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Abstract— Artificial Neural Network (ANN) has proven to be very successful in forecasting a variety of
irregular magnetospheric/ionospheric processes like geomagnetic storms and substorms. SYMH and
ASYH indices represent longitudinal symmetric and the asymmetric component of the ring current. Here,
an attempt is made to develop a prediction model for these indices using ANN. The ring current state
depends on its past conditions therefore, it is necessary to consider its history for prediction. To account
for this effect Nonlinear Autoregressive Network with exogenous inputs (NARX) is implemented. This
network considers input history of 30 min and output feedback of 120 min. Solar wind parameters mainly
velocity, density, and interplanetary magnetic field are used as inputs. SYMH and ASYH indices during
geomagnetic storms of 1998-2013, having minimum SYMH < —85 nT are used as the target for training
two independent networks. We present the prediction of SYMH and ASYH indices during nine geomag-
netic storms of solar cycle 24 including the recent largest storm occurred on St. Patrick’s day, 2015. The
present prediction model reproduces the entire time profile of SYMH and ASYH indices along with small
variations of ~10-30 min to the good extent within noise level, indicating a significant contribution of inter-
planetary sources and past state of the magnetosphere. Therefore, the developed networks can predict
SYMH and ASYH indices about an hour before, provided, real-time upstream solar wind data are avail-
able. However, during the main phase of major storms, residuals (observed-modeled) are found to be large,
suggesting the influence of internal factors such as magnetospheric processes.
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1 Introduction

Transient ejections from the Sun setup large-scale distur-
bances in the interplanetary space. These disturbances interact
with the Earth’s magnetic field, resulting into the severe space
weather events, such as geomagnetic storm, substorm, etc. As
the present space-technology is vulnerable to the geomagnetic
disturbances, predicting geomagnetic field response well in
advance is an important aspect of space weather studies. Long
duration southward interplanetary magnetic field injects solar
wind energy into the Earth’s magnetosphere—ionosphere system
mainly through reconnection (Gonzalez et al., 1994). This
results in the azimuthal drift of the charged particles inside
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the magnetosphere, establishing ring current in the equatorial
plane. Intensification (main phase) and decay (recovery) of
the storm time ring current consist of different processes. The
main phase is primarily controlled by the solar wind conditions,
whereas decay of the ring current has a major contribution from
the internal magnetospheric processes. Due to the varying nat-
ure of the storm sources, the magnetospheric dynamics and
the energy budget involved in each storm differs considerably
(Vichare et al., 2005). The injection of solar wind particles
and transmission of solar wind electric field generate various
currents in the magnetosphere—ionosphere system such as
cross-tail current, field-aligned currents, partial ring current,
etc. (Ohtani, 2000). Moreover, sudden variations in the dynamic
pressure of the solar wind alter magnetopause current and tail
current. Also, they produce transient ionospheric currents
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(Vichare et al., 2014; Oliveira & Samsonov, 2018). The recov-
ery phase of the ring current during the geomagnetic storm has
an influence of various nonlinear phenomenon like wave-parti-
cle interaction, charge exchange, the ionospheric outflow of
O ions, particle precipitation, etc. (Daglis et al., 1999). Super-
posed effect of these currents and magnetospheric nonlinear
processes in the magnetosphere—ionosphere system makes the
prediction of storm-time temporal variations of ring current a
challenging task.

Ground magnetometer measures the integrated effect of all
these disturbed time and also quiet time ionospheric and magne-
tospheric currents. Geomagnetic indices like Disturbance storm
time index (Dst) and Symmetric H-component (SYMH) index
mainly represent ring current intensity during geomagnetic
storms (Sugiura, 1964; Rangarajan, 1989; Wanliss & Showalter,
2006; Vichare, 2019), derived using the longitudinally dis-
tributed chain of low latitude ground-based magnetometers.
SYMH is same as Dst, but it has a 1-minute temporal resolution,
which is very useful to study short temporal variations during the
geomagnetic disturbances. SYMH is derived by first subtracting
main geomagnetic field due to internal geodynamo and external
Sq induced geomagnetic field variations and then averaging
residual fields. Therefore, it is a good proxy for the longitudinally
symmetric component of the ring current. By removing the glob-
ally symmetric component of the magnetic field variations from
geomagnetic field variations at each station, longitudinally asym-
metric geomagnetic field variations are derived. The range
between maximum and minimum of these subtracted fields are
compiled as ASYH index. ASYH have a significant contribution
from various transient currents flowing in the magnetosphere—
ionosphere system such as currents associated with sudden
impulses, solar flares, substorms and prompt penetration electric
fields, partial ring current, field-aligned currents, magnetotail
current, etc. (Clauer & McPherron, 1980; Iyemori & Rao,
1996; Singh et al., 2012, 2013). Normally, during geomagnetic
storms, these asymmetric currents also get enhanced. Therefore,
ASYH index is a good proxy for monitoring the currents, flow-
ing in the magnetosphere—ionosphere system during geomag-
netic storms, which are not azimuthally symmetric, but can
affect mid-latitude observations. The contribution of substorms
in ring current is a widely debated topic as some researchers
believe to have a significant contribution and some believe it
is weak. Newell & Gjerloev (2012) showed that the substorm
effect in the ring current is very small. Moreover, Munsami
(2000) showed that when Dst station lies under a substorm
current wedge, then only they observed significant contamina-
tion of ring current due to substorms.

There are a lot of efforts to understand the relationship
between the ring current (SYMH) and partial ring current
(ASYH) respectively. Generally, it is observed that during the
main phase of the geomagnetic storm, ring current is highly
asymmetric and becomes symmetric in the late recovery phase
(Siscoe et al., 2012; Jordanova et al., 2003). Liemohn et al.
(2001) reported that major part of magnetic field variations dur-
ing the main phase of geomagnetic storms is due to asymmetric
ring current. However, there are storms which show symmetric
nature of the ring current even during the main phase which
remains unexplained (Newell & Gjerloev, 2012). The well
known Love-Gannon relationship states that the difference
between dawn and dusk disturbance-field (similar to ASYH

index) at low latitudes is linearly proportional to Dst. However,
(Siscoe et al., 2012) pointed out that this relationship can be
explained only through field-aligned currents.

As there is a number of studies investigating the relationship
between symmetric and asymmetric ring current, at the same
time efforts are going on to give a more accurate prediction of
these indices during geomagnetic storms. To forecast these geo-
magnetic indices (Dst, SYMH, AE, etc.) different approaches
have been attempted (Williscroft & Poole, 1996; Wu &
Lundstedt, 1996; Wu et al., 1998; Weigel et al., 1999; O’Brien
& McPherron, 2000; Gholipour et al., 2004; Wei et al., 2004;
Boynton et al., 2011; Rastitter et al., 2013; Revallo et al.,
2014; Uwamahoro & Habarulema, 2014; Eastwood et al.,
2017; Lazzus et al., 2017; Wintoft et al., 2017; Chandorkar
etal., 2017; Camporeale et al., 2018; Chandorkar & Camporeale,
2018; Podladchikova et al., 2018). These methods are mainly
based on physical, empirical or analytical relationships between
solar wind and geomagnetic parameters, correlation, and artifi-
cial neural networks (ANNs). Rastitter et al. (2013) compared
various 30 model settings with observed Dst index and found
empirical models perform well in general. However, physical
models given proper boundary conditions observed to be
performing better than empirical models. Linear regression,
statistical correlation, etc. have been proved to be useful in
understanding storm time geomagnetic field variations. There
are many empirical models for Dst prediction. A simple predic-
tion algorithm for the Dst index was proposed by Burton et al.
(1975), solely from a knowledge of the solar wind parameters.
They assumed a constant ring current recovery time constant
(e-folding time) for all the storms which may not be always a
valid assumption. Iyemori & Maeda (1980) first time success-
fully applied linear prediction filtering method for predicting
geomagnetic activity using solar wind parameters.

Artificial neural networks are being extensively used in
many areas where nonlinear complexities are involved
(Lippmann, 1987; Miller, 1993; Gardner & Dorling, 1998;
Unnikrishnan, 2014). In last few decades artificial neural net-
works are used for predicting geomagnetic activity at high and
low geomagnetic latitude regions (Wu & Lundstedt, 1996;
Gleisner & Lundstedt, 1997; Chandorkar et al., 2017; Andriyas
& Andriyas, 2017). There are many studies which attempted to
predict symmetric part of the ring current and geomagnetic field
variations using neural networks (Kamide & Slavin, 1986;
Lundstedt & Wintoft, 1994; Wu et al., 1998; Kugblenu et al.,
1999; Unnikrishnan, 2012, 2014; Wintoft et al., 2017).
Lundstedt & Wintoft (1994) developed feed forward neural net-
work to predict geomagnetic activity index, Dst, one hour in
advance. They could predict the initial and main phase very well
but the recovery phase was not modeled correctly. The feedfor-
ward networks do not have feedback from the output or hidden
nodes (refer Sect. 2 for network architecture) which constraint
them in accurately modeling time series having memory. The
performance of the network is seen to be independent of whether
the raw parameters are used to the derived parameters like elec-
tric field and square root of dynamic pressure. Gleisner et al.
(1996) have used the time-delayed feed-forward neural network
for predicting Dst index. To predict Dst recovery phase they had
to use up to 20 h of solar-wind input data. They could reproduce
84% of Dst variance. Further implementation of dynamic neural
networks (i.e., feedback networks) has improved the prediction
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accuracy for the recovery phase. Elman recurrent neural net-
works are implemented by Wu & Lundstedt (1997) to predict
Dst during geomagnetic storms. The recovery part of the storm
has modeled significantly well by Elman network as it takes
feedback from the hidden layer. The predictions are generally
very good for the main phase of the geomagnetic storms but
are fairly good for the recovery phases. The study by Revallo
et al. (2015) developed a prediction model using the neural
network and analytical prediction is done for two classes of
geomagnetic storms caused by Coronal Mass Ejection (CME)
and Corotating Interaction Region (CIR). They observed better
prediction for CME driven storms than for CIR driven storm.
Recently, Lazzis et al. (2017) used swarm-optimized neural
network and showed that the hybrid approach gives good
predictions of Dst index. Further, Chandorkar et al. (2017)
presented the probabilistic approach in accurately predicting
Dst index one step ahead. The use of NARX network by Cai
et al. (2009) for predicting SYMH index (equivalent to high
temporal resolution Dst index) has been very successful as it is
observed to be better in performance due to feedback is given
from the output node.

ASYH is a very valuable index to study the asymmetric
development of magnetospheric storms during the crossing of
interplanetary disturbances (e.g., Huttunen et al., 2006). There
is a number of studies trying to understand the physical
mechanism underlying the observed asymmetry in the ring
current and its origin along with the contribution of various
currents in asymmetric ring current (e.g., Liemohn et al.,
2001; Jordanova et al., 2003; Newell & Gijerloev, 2012).
Though ASYH index is equally important during storm time
dynamics, there are no reports of ANN-based model available
for ASYH index till date. The ANN-based prediction of asym-
metric ring current will help to understand the contribution of
external/internal drivers in the observed asymmetry. Also, the
early forecast of ASYH will help space weather community
to have a prior knowledge of the degree of asymmetry in the
ring current. Therefore, developing an ANN-based prediction
model for ASYH is the main objective of the present study.
The present study develops a NARX network-based model to
forecast both SYMH and ASYH indices, using interplanetary
parameters as inputs and feedback from the output.

The predictions of Cai et al. (2009) for the studied storms
using ACE data showed a correlation coefficient about 0.9
and RMSE of 14 nT. They showed that NARX is better in fore-
casting SYMH compared to Elman neural networks. The pre-
sent study extends the use of the NARX network to predict
ASYH index, which is the first time. Further, the present study
extends the geomagnetic storm list by Cai et al. (2009) to 2015
which give a bigger dataset for the network training and testing.
For this purpose, we have used interplanetary parameters,
SYMH and ASYH indices during major geomagnetic storms
occurred between 1998 and 2015 covering around two solar
cycles. We present a prediction of SYMH and ASYH indices
for the geomagnetic storm that took place on St. Patrick’s
day, 2015 (intense geomagnetic storm of the current solar cycle,
24) along with few other major storms from solar cycle, 24.

The paper is arranged as follows: Section 2 describes the
NARX neural network. Sections 3 and 4 introduce data and
training methodology. Section 5 discusses the network perfor-
mance and prediction of SYMH and ASYH indices during

geomagnetic storms. Paper ends with the discussion and conclu-
sions in Section 6.

2 NARX Neural Network

Artificial Neural Network (ANN) functions like biological
neural network (Poulton, 2002). The biological neuron is com-
posed of dendrites, the soma, and the axon. The neuron receives
an input signal from other neurons which are connected to its
dendrites by synapses. The soma is mainly processing unit
where inputs are integrated over space and time and it activates
an output depending on the total input. This output is transmit-
ted by the axon and distributed to other neurons by the synapses
at the tree structure at the end of the axon (Hérault & Jutten,
1994). The mathematical neuron functions a little simpler way
since integration takes place only over space. The inputs are
given at one or many nodes called input nodes. The sum of
these weighted inputs is performed at the summing node which
is fed to the nonlinear transform function or called an activation
function to rescale the sum. The array of many nodes makes a
network which can be made to learn relationships between
inputs and targets, used for prediction.

For the present study, we have selected Nonlinear Auto
Regressive with Exogenous inputs (NARX) model network
due to its proven ability to account for the history of input
and output parameters for prediction. This is feedback two-layer
backpropagation network with time-delayed feedback. The
basic network architecture is presented in Figure 1. As shown
in the figure, inputs are shown to the network as a temporal
sequence with different time lags with time delay length, d.
Whereas, past outputs of the network are provided to the
NARX network as feedback having history length, L, which
are called as context inputs. From left to right network has an
input layer, a hidden layer, and the output layer. The first
layer or called as input layer receives externally provided
values of input parameters. The second layer is known as the
hidden layer because it does not see or act upon the external
conditions. The hidden layer transforms the inputs such that
the transformed inputs can be used by output layers. The output
layer scales the hidden layer outputs to match the target.
The dynamic behavior of the network can be formulated as:

Ot:F(Otfla""Oth;[h'--'[tfd% (1)

where O is the output of the network, I denotes the input
vector. L is the length of the feedback history and d is the length
of input history. Thus, the output of the NARX network is a
function of present inputs and their past values along with the his-
tory of the output. The inputs are processed by hidden nodes in
the hidden layer, the output of jth hidden node is given by:

M L
Hj:tanh<zWj,1i+ZWj1C1+bj>; (2)
i=1 I=1

where [; is the value of input node i, M is a total number of input
nodes. C denotes the context inputs. Wj; is a connecting weight
of input node (7) and hidden node (j). Note that tank (hyperbolic
tangent) is the transfer function for nodes in the hidden layer.
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Input layer
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Hidden layer
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Fig. 1. Architecture of Nonlinear Auto Regressive with eXogenous inputs (NARX) network. d is input history length and L is output feedback

length.

b; is a bias of the jth neuron in the hidden layer. Complex and
nonlinear relationships between inputs and output are taken care
by tank function. The output of the network (O(?)) is a linear
summation over all hidden neuron outputs and output bias
(bp) which is represented by:

ot) = Z W o,H; + by, 3)

J=1

here, W,; is connecting the weight of hidden node to the output
node and s is the number of hidden nodes.

3 Database

Different types of forecast models were studied prior to
deciding the input and output database for NARX network.
Interplanetary magnetic field, solar wind density, and velocity
are most crucial parameters controlling the storm profile. Also,
the history has a significant influence on the prediction accu-
racy. Therefore, we considered the total interplanetary magnetic
field (B) and its components (B, and B,), solar wind density
(Ngw) and solar wind speed (V) as input parameters. SYMH
and ASYH indices are considered as the target for the training
two independent networks.

The study is carried out considering 67 major geomagnetic
storms (minimum SYMH < —85 nT) during 1998-2005 (Storm
list is adapted from: Cai et al., 2009) and 34 geomagnetic storms
(minimum SYMH < —85 nT) identified between 2006 and
2015 (listed in Table 1). This period (1998-2015) covers 23rd
and ongoing 24th solar cycles having total 101 geomagnetic
storms of minimum SYMH < —85 nT. It also includes 17th
March geomagnetic storm which is a major storm of the 24th
solar cycle to date. Total 92 storms (1998-2013) are used for
training and nine storms occurred during 2014-2015 are used
to predict SYMH and ASYH indices. The utilized Solar wind
parameters and indices were acquired from CDAWEB database
(http://cdaweb.gsfc.nasa.gov/). One minute time resolution
data was converted to 5-minute resolution for reducing the

Table 1. Geomagnetic storm durations of 2006-2013 considered for
training the networks in addition to 67 geomagnetic storms of Cai
et al. (2009).

Start End
No. Year Month Day Year Month Day Min. SYMH
(nT)
1 2006 4 3 2006 4 8 -93
2 2006 4 8 2006 4 13 —107
3 2006 4 13 2006 4 21 —111
4 2006 8 18 2006 8 26 -95
5 2006 12 14 2006 12 18 211
6 2008 3 7 2008 3 19 —100
7 2009 7 19 2009 7 30 -95
8 2011 3 9 2011 3 17 -92
9 2011 5 26 2011 6 17 -94
10 2011 8 5 2011 8 23 —126
11 2011 9 26 2011 10 14 —116
12 2011 10 24 2011 11 18 —160
13 2012 1 21 2012 2 12 —88
14 2012 3 6 2012 3 26 —150
15 2012 4 23 2012 4 30 —125
16 2012 7 14 2012 7 23 —123
17 2012 9 28 2012 10 5 —138
18 2012 10 7 2012 10 11 —116
19 2012 10 11 2012 10 23 —106
20 2012 11 12 2012 11 17 —118
21 2013 3 17 2013 3 26 —132
22 2013 5 31 2013 6 6 —137
23 2013 6 6 2013 6 9 —88
24 2013 6 27 2013 7 4 —111
25 2013 10 1 2013 10 8 -90

computation time. The missing data were interpolated using
piecewise cubic Hermite polynomial. The total data length
of ~685 days having 5-minute resolution was used for develop-
ing the network.

The data of 92 geomagnetic storms between 1998 and
2013 is used for learning the network, which is divided into
the three parts: (1) training (75%), (2) validation (15%) and
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(3) test (10%). As stated earlier the training data is used to learn
the relationship between inputs and output. The validation of the
network is determined through the identification of minimum
error using 15% of the data. Validation data is used to stop the
network from over-fitting the target. The test data was used to
evaluate the performance of the network. Further, to check the
prediction performance of the networks nine geomagnetic storms
are used, which occurred during January, 2014-July, 2015.

4 Method and analysis

ANN-based prediction model consists of mainly three steps:
training, validation and testing (Haykin & Network, 2004). The
present network consists of one input layer with 30 external
input nodes and 24 context inputs from the output, one hidden
layer with 16 neurons and one output node. We have performed
the trial and error on the number of hidden nodes and arrived at
the optimum number of hidden nodes which was used in our
network. The network performs better as the complexity of
the time series is learned better with more number of hidden
layers. However, it is to be noted that with an increased number
of hidden layers, the computation time also increases largely.
Therefore, to reduce the computation time we have used only
one hidden layer. We have selected the input parameters
(B, By, B,, Ny, and V) based on the physical understanding
of the solar wind-magnetosphere coupling. IMF, solar wind
speed and density are primary parameters which affect recon-
nection and transfer of solar wind energy to the magnetosphere.
It is reported by earlier researchers that ring current history of
about 2 h is adequate for predicting SYMH index (Cai et al.,
2009). Also, the communication time of the interplanetary
electric field from the Bow-shock nose to the equatorial iono-
sphere is observed to be ~20 min (Bhaskar & Vichare, 2013).
Therefore, the input history of 30 min and output feedback
length of 120 min having a 5-minute temporal resolution is used
in the network. There are total 54 input nodes for each network.
Input history of 30 min implies the need of total 30 external
input nodes for five input parameters (B, B,, B, N, and
Vsw) €ach parameter having six nodes. Similarly, 120-minute
feedback length from output makes 24 context inputs.

The network is presented with the inputs to produce the
desired output. For training the network, we have used a most
popular back-propagation algorithm (Rumelhart et al., 1985)
learning. In this algorithm the weights are updated by using
delta rule which is given by:

Aw(i+1) = —ﬂg—va + . Aw(i), 4)

here, w represents the weight of the nodes, i is epoch, a and n
denote the momentum parameter and learning rate respectively.
Momentum parameter is used to avoid local minimum, whereas
learning rate controls the learning speed of the network. They
range between O and 1. For optimization of the speed of learn-
ing the n is adjusted in each iteration according to the perfor-
mance of the network. For initialization, small random values
are assigned to the network weights. Initially @ = 0.9 and
n =0.01 were considered for the networks training. E is network
error which is estimated by using the following equation which
is also known as a cost function,

E:%Z(Ok—Tk)z. (5)

1

O is the output of the network, T is the target value and N is
the total number of training samples. The error is minimized
during epoch to epoch of the training for obtaining final
trained network. To avoid the over-fitting the validation
dataset is used. During the training, error on the validation
data is continually monitored. The training is terminated
when the validation error reaches a minimum and then
increases for next six epochs consecutively. It is known and
observed that initialization of network weights and number
of nodes in the hidden layer affect the performance of neural
networks. Hence, we trained the network multiple times
by changing the initial weights and number of hidden layer
nodes and selected the one which gave the best results for
prediction.

Further, Root Mean Square Error (RMSE) was estimated to
evaluate the performance of the network on test data consisting
nine geomagnetic storms occurred during January, 2014-July,
2015 including the geomagnetic storm of March 17, 2015
(see Table 1). The root mean square error can be computed as,

N 1/2
RMSE = [% > (0~ Tf)Z] . (6)

i=1

Also, the cross-correlation coefficient (R) was estimated
using equation (7) to quantify the similarities between the time
series of the observed and predicted SYMH/ASYH index.

f} (T' - T)(O' - 0)
R=—= (7)

5 Results

5.1 Network performance

Figure 2 shows the performance of the trained networks.
Figure 2a shows the performance for SYMH whereas, Figure 2b
shows performance for ASYH index. The figure presents the
performance of all the steps i.e. training, validation and the test.
As a part of the learning of the network, after each iteration, the
mean squared error of both the networks initially decreases.
This characteristic is observed in both the panels of Figure 2
i.e. initially the error in estimated SYMH and ASYH decreases
with increasing epochs in a similar fashion and then remain
steady during training, validation and testing. One more com-
mon feature observed during training, validation, and testing
of SYMH and ASYH is that the errors of testing and validation
converge to a smaller value compared to the training. The best
test performance of the SYMH network is achieved at Mean
Squared Error (MSE), ~6 and that for ASYH network is ~18.
This implies the training of SYMH network is better compared
to ASYH. Note that, to prevent the network from over-fitting,
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Fig. 2. The training performance of the neural network is shown for both (a) SYMH and (b) ASYH indices.
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Fig. 3. The regression of the target and the modeled output by the networks are shown for (a) SYMH and (b) ASYH for training data.

Table 2. Geomagnetic storm durations considered for testing the networks of SYMH and ASYH.

Start End Strength SYMH NARX SYMH base ASYH NARX ASYH base
mod. mod.
No. Y M D Y M D Min SYMH (nT) R RMSE R RMSE R RMSE R RMSE
1 2014 2 15 2014 2 26 —127 0.9 1251 0.78 16.83  0.85 1251 040 2537
2 2014 2 27 2014 3 7 —101 0.9 9.17  0.76 14.12  0.66 9.84 045 12.75
3 2014 4 11 2014 4 17 -92 087 1455 0.82 13.51  0.78 11.54  0.62 1445
4 2015 1 7 2015 1 18 —135 084 1344 057 17.10  0.76 1259 020 24.15
5 2015 4 8 2015 4 25 -89 0.89 10.3 0.75 1399  0.69 1205 043 17.96
6 2015 6 7 2015 6 12 —105 0.85 12.44  0.68 18.09  0.58 11.17  0.02 19.70
7 2015 6 21 2015 7 3 —208 087 2258 083 2084 076 2025 0.62 2844
8 2015 7 4 2015 7 10 —87 0.91 9.57 0.75 1470 0.73 10.07 030 16.79
9 2015 3 17 2015 4 5 —234 093 2134 084 1835 0.68 2043 0.66 21.09

the training was stopped when validation error increased
continuously for the next six iterations. This is achieved at
epoch 20 and 40 for SYMH and ASYH networks
respectively.

Figure 3a, b shows the linear regression of targets (SYMH/
ASYH) and predicted outputs of the networks for best training

epochs. The correlation values are almost the same R ~ .99 for
both the networks output-target pairs. However, it is evident that
the scatter is better for SYMH as compared to ASYH. The slope
value close to unity and low value of intercept of the linear fit
between target and output indicate that training is impressive
for both the networks.
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Fig. 4. Predicted and observed SYMH index for test storms listed in Table 2. The number indicates the geomagnetic storm number listed in the
table. Dotted red curve is observed SYMH and solid blue curve is the predicted SYMH by the network.

5.2 Prediction

5.2.1 Geomagnetic storms —85 > SYMH > —210 nT

To test the prediction capability of the networks developed
here, we have used the geomagnetic storms which were not con-
sidered in the training process. The details of these major storms
used for prediction are presented in Table 2. Figure 4 shows the

predicted (blue line) and observed (dashed red line) values of
SYMH for first 8§ geomagnetic storms listed in the table. The
storm on March 17, 2015, is discussed in detail in the next sub-
section. In general, all the storms show a very good match
between the predicted and observed SYMH profiles. One can
notice that even finer features of timescales 10-30 min are
reflected in the predicted profiles. The prediction of the mini-
mum SYMH matches very well with the observed strength of
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Fig. 5. Predicted and observed ASYH index for test storms listed in Table 2. The number indicates the geomagnetic storm number listed in the
table. Dotted red curve is observed ASYH and solid blue curve is the predicted ASYH by the network.

the storms occurred on Feb 27, 2014; Jan 07, 2015; Jun 21,
2015, and Jul 04, 2015. However, the minimum SYMH of
storms occurred on Apr 11, 2014, and Jun 07, 2014 are under-
estimated by the network. Transient variations like storm sud-
den commencement (SSC) are reproduced well by the
network during storms on Jan 07, 2015 and Jul 04, 2015. Nev-
ertheless, SSC occurred on June 21, 2015, and Feb 27, 2014, is
not predicted by the model. Also, a two-step decrease observed

during the main phase of storms (Jun 07, 2015, Jun 21, 2015,
and Jul 04, 2015) is reproduced by the network to the good
extent.

Figure 5 shows the predicted (blue line) and observed
(dashed red line) values of ASYH index during the storms.
The predicted profiles of ASYH match well with the observed
profiles. In general, the prediction model underestimates the
amplitude of ASYH index. However, the overall temporal
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Fig. 6. The residual of predicted and observed values for SYMH and ASYH indices during test storms listed in Table 2. Dotted horizontal

dashed lines mark +30 nT noise level (i.e., quiet time background). The vertical dashed lines from left represent onset and the end of main phase
of the storm respectively.

profile of ASYH index is well predicted by the network. Note Tsurutani & Gonzalez (2013) noted a variability of around
that, finer structures of smaller timescales ~10-30 min are also —30 nT in Dst index, which they considered as a threshold/
well mimicked by the model predictions except for Apr 11,  noise level for geomagnetic storms (Munsami, 2000). There-
2014 storm. fore, here we have considered +30 nT as the threshold even
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Nsw
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20

22 24 26

Days of March 2015

Fig. 7. Interplanetary parameters of intense geomagnetic storm of March 17, 2015: Interplanetary magnetic field (B) and its components By, B.;
solar wind speed (Vi) and density (Ny,). Geomagnetic indices: ASYH and SYMH. The dashed vertical line marks the onset of the storm.

for SYMH/ASYH, although it is possible that for higher time
resolution indices the noise level might be larger. The residuals
of SYMH and ASYH are estimated by subtracting model values
from the observed, which are presented in Figure 6 for the
selected storms. The noise levels (30 nT) are marked by the
red dashed lines and the main phase bounded by two vertical
dashed lines, in each panel. The figure shows that for most of
the storms the residuals lie within the noise level, in general.
However, for the storm occurred on June 21, 2015, the residuals
are well above noise level (>100 nT), in particular during the
main phase. Note that the model estimates are based on the
interplanetary (external) inputs. Therefore, the higher residual

values could be ascribed to the influence of the magnetospheric
origin (internal), which is not modeled by the present network.
Also, one can notice that compared to the residuals in SYMH
index, the ASYH residuals are higher in magnitude. This may
imply the larger contribution in the ASYH index due to magne-
tospheric sources, compared to that in SYMH index.

Further, to quantify how good are the networks in predicting
these indices, the correlation coefficient (R) and RMSE are esti-
mated for the predicted geomagnetic storms which are listed in
Table 2. A good performance of the networks is more evident
from the observed high mean correlation coefficients, R ~ 0.9
and R ~ 0.7 for SYMH and ASYH indices respectively
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Fig. 8. Predicted and observed (a) SYMH and (b) ASYH indices for March 17, 2015 geomagnetic storm.

(see Table 2). The table clearly shows the cross-correlation is
high between predicted and observed SYMH as compared to
the correlation between predicted and observed ASYH. This
smaller value of the correlation coefficient of ASYH index
could be due to the presence of very high-frequency fluctuations
in ASYH index compared to SYMH index (refer Figs. 4 and 5).
Also, as discussed earlier, ASYH is more complex in nature due
to various currents, unlike SYMH. The developed forecast
model is compared with the base model. Here the base model
is assumed as persistence model one hour ahead (i.e., the index
at time ¢ is predicted to be equal to itself at time 7—1 h. The esti-
mated correlation coefficient and RMSE for the predicted geo-
magnetic storms are also shown in the table. The comparison of
base model and NARX mdoel shows that later performs better.

5.2.2 St. Patrick’s day 2015 geomagnetic storm
(SYMH ~ —234 nT)

Recent storm of 17th March, 2015 (known as St. Patrick’s
day 2015 geomagnetic storm) is a great storm of the ongoing

24th Solar cycle (see Table 2). The parameters of interplanetary
disturbance during this storm are presented in Figure 7. Inter-
planetary magnetic field (B, B,, B;, nT), Solar wind density
(Nsw) and Velocity (Vi) show the clear enhancement at the
onset of the storm on March 17, 2015, time ~ 05: 00 UT.
It is evident that long duration (~24 h) southward B, with ampli-
tude ~20 nT has given rise to an intense storm having minimum
SYMH ~ —234 nT and maximum ASYH of ~250 nT. The
storm shows two distinct steps during the main phase, which
might be associated with the sudden north-south turnings of
the IMF occurred on March 17, 2015, at ~11 UT. ASYH index
is enhanced during the main and early recovery phase of the
storm. The ASYH index is almost of the same magnitude that
of SYMH during the main phase. The prediction results
obtained from the present models along with the observed
indices are displayed in Figure 8. The trained NARX network
for SYMH predicts the observed SYMH very well including
the sudden storm commencement, two steps in the main phase
and small transient fluctuations during the recovery phase of the
storm. The predicted storm time minimum SYMH is close to
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Fig. 9. Time-shifted ACE data and OMNI data comparison for July 04,

the observed one. The correlation between predicted and
observed SYMH is very high (R ~ 0.93) and RMSE value is
low (~21 nT). The match between predicted and observed
ASYH is excellent during the main phase. For ASYH, correla-
tion between predicted and observed ASYH is R ~ 0.7 and
RMSE value is ~20 nT.

2015 geomagnetic storm.

6 Discussion and conclusions

As ASYH index is of paramount importance to unravel the
information about the asymmetric response of the magneto-
sphere especially during geomagnetic storms, the present study
attempts to predict ASYH index for the first time. We have
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applied NARX neural network to 92 geomagnetic storms
occurred between 1998 and 2013. The developed networks
successfully predict SYMH and ASYH indices about an hour
prior to the onset of storm provided the real-time upstream solar
wind data is available. The temporal horizon of the forecast is
the propagation time of the solar wind from the spacecraft
ACE/WIND to the Earths bow shock which is about 1 h. The
propagation time is not constant and varies based on the solar
wind speed and location of the spacecraft. However, time esti-
mates can be done based on the know information of the space-
craft location and solar wind speed. To implement the
developed network the real-time solar wind data will be time-
shifted to the bow-shock nose following the procedure adopted
for generating OMNI data (https://omniweb.gsfc.nasa.gov/html/
ow_data.html). To demonstrate the feasibility of this approach
we have time-shifted ACE solar wind and magnetic field data
to bow shock for the forecasted events. The time-shifted and
OMNI interplanetary magnetic field and solar wind data com-
parison is shown in Figure 9. There are various methods being
used to time-shift spacecraft data to the Earth and each have
their own merits and limitations (see for details Cameron &
Jackel, 2016 and references therein). However, to keep it consis-
tent with training data of the network, we have followed the
original method used by Coordinated Data Analysis Web
(CDAWeb) to time-shift solar wind data to the Earths bow
shock. The time-shift is calculated as follows,

X [+ (Y x W)/X]
Vo L= Vex W/Vs]

At = (8)

where, At is the time shift in seconds, X and Y are GSE X and Y
components of the spacecraft position vector, in km, Vg, is the
observed solar wind speed in km/s, V. is the speed of the Earth’s
orbital motion (30 km/s), W = tan [0.5 x atan (V,/428)] is
parameter related to the assumed orientation of the phase front
relative to the Earth-sun line. Figure 9 clearly shows that almost
same OMNI interplanetary magnetic field and solar wind data
could be generated applying this time-shift. Note that solar wind
density (V) data is missing for some initial period in ACE but
present in OMNI. This is due to the fact that OMNI is com-
prised of ACE and WIND data. The parameters estimated at
bow shock at (time = ¢ + Af) are used as inputs to ANN and
predict the SymH and AsyH indices at time ¢ + Az. Thus, using
the real time data at L1 point, we predict the SymH/AsyH
indices after time shift of At. This assures that the trained net-
work using OMNI data can be implemented for real-time fore-
casting provided the data is time-shifted to the bow shock using
the same method as CDAWEB used to generate OMNI data.
The need of 30 min input history and 120-minute feedback
for better predictions imply the role of preconditioning of
magnetosphere i.e. the future state of contributing currents in
indices depends on their present and past values. We have exam-
ined the prediction for nine geomagnetic storms from solar cycle
24, occurred during January, 2014-July, 2015. These storms
include the major storm occurred on St. Patrick’s day, 2015,
which is the most intense storm occurred so far in solar cycle 24.
The ability of NARX having feedback from output enabled
us to model these indices quite accurately. The temporal varia-
tions of the order of 10-30 min are well predicted by both the

networks. The network trained for SYMH index predicts
SYMH very well and observed average correlation between
predicted and observe SYMH is high (R ~ 0.88) i.e. almost
~T77% variations of SYMH are modeled by the network. The
average RMSE is about 13.98 nT and matches with the obser-
vations by Cai et al. (2009). Therefore, the prediction perfor-
mance of the network is almost the same as that of ANN
constructed by Cai et al. (2009). However, as noted earlier
the prediction accuracy varies from storm to storm. Munsami
(2000) also observed mismatch between predicted and observed
Dst index, which they thought to be due to other than external
drivers such as substorms. However, they did not observe
noticeable improvement in Dst prediction even by considering
inputs from substorm activity. This could be due to the contri-
bution to Dst from other processes such as wave-particle inter-
action, charge exchange, the ionospheric outflow of O ions,
particle loss to the atmosphere and magnetopause (Daglis
et al., 1999; Liemohn et al., 2001). For the present study, the
residuals between observed and predicted values of SYMH
generally lie within the noise level of +30 nT. However, note
that sometimes high residual values are observed above the
noise level, especially during the main phase of geomagnetic
storms. For SYMH the prediction results are almost the same
as that Cai et al. (2009). However, more dataset is used in the
present study which helped in the generalization of the network.

As an extension of the earlier studies we have extended
NARX network to ASYH index. In general, the prediction of
ASYH index is very good, within the noise level of +30 nT.
More than 50% variations of ASYH are explained by the
present network. This implies that the variation in asymmetric
ring current could be explained by solar wind parameters.
However, during the main and early recovery phase of storms,
the residuals (observed-modeled) are above the noise level,
which could be ascribed to the internal magnetospheric pro-
cesses such as field-aligned currents, particle loss. The study
shows that the prediction is better for SYMH as compared to
ASYH. This implies that there is something more than external
solar wind driver i.e. internal dynamics which is contributing in
ASYH index. If both the variations are caused by the same
current system then prediction of ASYH and SYMH would
have been very much similar at least in the main phase of the
storms. However, this is not the case and hence one may con-
clude that SYMH and ASYH variations during the main phase
are not necessarily related to the same current system.

The present study demonstrates that developed networks are
capable of predicting SYMH and ASYH indices and hence can
be implemented for the real-time forecasting. The network
performs better as compared to the assumed base model. This
is the first attempt to forecast ASYH index using the neural
network with the use of a long dataset of geomagnetic storms
spanning more than one solar cycle. Interestingly, even though
ASYH is a good proxy for the internal variability of the asym-
metric ring current ANN could model large part of the varia-
tions using external (solar wind) parameters. The reliable
forecast of SYMH and ASYH indices will help space weather
community and space programs to get early information on
the strength of geomagnetic disturbances and their asymmet-
ric geomagnetic response. The ASYH index represents the
magnitude of the asymmetric geomagnetic response during
geomagnetic disturbances. The main contribution comes from
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the dawn-dusk asymmetry. The forecast of ASYM will enable
to understand how strong asymmetry expected in the magneto-
sphere prior to disturbance hits the magnetosphere. SYMH
forecast will only enable to understand the global average
response of the magnetosphere, addition of this index will help
to get a complete picture of the geomagnetic response during
geomagnetic storms. In future, the predictions may be improved
by considering inputs representative of internal magnetospheric
dynamics.
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