
by N. Cuppens, F. Cuppens, J.L. Lanet, A. Legay,
J. Garcia-Alfaro (Springer International Publishing,
Cham, 2018), pp. 127–139

[2] S.M. Anggriane, S.M. Nasution, F. Azmi, Advanced
e-voting system using Paillier homomorphic encryp-
tion algorithm, in 2016 International Conference on
Informatics and Computing (2016), pp. 338–342

[3] P. Raj, G.C. Deka, Handbook of Research on Cloud
Infrastructures for Big Data Analytics, Chap.19,
1st edn. (IGI Global, Hershey, PA, USA, 2014)

[4] P. Martins, L. Sousa, A. Mariano, A Survey on Fully
Homomorphic Encryption An Engineering Perspec-
tive, in ACM Comput. Surv. (ACM, New York, NY,
USA, 2017), Vol. 50, pp. 83:1–83:33

[5] R.L. Rivest, A. Shamir, L. Adleman, A method for
obtaining digital signatures and public-key cryp-
tosystems (1978)

[6] M. van Dijk, C. Gentry, S. Halevi, V. Vaikun-
tanathan, Fully Homomorphic Encryption over the
Integers, in Proceedings of the 29th Annual Inter-
national Conference on Theory and Applications of
Cryptographic Techniques (Springer-Verlag, Berlin,
Heidelberg, 2010), EUROCRYPT’10, pp. 24–43

[7] Z. Brakerski, C. Gentry, V. Vaikuntanathan, (leveled)
fully homomorphic encryption without bootstrapping
(2014)

[8] J. Domingo-Ferrer, A Provably Secure Additive and
Multiplicative Privacy Homomorphism, in Proceed-
ings of the 5th International Conference on Infor-
mation Security (Springer-Verlag, London, UK, UK,
2002), ISC ’02, pp. 471–483

[9] K. Hariss, H. Noura, A.E. Samhat, Fully enhanced
homomorphic encryption algorithm of more ap-
proach for real world applications (2017)

[10] A. Kipnis, E. Hibshoosh, Efficient methods for prac-
tical fully-homomorphic symmetric-key encryption,
randomization, and verification (2012)

[11] P. Zhang, Y. Jiang, C. Lin, Y. Fan, X. Shen, P-
Coding: Secure Network Coding against Eavesdrop-
ping Attacks, in 2010 Proceedings IEEE INFOCOM
(2010), pp. 1–9

6

, 0 (201Web of Conferences https://doi.org/10.1051/itmconf/20192 022ITM 9)07 70
DICTAP2019

50 2 50

