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Advanced, recurrent, or metastasized osteosarcomas remain challenging to cure or

even alleviate. Therefore, the development of novel therapeutic strategies is urgently

needed. Cancer immunotherapy has greatly improved in recent years, with options

including adoptive cellular therapy, vaccination, and checkpoint inhibitors. As such,

immunotherapy is becoming a potential strategy for the treatment of osteosarcoma.

Innate immunocytes, the first line of defense in the immune system and the bridge

to adaptive immunity, are one of the vital effector cell subpopulations in cancer

immunotherapy. Innate immune cell-based therapy has shown potent antitumor activity

against hematologic malignancies and some solid tumors, including osteosarcoma.

Importantly, some immune checkpoints are expressed on both innate and adaptive

immune cells, modulating their functions in tumor immunity. Therefore, blocking or

activating immune checkpoint-mediated downstream signaling pathways can improve

the therapeutic effects of innate immune cell-based therapy. In this review, we

summarize the current status and future prospects of innate immune cell-based

therapy for the treatment of osteosarcoma, with a focus on the potential synergistic

effects of combination therapy involving innate immunotherapy and immune checkpoint

inhibitors/oncolytic viruses.
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INTRODUCTION

Osteosarcoma is the most common primary malignant bone tumor and it often leads to pulmonary
metastasis, which is the major cause of death of osteosarcoma patients (1). Surgical resection
combined with neoadjuvant and postoperative chemotherapy has increased long-term survival
rates to 70% for patients with localized osteosarcomas, but<20% for patients with recurrent and/or
metastasized osteosarcomas. The current standard treatment strategy has remained unchanged
for decades (2). Therefore, there is urgent need to develop novel therapies to improve the overall
survival rates of osteosarcoma patients, particularly those experiencing relapse and/or metastasis.
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Immunotherapy is becoming an attractive therapeutic strategy
for the treatment of osteosarcoma. The human immune system,
which consists of innate and adaptive immunity, plays a critical
role in suppressing tumor growth. The major effector cells in
adaptive immunity targeting osteosarcoma are cytotoxic T cells
(CTLs). A previous study demonstrated that CTLs played an
important role in immune surveillance in osteosarcoma patients
(3). In addition, adoptive transfer of T cells successfully resulted
in tumor inhibition in mouse models of osteosarcoma (4–6).

Recently, the role of innate immune cells in the control
of tumor progression has been characterized. Innate immune
cells contribute to tumor suppression through direct recognition
and killing, through self-activation to trigger a strong adaptive
immune response, or through both mechanisms (7). The
antitumor immunocompetence of innate immune cells provides
a rational basis for innate immune cell-based therapy, which
has shown promise for the treatment of hematopoietic
malignancies and solid tumors (8). Indeed, successful treatment
of osteosarcomas in preclinical studies using innate immune cells
has been reported (9, 10). Our previous studies have shown that
innate immune cells were effective against osteosarcoma (11–
14). In this paper, we describe the anti-osteosarcoma roles of
the following major classes of innate immune cells: dendritic
cells (DCs), macrophages, natural killer (NK) cells, natural
killer T cells (NKT) cells, and γδ T cells. We also review the
current status of innate immune cell-based therapy for the
treatment of osteosarcoma and potential future improvements
based on the results of treatment of other types of tumors.
Moreover, immune checkpoint inhibitors (ICPIs) represent a
new frontier in cancer therapy and have shown a certain degree of
therapeutic effects in osteosarcoma patients (15). Some immune
checkpoints are not only expressed on T cells, but also on DCs,
macrophages, NK cells, NKT cells, and γδ T cells; blocking
these immune checkpoints reverses their anti-tumor activity in
tumor immunity. Therefore, we detail the effects of immune
checkpoint-inhibition on immune cells and the potential for
synergy based on combining innate immune cell-based therapy
with immune checkpoint manipulation for the treatment of
osteosarcoma. In addition, as oncolytic virus (OV) therapy is
known to induce an innate immune response, we also discuss
the combinational potential of innate immune cell-based therapy
and OVs.

DENDRITIC CELLS

DCs, which are professional antigen-presenting cells (APCs),
take up and present antigens to naïve T cells, ultimately
stimulating them to differentiate into tumor killers (16). Recently,
a series of studies have shown that DCs can also activate innate
immune cells with robust antitumor activity such as γδ T cells,
cytokine-induced killer (CIK) cells (17–19).

However, established tumors always endeavor to reduce
the availability of antigen presentation by APCs, resulting in
immunosuppression, which disrupts the generation of antitumor
immune responses (20, 21). In response, DC vaccines have been
developed to bypass this mechanism. This procedure can be

summarized as follows: DCs are isolated from peripheral blood
mononuclear cells (PBMCs), matured, and loaded ex vivo with
tumor antigens with defined cocktails, and then infused back into
the patient (Figure 1). Theoretically, these antigen-activated DCs
can successfully boost the immune response. Recent preclinical
studies of osteosarcoma DC vaccines are listed in (Table 1). They
can be classified into three major groups based on the protocols
for loading various sources of antigens (33): (1) DCs co-cultured
with peptides, proteins, or tumor-cell lysates; (2) DCs transfected
with DNA, RNA coding for antigens, or total RNAs derived
from tumor cells; and (3) fusions between DCs and devitalized
tumor cells. Yu et al. (23, 24) tested the efficacy of osteosarcoma
DC vaccines either fused with whole-tumor cell or transduced
with total tumor RNA.Most immunized tumor-free rats acquired
partial or complete protection from tumor challenge. In addition,
vaccination induced tumor suppression in tumor-bearing mice
(23, 24). Other studies tested the potential of combination
therapy consisting of a DC vaccine and targeted drugs such
as anti-transforming growth factor-β (TGF-β)/glucocorticoid-
induced tumor necrosis factor receptor (GITR) antibodies
(30, 32). The results of these studies showed that primary
and metastatic tumor growth was inhibited. In addition, the
tumor microenvironment (TME) was remodeled with reduced
number of regulatory T lymphocytes (Tregs), reduced levels
of immunosuppressive cytokines, and an increased number of
CD8+ T lymphocytes (30, 32). However, DC vaccines were less
effective for the treatment of osteosarcomas in clinical trials (34–
36). For instance, only two out of 12 patients exhibited a strong
anti-tumor immune response, and none exhibited any clinical
effects, after receiving 3 weekly DC vaccine administrations (35).
However, DC vaccines were well-tolerated in all the clinical trials.

Three explanations can be proposed for the lack of clinical
benefits in patients. (1) Compromised quality and quantity of
the immune effector cells in patients. Osteosarcoma patients
commonly receive a full course of upfront chemotherapy, which
may damage the innate and adaptive immune effectors and thus
limit their availability and efficacy to respond to the increased
antigen presentation. (2) Poor migration of effector cells to
the tumor site, probably due to down-regulation of chemokine
expression. (3) Other strong immunosuppressive mechanisms,
for example, immune checkpoints on immune cells. An effective
cancer vaccine should be able to overcome tumor-associated
immune suppression and reinstate immune surveillance (37).
Therefore, increasing the ratio of active effector cells to tumor
target cells, enhancing the infiltration of the effectors, or
remodeling the TME in combination with administering DC
vaccines may enhance antigen presentation, immune response,
and clinical efficacy.

MACROPHAGES

In normal bone biology, osteoclasts, which are highly specialized
macrophages, are involved in bone resorption and have
central functions in bone homeostasis (1). Macrophages in
the vicinity of osteosarcoma cells are identified as tumor-
associated macrophages (TAMs). They consist of a large variety
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FIGURE 1 | Basic procedure of adoptive transfer of innate immune cells. NKT cells, NK cells, γδ T cells, and DCs are isolated from a patient’s PBMCs, expanded and

activated ex vivo, and then infused back into the body. In particular, γδ-APC and DCs need to be loaded with tumor antigen(s).

of subpopulations, which were initially classified as anti-
tumor M1-polarized macrophages and pro-tumor M2-polarized
macrophages (38). TAMs infiltrate massively into osteosarcoma
tissues and contribute to tumor progression through multiple
pathways. In preclinical models, macrophages recruited by
interleukin (IL)-34 released by osteosarcoma cells promoted
tumor progression and the metastatic process (39). Han et al.
(40) found that osteosarcoma patients with detectable metastasis
at diagnosis have more TAMs in the primary site. Interestingly,
TAMs occurred at a higher rate in osteosarcoma lung metastases
than in the corresponding primary lesions and promoted lung
metastasis and induced epithelial-mesenchymal transition in
osteosarcoma by activating the cyclooxygenase (COX)-2/signal
transducer and activator of transcription (STAT)-3 axis (40).
Additionally, Han et al. revealed that the number of M2-
TAMs was correlated with the frequency of suppressive T-
cell immunoglobulin and mucin-domain containing-3 (TIM-
3)+ programmed cell death 1 (PD-1)+ T lymphocytes in
osteosarcoma patients (41). TIM-3/Gal9 interactions between
T cells and monocytes have been shown to resulted in an
immunosuppressive response (42). These results indicate that
TAMs promote tumor growth by suppressing intra-tumor T-
lymphocytes. However, several studies have reached different

conclusions. A study by Buddingh et al. demonstrated that
TAMs were associated with metastasis inhibition in high-grade
osteosarcoma patients (43). This result was recently confirmed
in orthotopic osteosarcoma mouse models (44). Moreover, a
biopsy study revealed that a high level of CD163 (a marker
of M2-polarized macrophages) was related to longer metastasis
progression-free survival (MPFS), and CD68 (a marker for
macrophages) exhibited a similar association (45). The possible
reason may be that the polarization/phenotype and infiltration of
TAMs change dynamically during tumor growth, and the current
studies do not fully represent the whole dynamic process of TAMs
in the TME.

Despite the contradictory roles of TAMs in the TME, three
therapeutic strategies targeting TAMs have shown potential
for treating osteosarcoma. (1) Preventing polarization of
M1 macrophages to M2, or directly suppressing the M2
phenotype. Pharmacological therapy for the treatment of
osteosarcoma using all-trans retinoic acid (46), resveratrol
(47), and dihydroxy coumarins (48) has shown favorable
results involving the suppression of M2-polarized macrophages.
(2) Enhancing non-TAM macrophages recruitment. A study
showed that upregulation of Secreted Protein, Acidic and Rich
in Cysteine-like 1 (SPARCL1) protein induced osteosarcoma
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TABLE 1 | Pre-clinical studies of DC-based vaccines for osteosarcoma.

Type of DC vaccine Study type Ancillary therapy Effect References

Autologous DCs transfected with

total tumor mRNA

In vitro CIK cells Effective osteosarcoma cytolysis (19)

In vivo None Induction of specific CTL responses,

tumor rejection in 70% of vaccinated

tumor-bearing rats, and development

of long-term immunological memory

to reject a subsequent tumor

rechallenge

(22)

In vivo None Induction of specific CTL responses,

tumor rejection in 80% of vaccinated

tumor-bearing rats and development

of long-term immunological memory

to reject a subsequent tumor

rechallenge

(23)

Allogeneic DCs fused with tumor

cells

In vivo None Protection from tumor challenge in

70% of pre-vaccinated rats and tumor

rejection in 60% of tumor-bearing rats

(24)

In vitro None Effective activation of T cells (25)

Autologous DCs fused with

tumor cells

In vitro None Effective activation of T cells (26)

In vivo None Atrophy or disappearance of tumor

bodies and higher survival times and

rates

(27)

Autologous DCs loaded with

tumor cell lysate

In vitro None Increased induction of CTL activity (28)

In vivo None Increased number of CD8+ T

lymphocytes in the metastatic areas,

and reduced pulmonary metastases

(29)

In vivo Anti-TGF-β

antibody

(30)

In vivo Anti-CTLA-4

antibody

(31)

In vivo Anti-GITR

antibody

Increased number of CD8+ T

lymphocytes in tumor tissue and

serum, inhibition of primary tumor

growth, and prolonged survival

(32)

cells to secrete chemokine ligand 5, resulting in macrophage
recruitment. The recruited macrophages exerted anti-tumor
effects and inhibited osteosarcoma metastasis (49). (3) Activating
macrophages. Mifamurtide, an immunoadjuvant currently
approved for osteosarcoma therapy in the European Union,
can activate the tumoricidal properties of macrophages and
inhibit human osteosarcoma cell growth (50, 51). A report from
the international Children’s Oncology Group found that the
addition of mifamurtide to chemotherapy significantly improved
overall survival from 70 to 78% and resulted in a trend toward
improved event-free survival (EFS) among patients with no signs
of metastasis (52). Similar benefits were observed in patients
with metastatic osteosarcomas, although the results were not
statistically significant (53).

NATURAL KILLER CELLS

NK cells express a repertoire of activating and inhibitory
receptors (Table 2) that recognize altered expression of proteins

on target cells, allowing for control of NK cell functions. After
activation, they exhibit spontaneous cytolytic activity against
cells undergoing malignant transformation (54). Recently,
immunologists found that NK cells could stimulate DC
recruitment into the TME, resulting in inhibition of tumor
growth (55). Osteosarcoma patients had lower numbers of NK
cells at the time of diagnosis compared to normal controls (56).
After IL-2 administration and polychemotherapy, osteosarcoma
patients had increased numbers, and increased activity, of NK
cells in the blood, the magnitude of which strongly correlated
with the clinical outcomes (57). These data indicate that NK
cells have anti-tumor immune activity and play a role in
immune surveillance in osteosarcoma patients. Importantly,
osteosarcoma cell-surface molecules make osteosarcoma cells
particularly susceptible to NK cell-mediated killing. CD54 and
CD58 (both of which are adhesion molecules) are fully expressed
on osteosarcoma cells, allowing for easy recognition by, and
a strong association with, NK cells (58, 59). In addition,
human leukocyte antigen (HLA) class I (a ligand for inhibitory
receptors on NK cells) is typically downregulated (3), while
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TABLE 2 | Activating and inhibitory receptors on human NK cells.

Type Receptors Ligands

Activating receptors NKG2D MICA/B, ULBP1–4

CD94-NKG2C HLA-E

KIR2DL4 HLA-G

KIR2DS1 HLA-C2

KIR2DS2 HLA-C1

KIR2DS3 Unknown

KIR2DS4 HLA-A11

KIR2DS5 Unknown

KIR3DS1 HLA-Bw4

NKp30 B7H6, BAT3, pp65 of HCMV, viral HA

PfEMP1 of Plasmodium falciparum

NKp46 Heparin, viral HA and HN

NKp44 Viral HA and HN, PCNA,

proteoglycans

DNAM-1 CD112, CD155

Inhibitory receptors KIR2DL1 HLA-C2

KIR2DL2 HLA-C1

KIR2DL3 HLA-C1

KIR3DL1 HLA-Bw4

KIR3DL2 HLA-A3, -A11

NKR-P1A LLTI

CD94-NKG2A HLA-E

ILT2 (CD85j) HLA-A, -B, -C, HLA-G1, HCMV UL18

CD244(2B4) CD244(2B4)

major histocompatibility complex class I chain-related protein
A/B (MICA/B) and UL16-binding protein (ULBP) (ligands for
activating receptors on NK cells) (60, 61) are overexpressed on
osteosarcoma cells, allowing for easy activation of NK cells.

Treatment of patients with cells that have been isolated,
manipulated, and expanded ex vivo, and then reinfused into the
patient, is called adoptive cell therapy (ACT) (Figure 1). Infused
immune cells migrate and infiltrate into the tumor site and
mediate antitumor effects. There are three ancillary strategies
to further improve the therapeutic effectiveness of adoptive NK
cell transfer in osteosarcoma immunotherapy (Table 3). First,
epigenetic drugs, such as histone deacetylase inhibitors (HDACi,
e.g., valproic acid [VPA], entinostat) and DNA-methylation
inhibitors (DNMTi, e.g., hydralazine) can increase the expression
of ligands for activating receptors (MICA/B, ULBP, and CD155)
or death receptors (Fas) on osteosarcoma cells, enhancing
NK cell-mediated lysis (62, 63, 65). Another DNA-methylation
inhibitor, decitabine, has been shown to enhance γδ T
cell-mediated cytotoxicity by inducing ligands for activating
receptors (natural killer group 2D, member D [NKG2D] ligands
[NKG2DLs]) on osteosarcoma cells (12). Combining decitabine
with the NK cells might be equally effective for treating
osteosarcoma. Additionally, some traditional chemotherapeutic
drugs (including doxorubicin, cisplatin, and gemcitabine) have
been found to increase NK cell-activating ligand expression in
tumors (71). Though similar studies in osteosarcoma are rare,

chemotherapeutic drugs can modulate death receptors (DRs)
on osteosarcoma cells, which may make them more sensitive
to Fas-mediated NK cell cytotoxicity. For example, gemcitabine
up-regulated cell-surface Fas expression and was effective
in treating osteosarcoma lung metastases (72). Interestingly,
treatment with cisplatin could not upregulate the cell-surface
Fas antigen but it did sensitize human osteosarcoma cells to
Fas-mediated apoptosis by down-regulating the expression of
FLICE inhibitory protein long form (FLIP-L). Second, cytokine
therapy can enhance the conjugate-forming capacity of NK
cells to osteosarcoma targets by augmenting the expression of
CD18 and CD2 (68) (both of which are adhesion molecules
on NK cells), and intercellular adhesion molecule (ICAM)-
1 (67) and fibronectin (69) (both of which are adhesion
molecules on osteosarcoma cells). Interestingly, cytokine therapy
can also increase the killing activity of NK cells. For instance,
IL-15, the most promising NK cell-activating cytokine, can
strongly enhance NK cell-mediated cytolytic activity toward
chemotherapy-resistant osteosarcoma (60, 66). IL-2 can also
strongly augment NK cell activity (73). It has been widely shown
that, in neuroblastoma, IL-2 administration combined with
immunotherapy (involving anti-GD2 antibody) enhanced NK
cell proliferation and cytotoxicity (74), and showed promising
results in clinical trials (75). Importantly, IL-2 aerosolization
in dogs and mice with osteosarcoma lung metastasis similarly
enhanced the local proliferation and cytotoxicity of NK cells
and induced metastatic regression (76, 77). Third, monoclonal
antibodies can target various receptors on NK cells to improve
NK cell cytotoxicity. One approach is to develop a monoclonal
antibody (mAb) to facilitate antibody-dependent cell-mediated
cytotoxicity (ADCC) against osteosarcoma cells. Cetuximab, a
mAb that targets epidermal growth factor receptor (EGFR) on
target cells, with an Fc region that binds to CD16 on NK cells,
increases NK-dependent lysis of EGFR-expressing osteosarcoma
cell lines by enhancing ADCC (70). Another approach is to block
the inhibitory NK cell receptors (such as NKG2A or KIR2DL-
1,−2, and−3) using mAbs (78, 79). However, this approach has
not been evaluated for treating osteosarcoma. Emerging evidence
has shown promising strategies for osteosarcoma treatment,
and carefully designed clinical trials may demonstrate the
effectiveness of these therapies.

Genetic engineering of immune cells can endow them
with additional antitumor specificity. For instance, transduction
of precise and functionally active chimeric antigen receptors
(CARs) into NK cells has led to stronger cytotoxicity toward
osteosarcomas. A receptor designated NKG2D-DAP10-CD3ζ
(comprising theNK cell- activating receptor NKG2D and two key
signaling molecules, DAP10 and CD3ζ) was recently developed.
Transduction with this chimeric receptor markedly increased
NKG2D surface expression on NK cells and the transmission of
activating signals. In a xenograft model of osteosarcoma, adoptive
transfer of these CAR-NK cells significantly decreased the overall
tumor burden (80). However, there are technical challenges to
overcome to obtain sufficient numbers of functionally active
NK cells from a patient’s blood. The emergence of the human
NK92 cell line consisting of activated NK cells may resolve
the challenges faced by CAR-NK cell-based therapy, as NK92
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TABLE 3 | Classification of immunomodulatory strategies for improving the killing effectiveness of adoptive NK cell transfer therapy against osteosarcoma.

Immunomodulatory strategy Mechanism Study type Comment

Epigenetic

drug

VPA Augmented expression of MICA/B on

tumor cells

Ex vivo VPA sensitized human osteosarcoma cells to cytotoxicity of

NK cells (62)

Entinostat Augmented expression of MICA/B,

ULBP, and CD155 on tumor cells

In vivo Entinostat failed to augment the efficacy of NK cell therapy in

a nude mouse model of human osteosarcoma lung

metastasis (63)

Entinostat Downregulation of the anti-apoptotic

protein, c-FLIP, and increased levels

of Fas within the membrane lipid rafts

on tumor cells

Ex vivo Entinostat sensitized osteosarcoma cells to NK cell-mediated

apoptosis (64)

VPA+

hydralazine

Augmented expression of MICA/B

and Fas on tumor cells

Ex vivo VPA combined with hydralazine enhanced the susceptibility of

osteosarcoma cells to Fas- and NK cell-mediated cell death

(65)

Cytokine IL-15 Enhanced DNAM-1 and NKG2D

signaling pathways

Ex vivo IL-15 enhanced cytolytic activity against

chemotherapy-resistant osteosarcoma cells (60)

IL-15 Prevention of down-regulation of

NKG2D on NK cells

Ex vivo IL-15 reversed inhibition of NK cell-mediated cytolytic activity

against osteosarcoma (66)

IL-12+IFN-

γ+IL-18

Enhanced expression of ICAM-I on

HOS cells

Ex vivo IL-12 enhanced NK-mediated cytolysis of HOS cells in the

presence of IFN-γ and with IL-18 (67)

IL-12+IL-2 Increased density of CD18 and CD2

molecules on NK cells

Ex vivo A combination of IL-12 and IL-2 increased lytic activity

against and binding to osteosarcoma cells (68)

IL-17 Increased expression of fibronectin on

U2 OS cells

Ex vivo IL-17 enhanced NK cell-mediated adhesion and cell lysis

activity against osteosarcoma (69)

Monoclonal

antibody

Cetuximab ADCC Ex vivo Cetuximab augmented cytolytic activity of resting NK cells,

which was specifically directed toward osteosarcoma

cells (70)

cell line is relative ease in ex vivo large-scale expansion and
effective receptor transfection (81). Adoptive transfer of NK-92
cells transduced to express various CARs was shown to cause
tumor regression in various tumor xenografts (82, 83). CAR-
NK-92 cell-based therapy is currently being evaluated in clinical
trials for CD33+ acute myeloid leukemia (AML; NCT02944162)
and CD7+ leukemia and lymphoma (NCT02742727). Therefore,
utilizing NK-92 cell line for producing sufficient CAR-NK
cells (e.g., NKG2D-DAP10-CD3ζ-transduced NK92 cells) to
effectively target and eliminate osteosarcoma is a promising
strategy that requires further evaluation. However, NK92 cell
line must be irradiated before being infused into patients (81),
which limits the survival and proliferation of NK cells—two key
factors that are known to influence the efficacy of NK cell-based
immunotherapy (84). In contrast, large-scale differentiation of
human induced pluripotent stem cells (iPSCs) into NK cells (with
phenotypic and functional similarities to NK cells isolated from
peripheral blood) is relatively easy (85). After CAR transduction,
the efficiency of NK cell production from iPSCs is similar to the
efficiency of NK cell production from non-CAR-expressing iPSCs
(86). Moreover, NK cells derived from human iPSCs that express
CARs (CAR-iPSC-NK cells) have a typical NK cell phenotype. In
a mouse xenograft model of ovarian cancer, CAR-PSC-NK cells
(with a CAR comprising the NK cell-activating receptor NKG2D,
the co-stimulatory domain 2B4 and the key signaling molecule
CD3ζ) showed increased in vivo expansion and improved
activity with less toxicity (87). CAR-iPSC-NK cells mediate
their activity without requiring HLA matching; therefore,

theoretically, they can also be used to treat other solid tumors
including osteosarcoma. Recently, clustered regularly interspaced
short palindromic repeats (CRISPR)/CRISPR-associated protein
9 (Cas9) technology has been used to edit CAR T cells (88).
For example, knocking out immune checkpoints may protect
CAR T cells from being exhausted (89). Knocking out αβ T-cell
receptors (TCR) (88) or β2-microglobulin (β2M) (90) minimized
the risks associated with “off-the-shelf ” CAR T cells. Delivering
a CAR gene to a specific locus, TCR α constant (TRAC), yielded
therapeutic CAR T cells that were more potent (91). To achieve
a robust anti-tumor effect, applying CRISPR/Cas9 technology to
edit CAR-NK cells (e.g., by knocking out immune checkpoints)
should be further investigated.

NATURAL KILLER T CELLS

NKT cells express molecular markers of both NK cells (e.g.,
NK1.1, Ly49, NKRs, and KIRs) and T cells (e.g., αβ TCR, CD44,
CD69, and CD122). In tumor immunity, activated NKT cells
are able to kill tumors via different NK and T cell-associated
mechanisms (92, 93). In addition, high numbers of tumor-
infiltrating NKT cells correlated with good clinical outcomes
in cancer patients (94, 95). However, in some tumor types, the
number of NKT cells was higher compared to the number in
normal tissue (94, 96). Further studies focusing on function
and phenotype of tumor-infiltrating NKT cells showed that
they expressed fewer activating receptors and produced lower
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amounts of pro-inflammatory cytokines compared with para-
carcinoma tissues (97, 98).

A similar contradictory function of NKT cells in osteosarcoma
immunity was observed. One research group found that
NKT cells purified from human PBMCs and expanded ex
vivo enhanced osteosarcoma cell death induced by standard
chemotherapy (doxorubicin, cisplatin, and methotrexate) (99).
In contrast, other researchers found that tumor-infiltrating
NKT cells had a negative regulatory role, involving suppression
of CTL function (100). A hypothetical model of NKT cell
functional transformation in osteosarcoma is as follows: during
the early tumor stage, the NKT cell subpopulation exerts
effective antitumor immune responses against tumors. However,
during tumor progression, NKT cells become overstimulated
and anergic, and they finally transform, contributing to tumor
immune escape (101).

Two major aspects of current NKT cell therapeutic strategies
should be carefully considered in light of this hypothetical
model. (1) in situ expansion and activation of NKT cells in
early tumor stages or adoptive transfer of ex vivo expanded
and activated autologous NKT cells into patients (Figure 1). α-
galactosylceramide (GalCer) or α-GalCer-pulsed autologous DCs
is a common strategy to activate NKT cells in vivo or ex vivo (102,
103). Recent studies found that iPSCs might be more effective at
amplifying the numbers of autologous NKT cells (104, 105). (2)
Skewing of pro-tumor NKT cells toward anti-tumor subtypes in
advanced tumor stages. The addition of IL-12 (106) or chemical
modification of α-GalCer (107) skewed the conventional α-
GalCer-produced TH1- and TH2-associated cytokines toward
only TH1-associated cytokine production. These data indicate
that pro-tumor NKT cells were transformed to anti-tumor
subtypes following this intervention.

γδ T CELLS

It has been found that γδ T cells can mediate effective antitumor
immune responses. In a methylcholanthrene (MCA)-induced
sarcoma model, γδ T cell-deficient mice had an increased
incidence of tumor development (108). Preclinical studies found
that γδ T cells could directly kill malignant cells through the
generation of cytokines (tumor necrosis factor [TNF]-α and
interferon [IFN]-γ), upregulation of activating receptors or
their ligands (Fas-L, NKG2D, TRAIL, and TNF), expression
of CD16 for ADCC, and release of granzymes and perforin
(109). Recent studies indicated that, in the short-term, γδ T
cells possess phenotypic characteristics of DCs after activation
by phosphoantigens (110). The effect of priming a strong CD8+

T cell-mediated anti-tumor response using peptide-pulsed γδ T
cells was even more powerful than the effect induced by DCs
(111, 112).

The main advantages of adoptive γδ T cell transfer
immunotherapy (Figure 1) are as follows: (1) γδ T cells can
infiltrate the TME (113, 114); (2) they exert cytotoxic activity
against cancer cells in an HLA-independent manner; and (3)
they can be expanded and activated ex vivo by simple yet
effective protocols (115). Kato et al. (116) initially reported the

ability of γδ T cells to directly recognize and kill osteosarcoma
cell lines NY, SAOS2, and OST. However, these cell lines
were only moderately susceptible to γδ T cell cytotoxicity.
Therefore, later studies have focused on adjuvant therapies
to potentiate the immunosensitivity of osteosarcoma cells to
γδ T cells (Table 4). Zoledronate (ZOL) significantly reduces
skeletal complications in patients with bone metastases from
solid tumors (120) and inhibits osteosarcoma growth (121).
Our group and other researchers demonstrated that ZOL
could also enhance the anti-osteosarcoma activity of γδ T
cells (14, 117). However, the specific mechanisms have not
been elucidated and a high dose of ZOL is necessary to
achieve this effect, while the ZOL concentration in the blood
declines rapidly (122). Recently, a study by our group found
that a ZOL-related mechanism was associated with increased
accumulation of mevalonate pathway intermediates (11). We
also found that VPA (the HDACi) and ZOL had a synergistic
effect on the enhancement of γδ T cell-mediated cytotoxicity
against osteosarcoma cells by facilitating the accumulation
of mevalonate pathway intermediates (11). More usefully,
this combination therapy reduced the ZOL dose required in
adoptive γδ T cell transfer immunotherapy, facilitating its
clinical application (11). In addition, the expression of human
epidermal growth factor receptor 2 (Her-2) was associated with
tumor progression and poor prognosis in osteosarcoma patients
(123). However, no therapeutic effectiveness was observed pre-
clinically or clinically for trastuzumab (an anti-Her-2monoclonal
antibody)-driven osteosarcoma therapy (124). However, Liu
et al. reported that trastuzumab aided γδ T cell-mediated lysis
of osteosarcoma cells by enhancing ADCC (13), suggesting a
promising novel combination regimen to treat osteosarcoma.
Additionally, it was reported that bispecific antibodies could
enhance the cytotoxicity of γδ T cells. For example, a research
group designed a bispecific antibody, Her2/Vγ9, that binds
to Vγ9 on γδ T cells and Her-2 on pancreatic tumor cells
(125). Infusion of this novel bispecific antibody improved
recognition and binding between adoptively transferred γδ T
cells and tumor cells, significantly reducing pancreatic tumor
growth in mouse models. This result suggests that Her2/Vγ9
antibody might promote the capacity of γδ T cells to lyse
osteosarcoma cells to a greater extent than Her2 antibody.
Furthermore, IFN-γ and decitabine (a DNA demethylation drug)
increased γδ T cell cytotoxicity against osteosarcoma cells by
increasing the expression of Fas and NKG2DLs on tumor cell
surfaces (12, 118).

Recent achievements in cell engineering and further studies
of γδ T cell physiology have provided an improved foundation
for improving γδ T cell-based immunotherapies. Three potential
perspectives related to potentiating the cytotoxicity of γδ T
cells are as follows. (1) T cells transduced with TCRs that
specifically target the NY-ESO-1 antigen on tumors are called
NY-ESO-1-specific TCR-engineered T cells. These cells can be
activated upon encountering NY-ESO-1 antigens presented by
HLA molecules and they then specifically target and kill tumor
cells. Adoptive transfer of NY-ESO-1-specific TCR-engineered
T cells represents a potentially effective therapeutic approach
for the treatment of osteosarcoma (126). However, introduction
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TABLE 4 | Chronological summary of studies on γδ T cell therapy against osteosarcoma.

References Ancillary therapy Study type Cell type and source Mechanism Result

Muraro et al.

(117)

ZOL + IL-2 In vitro γδ T cells from HD Unknown Potent anti-tumor activity of γδ T cells

against osteosarcoma cell lines

Li et al. (118) IFN-γ In vitro γδ T cells from HD Up-regulated expression of Fas on

osteosarcoma cell lines

Enhanced cytotoxic effect of γδ T

cells against osteosarcoma cell lines

Li et al. (14) ZOL In vitro Vγ9Vδ2 T cells from OP

and HD

TCR-mediated and partly

NKG2D-mediated granule exocytose

and TRAIL pathways

Potent anti-tumor activity of Vγ9Vδ2T

cells

Liu et al. (13) Trastuzumab +

ZOL

In vitro Vγ9Vδ2 T cells from HD ADCC More efficient ability of Vγ9Vδ2T cells

to recognize and lyse osteosarcoma

cell lines.

Li et al. (119) Celastrol In vitro γδ T cells from OP and

HD

Up-regulation of death receptors 4/5

on osteosarcoma cell lines

Increased osteosarcoma cell lysis by

γδ T cells

Wang et al.

(11)

ZOL+VPA In vivo γδ T cells from OP and

HD

Increased accumulation of the

mevalonate pathway intermediates in

osteosarcoma primary cells and cell

lines

Enhanced γδ T cell migration and

antitumor effect.

Wang et al.

(12)

Decitabine In vivo γδ T cells from OP Increased expression of NKG2DLs on

osteosarcoma cell lines

Enhanced antitumor effect of

combination therapy of γδ T cell

infusion and decitabine administration

HD, healthy donors; OP, osteosarcoma patients.

of α/β chains has the potential to result in mispairing with
endogenous α/βTCR chains, resulting inmixed TCR dimers with
unknown specificities, which can lead to adverse complications
such as autoimmune responses and toxicity. However, previous
studies showed that α and β TCR chains could not form
heterodimers with γ and δ TCR chains when transduced
into γδ T cells (127). Meanwhile, αβ TCR-transduced γδ T
cells exhibited high levels of cytokine release and cytotoxic
activity (127, 128). Therefore, using NY-ESO-1-specific αβ TCR-
transduced γδ T cells to treat osteosarcoma may be a safe
and effective strategy. (2) γδ T cells may be ideal candidates
for cell vaccine manufacturing (Figure 1). The advantages of
γδ T cell vaccines compared to DC vaccines are as follows
(129): first, obtaining and expanding γδ T cells to create an
unlimited number is easy, economical, and highly selective;
second, γδ T cell vaccines display excellent survival during ex

vivo preparation, allowing for possible freezing for storage and
shipment to cancer clinics in large quantities; third, the status
of γδ T cells is uniform (effector-memory), while DCs remain
heterogeneous (immature-mature-exhausted); finally, γδ T cells
have functional uniformity with stable induction of primarily
pro-inflammatory responses. (3)Mechanistic target of rapamycin
(mTOR) is important for regulating T cell metabolism and
function. Recent studies have demonstrated the important role
of mTOR in γδ T cells. Rapamycin (the US Food and Drug
Administration [FDA]-approved mTOR inhibitor) increased the
yield and durability of the elicited γδ T cell response (130). Later
studies demonstrated that the immune stimulatory effects of
rapamycin are mediated by boosting perforin release, enhancing
tumor core infiltration, and upregulating NKG2D and TNF-α
(131, 132). Therefore, it is conceivable that inhibition of mTOR
receptors could contribute to γδ T cell-mediated osteosarcoma
cell killing.

COMBINATION THERAPY WITH IMMUNE
CHECKPOINT INHIBITORS

Immune checkpoint molecules are key modulators of the anti-
tumor T cell immune response by a narrow definition. Actually,
multiple immune checkpoint molecules are also expressed on
innate immune cells, which function as immunomodulators.
Their interactions activate either inhibitory or activating immune
signaling pathways. Indeed, metabolic pathways play a critical
role in the functional modulation of immune cells and could, by
extension, be considered as immune checkpoints. Here, we focus
on the inhibitory immune checkpoints that influence adaptive
and innate immune cells. Blocking inhibitory checkpoints can
reverse the exhaustion state of immune cells and inhibit tumor
growth. Importantly, one clinical trial demonstrated the immune
response to ICPIs in osteosarcoma patients (15) and rational
combinations of immunotherapies, particularly those involving
ICPIs, have demonstrated increased efficacy in cancer patients
(133). Therefore, ICPIs have the potential to improve efficacy of
innate immune cell-based therapy for osteosarcoma.

Programmed Cell Death 1
Programmed cell death 1 (PD-1) is a receptor expressed on
the surface of T lymphocytes, and innate immune cells. PD-1
binds a specific ligand, programmed cell death ligand 1 (PD-
L1), which is expressed on several types of malignant cells
and APCs in tumor foci. It is widely accepted that PD-1 is
an exhaustion marker for CTL (134), which is the main anti-
tumor effector cell during checkpoint blockade therapy. A study
aiming to find predictors of DC vaccine responses showed that
glioblastoma patients with tumor-infiltrating lymphocytes (TILs)
with a higher PD-1+/CD8+ ratio had worse prognosis (135).
These data indicated that DC vaccine-primed CD8+ T cells
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became exhausted via the PD-1-PD-L1 axis, which is one of
the reasons that DC vaccines have showed unsatisfactory results
in osteosarcoma patients. This obstacle might be overcome by
ICPIs. On the other hand, evidence indicates that a mechanism
of acquired resistance to ICPIs involved alterations in antigen
presentation (136). This problem can be solved by growing DC
vaccines ex vivo. Therefore, PD-1 inhibitors and DC vaccines
have complementary roles regarding antitumor efficacy (37,
137, 138). For instance, an ex vivo study demonstrated that
anti- PD-1 treatment enhanced T-cell responses induced by
DC vaccines fused with myeloma cells (137). Furthermore,
in melanoma-bearing mice, anti-PD-1 treatment increased the
function and infiltration of TILs induced by DC vaccines,
and augmented anti-tumor activity (138). Currently, there are
ongoing phase I/II clinical trials studying the effects of different
types of DC vaccines combined with nivolumab (a mAb that
blocks PD-1) for the treatment of glioma (NCT02529072),
glioblastoma multiforme (NCT03014804, NCT02529072), and
solid tumors (NCT02775292).

Interestingly, some cancer types exhibit lowMHC I expression
and/or neoantigen burden, which renders them resistant to
recognition by CD8+ T cells, but sensitive to PD-1/PD-L1 axis
blockade (139). This suggests that other immune cell types
might also be suppressed by this axis. PD-1 expression on NK
cells has been detected in cancer patients, including those with
Kaposi sarcoma and ovarian carcinoma (140, 141). Preclinical
observations showed that PD-L1 upregulation on several types
of tumor cells or DCs suppressed NK cell-mediated tumor
cell lysis, and blockade of PD-1 restored NK cell anti-tumor
activity and inhibited tumor growth (141, 142). Importantly, a
recent clinical study demonstrated that blocking PD-1 and PD-
L1 elicited a strong NK cell response that was indispensable for
the full therapeutic effects of immunotherapy (139). These data
suggested the importance of the PD-1/PD-L1 axis in inhibiting
NK cell responses in vivo and revealed that NK cells mediate
the effect of PD-1/PD-L1 blockade immunotherapy. In addition,
combination therapy consisting of NK cell transfusion and PD-1
blockade resulted in more potent cytolytic activity against tumor
cells in vitro (142, 143). Unfortunately, a phase II clinical trial
evaluating the effects of pembrolizumab, an anti-PD1 mAb, on
the NK cell exhaustion phenotype in patients with unresectable
stage III/IV melanoma (NCT03241927) has just been terminated
because of difficult participant enrollment. Otherwise, this trial
can aid in understanding how NK cell activity and exhaustion
interplay with PD-1 expression and function, and it can lead to
the development of more effective combination therapies.

PD-1+ TAMs, which exhibited an M2-like surface profile and
M2-like functional characteristics and suppressed CD8+ (144)
and CD4+ (145) T cell function, were detected in human cancers.
In a human LM7 osteosarcoma mouse model, macrophages in
lung metastases highly expressed PD-1 (146). PD-1 blockade
significantly decreased the number of osteosarcoma lung nodules
by increasing the macrophage tumor infiltration and polarization
from M2 to M1 (146). Other research showed that PD-1
levels on tumor-infiltrating DCs were increased during tumor
progression, and these DCs responded poorly to tumor antigens,
and suppressed T cell activity and infiltration (147). In a murine

model of ovarian cancer, targeting PD-1 on DCs significantly
enhanced antigen-specific T cell responses and slowed tumor
growth (147).

PD-1/PD-L1 expression was increased in osteosarcoma
patients and correlated with poor prognosis (148, 149). In
preclinical trials, PD-1 blockade resulted in anti-metastatic
effects in osteosarcoma murine models (150, 151). However,
PD-1 blockade was ineffective in an orthotopic osteosarcoma
model (152). In addition, data from a multicenter, two-cohort,
single-arm, open-label, phase II trial revealed that the effect of
pembrolizumab (a PD-1 inhibitor) on osteosarcoma patients was
poor (only one [5%] of 22 patients showed a partial response)
(15). Therefore, it was urgent to improve the therapeutic effects
of PD1/PDL-1 inhibitors. Recently, oncologists defined tumors
lacking various inflammatory immune cell infiltration as “cold
tumors,” and the opposite as “hot tumors” (153). Hot tumors are
more susceptive to ICPIs. However, osteosarcomas are relatively
“cold tumors.” A potential approach for reducing acquired
resistance to ICPIs is turning a cold tumor into a hot tumor,
resulting in enhanced infiltration of inflammatory immune cells
(both adaptive and innate immune cells) into the tumor (154,
155). Therefore, further investigation of combination therapy
involving an ICPI with an innate immune cell-based therapy
(such as ACT and vaccines) for the treatment of osteosarcoma
may be of value.

Cytotoxic T-Lymphocyte-Associated
Protein 4
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is
another major immune checkpoint molecule on T cells induced
by activation. CTLA-4 negatively regulates T cell function (156),
and blocking CTLA-4 can reactivate T cells and enhance the
efficacy of osteosarcoma vaccines. For example, in a C3H murine
osteosarcoma model, tumor lysate-pulsed DCs with CTLA-4
blockade prevented lung tumor metastasis (31). Furthermore,
a clinical study on the combined effects of a synthetic mRNA-
electroporated DC vaccine and ipilimumab (an anti-CTLA-4
mAb) for patients with pretreated advanced melanoma showed
a 6-month disease control rate of 51% and a promising
overall response rate of 38% (eight complete and seven partial
responses) (157). These results greatly increased interest in
combination therapies involving vaccines and ICPIs. However,
studies focusing on CTLA-4 expression on NK cells are scarce.
CTLA-4 was detected on tumor-infiltrating NK cells in tumor-
bearing mice and was closely associated with the inhibition of
DC-induced IFN-γ production by NK cells (158). No studies
have evaluated the expression of CTLA-4 on human NK cells.
However, CTLA-4 may exist on human NK cells and may
modulate their effector functions in cancer immunity.

CTLA-4 is significantly associated with carcinogenesis of
osteosarcomas, which provides a potential therapeutic target
(159). In a preclinical study, co-inhibition of CTLA-4 and PD-
L1 resulted in complete control of metastatic osteosarcoma (151).
Combined therapy involving anti-CTLA-4 antibody and a DC
vaccine led to a similar outcome (31). Future studies should
explore the possibility of combining anti-CTLA-4 mAb and NK
cell-based therapy.
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T-cell Immunoglobulin and Mucin-Domain
Containing-3
T-cell immunoglobulin and mucin-domain containing-3 (TIM-
3) is expressed by innate and adaptive immune cells. Importantly,
all TIM-3+ T cells in cancer patients co-express PD-1 (160).
The current view is that CTLs with TIM-3-PD-1 co-expression
are functionally more “exhausted” than those that express PD-1
alone (161, 162). Therefore, a DC vaccine combined with co-
inhibition of TIM-3 and PD-1 may further prime T cells and
maintain their cytotoxicity against malignant cells.

The inhibitory function of TIM-3 on innate immune cells
(including NK cells, NKT cells, DCs, and macrophages) is
consistent with its function on T cells (163). TIM-3 expression
on peripheral NK cells correlated with their exhausted phenotype
and predicted poor prognosis of patients with advanced
melanoma and lung adenocarcinoma (164–166). Blockade of
TIM-3 on NK cells from these patients increased NK cell-
mediated cytotoxicity and IFN-γ production. Interestingly,
researchers found that co-expression of TIM-3 and PD-1 is
a marker of functionally exhausted NK cells in advanced
tumors, as is the case for T cells (167). TIM-3 expression
on macrophages is associated with inhibitory function in
inflammatory diseases and cancers (168–170). For instance,
in hepatocellular carcinoma, TIM-3 expression on TAMs was
significantly enhanced by tumor-derived signals, which caused
the macrophages to undergo alternative activation and inhibited
CTL activation. Subsequent interference with TIM-3 on the
TAMs successfully suppressed hepatocellular carcinoma growth
(170). Recent studies showed that M1 macrophages had low
expression of TIM-3, providing further evidence of its negative
regulatory function in macrophages. In DCs, TIM-3 inhibits DC
activation and maturation via the Btk-c-Src signaling pathway
(171). In the TME, the interaction between TIM-3 and high-
mobility group box 1 (HMGB1) prevented activation of tumor
associated DCs by impeding sense of immunogenic nucleic acids,
thereby suppressing anti-tumor responses (172). In γδ T cells,
TIM-3 served as an exhaustion marker and protected the human
body from inflammatory attack in different diseases (173, 174).
Its role in tumor infiltrating γδ T cells has not been characterized.

Co-blocking CTLA-4 and PD-1 led to synergistic anti-tumor
effects (175, 176). Interestingly, anti-CTLA-4 antibody showed a
unique curative effect in anti-PD-1-resistant cancer (177). These
results indicate that TIM-3 plays an essential role in tumor
immunity. Therefore, TIM-3 is a candidate target for improving
the effect of innate immune cell-based therapy.

CD39/CD73 and Adenosine Receptors
In the TME, ATP conversion to ADP and/or AMP occurs in
the presence of CD39 (also known as NTPDase 1), while CD73
(also known as 5′-NT) dephosphorylates AMP to adenosine.
Accumulated extracellular adenosine exerts regulatory functions
by binding to one of four adenosine receptors (ARs), A1R, A2AR,
A2BR, and A3R (Figure 2).

A2AR activation increased cell-surface expression of PD-1
and CTLA-4 on T cells and inhibited proliferation and pro-
inflammatory cytokine production (178). Similarly, a recent

study showed that tumor-infiltrating CD8+ T cells expressed
high levels of CD39 and exhibited an exhausted phenotype
with impaired production of cytokines and high expression
of inhibitory receptors (179). These observations suggested
that CD39 was an immune checkpoint that could be targeted
to restore the T cell immune response against tumors. In
addition, genetic ablation or therapeutic inhibition of CD73
or AR improved the effector functions and infiltration of
CTLs, and significantly reduced tumor growth (180–182).
Importantly, these interventions augmented the efficacy of
adoptive T cell anticancer therapy against ACT-resistant
tumors (183, 184). These results indicated the potential to
improve the efficacy of vaccines by inhibiting the adenosinergic
pathway. Intravenous administration of CD73-specific small
interfering RNA (siRNA)-loaded chitosan-lactate nanoparticles
(ChLa NPs) potentiated the antitumor effects of a DC vaccine
in 4T1 breast cancer-bearing mice, with augmented CTL
effector function, improved T cell proliferations, and increased
production of inflammatory cytokines (185). Similarly, another
study demonstrated that co-targeting of A2AR and CD73 in
conjunction with a DC vaccine successfully reduced tumor
growth, prolonged survival, and enhanced specific antitumor
immune responses in the same mouse model of breast
cancer (186).

Notably, A2AR is abundantly expressed on NK cells (at a 5-
fold higher level, at the mRNA level, compared to that in T
cells), and A2AR activation inhibited NK cell cytotoxicity and
proliferation in several tumors (187–189). A recent study found
that co-inhibition of A2AR and PD-1 in a B16F10 lungmetastasis
model resulted in a therapeutic effect that was more dependent
on infiltrating NK cells than T cells (190). These findings indicate
an important role of A2AR regarding NK cell function in
tumor immunity. In addition, antagonism of A2AR reduced the
percentage of CD56bright NK cells in favor of accumulation of
mature CD56dim NK cells with high cytotoxic activity (191). This
suggested that A2AR antagonism could enhance adoptive NK
cell immunotherapy. Adenosine-differentiated DCs displayed
high levels of tolerogenic molecules (VEGF and indoleamine
2,3-dioxygenase [IDO]) and anti- inflammatory cytokines (IL-
10), which impaired the DC antigen presenting function and
subsequent T cell priming, resulting in accelerated tumor growth
in mice (192, 193). Selective inhibition of A2BR improved DC
activation and chemokine release, and subsequently increased
T cell infiltration and adaptive responses in mice, resulting in
reduced growth of carcinomas (194). Moreover, activation of the
A2AR pathway in DCs increased the expression of programmed
cell death 1 ligand 2 (PDL2, a ligand for the inhibitory receptor
PD1), which directly inactivated effector T cells (195). Similarly,
A2BR plays a prominent role in M2 polarization of macrophages
(196). Macrophages differentiated in the presence of adenosine
expressed arginase, IDO, and TGF-β, and had limited T cell
stimulatory activity (196). Additionally, TAMs expressing CD39
and CD73 contributed to tumor growth through the production
of adenosine (197, 198). Studies of the effects of adenosine-
related molecules on γδ T cells are sparse. Upregulation of
CD39 on human Vγ9Vδ2 T cells directly abrogated the γδ

TCR agonistic activity of phosphoantigens (199). Through this
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FIGURE 2 | Adenosine-mediated immunosuppression of immune cells. Expression of CD39 and CD73 generates adenosine, an immunosuppressive metabolite.

Activation of adenosine receptors (ARs) suppresses the proliferation and effector functions of cytotoxic lymphocytes, and promotes polarization toward exhausted or

immunosuppressive function. (A) CD39+ CD8+ T cells highly express other inhibitory immune checkpoints such as PD-1, TIM-3, and lymphocyte activating 3

(LAG-3). (A,B) On CD8+ T cells and NK cells, A2AR activation inhibits their proliferation. (A–C) On CD8+ T cells, NK cells, and NKT cells, A2AR activation impairs

their cytotoxic potential. (A,D) A2AR signal path on CD8+ T cells and DCs promotes the expression of other inhibitory immune checkpoints. (A,E) CD39 and CD73

expression on CD8+ T cells and macrophages contributes to adenosine accumulation. (D) On DCs, A2BR stimulation impairs DC antigen presentation and

subsequent T cell priming while inducing VEGF, IDO, and IL-10 secretion and subsequent T cell suppression. (E) Activation of A2BR on macrophages favors M2

phenotype polarization and induces arginase, IDO, and TGF-β, mediating T cell suppression. (F) The ecto-ATPase CD39 inactivates isoprenoid-derived Vγ9Vδ2T cell

phosphoantigens.

pathway, CD39 reduced Vγ9Vδ2 T cell activation and IFN-
γ production. This study revealed a previously unrecognized
immunoregulatory function of CD39, which is independent
of the adenosinergic pathway. A2AR activation also increased
anti-inflammatory cytokine production in NKT cells, indicating
that A2AR played a negative immune regulatory role in NKT
cells (200).

Recent studies showed that intratumoral hypoxia and
hypoxia inducible factor-1α (HIF-1α)-dependent pathways
up-regulated the tandem activities of CD39 and CD73,
leading to adenosine accumulation in the TME and tumor
immune escape (201, 202). Adenosinergic pathways have not
been characterized in osteosarcoma. However, studies have

shown that hypoxia contributed to human osteosarcoma
progression (203). It is conceivable that hypoxia-mediated
tumor protection is dependent on adenosinergic pathway-
mediated immunosuppression. Therefore, targeting CD39,
CD73, and ARs has the potential to reinstate osteosarcoma
immunity and improve immunosensitivity to innate immune
cell-based immunotherapy.

Clinical Studies of Innate Immune
Cell-Based Immunotherapy and Immune
Checkpoint Inhibitors
In this section, we mainly discuss the results of major clinical
studies and ongoing clinical trials for treatment of osteosarcoma
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TABLE 5 | Clinical trials of DC vaccination, cell infusion, and ICPIs for treating osteosarcoma.

Intervention Ancillary therapy Trial phase Status References

Autologous DCs loaded with tumor cell lysates None I Unknown (35)*

None I/II Unknown (36)*

Gemcitabine I Recruiting NCT01803152

Autologous DCs loaded with TAAs or TAA-derived

peptides (MAGE-A1, MAGE-A3, NY-ESO-1)

Decitabine I/II Completed NCT01241162

Pembrolizumab (targeting PD-1) None II Active, not

recruiting

NCT02301039

SHR1020 (targeting PD-1) Apatinib II Active, not

recruiting

NCT03359018

Nivolumab (targeting PD-1) with ipilimumab

(targeting CTLA-4)

None II Not yet recruiting NCT02982486

Nivolumab with or without ipilimumab None I/II Recruiting NCT02304458

None II Suspended NCT02500797

NK cell infusion None I/II Unknown NCT02409576

Haploidentical stem cell

transplantation

II Active, not

recruiting

NCT01807468

Hematopoietic cell

transplantation

II Recruiting NCT02100891

TAA, tumor-associated antigen.
*These studies were not found in ClinicalTrials.gov.

on innate immune cell-based immunotherapy and ICPIs for the
treatment of osteosarcoma. As discussed above, the results of the
initial clinical trials of DC vaccines were unsatisfactory (34–36),
possibly due to tumor-associated immune suppression. A recent
clinical trial (NCT01803152) has reported some improvements.
The DC vaccine used was similar to the previous study (34–
36), but the vaccine was combined with gemcitabine, which
inhibits myeloid-derived suppressor cells (MDSCs) that play
a vital role in tumor-associated immune suppression. In the
field of innate cell infusion, NK cells are at the forefront. In
an early clinical study, NK92 cells were infused into a patient
with advanced osteosarcoma, though no treatment response was
observed (204). More trial participants are required. We found
several ongoing studies of expanded, activated haploidentical
NK cell infusions for the treatment of sarcomas (these studies
are summarized in Table 5), which should provide information
on the effectiveness and safety of this approach. Only one
clinical study published results regarding the curative effects of
ICPIs for the treatment of osteosarcoma, which showed a 5%
response rate to pembrolizumab (a PD-1 inhibitor) (15). Multiple
clinical trials targeting PD-1 and/or CTLA-4 are ongoing
(Table 5), and we expect an improved curative effect, which
will provide a foundation for combination regimens involving
targeting PD-1 and/or CTLA-4 along with innate immune cell-
based immunotherapy.

COMBINATION THERAPY WITH
ONCOLYTIC VIRUSES

Oncolytic viruses (OVs) are emerging as a novel therapeutic
class, which selectively replicate in and lyse cancer cells without

harming normal cells. Like chemotherapy and radiotherapy, the

therapeutic outcomes of OVs are determined not only by direct
cancer cell lysis, but also by immune activation (205). Here, we

mainly discuss the innate immune responses induced by OVs.
Virus-infected cancer cells tend to down-regulate their MHC-

I molecules making themselves more sensitive to NK cells (206).
In this regard, several studies have been conducted to examine

the anti-tumor effect of the combination of NK cells with OVs. As
expected, combination therapy showed an additive or synergistic
anti-tumor effect (207, 208). In addition, OV infection can lead

to increased tumor infiltration of M1 type macrophages and
NK cells (209, 210). Furthermore, infected cells can trigger a
Toll-like receptor response due to the expression of pathogen-
associated molecular patterns (PAMPs) on the cell surface or due
to detection by intracellular components of Toll-like receptors
(211). Additionally, OV infection can cause the exposure of
calreticulin, HMGB-1, nucleic acids, and type I IFNs (212),
and the induction of immunogenic cell death (213), which
are essential ligands and innate immune sensing pathways for
activation of DCs and macrophages (7). Oncolysis by OVs could
also cause the release of tumor associated/specific antigens that
are then cross-presented by DCs, ultimately eliciting an adaptive
immune response against the tumor (214, 215). Some OVs, such
as reovirus (216) andM protein mutant vesicular stomatitis virus
(DeltaM51-VSV) (217), can directly activate DCs and facilitate
their antigen presentation function.

CONCLUSION

In view of the recent insights into the biology and immunology
of osteosarcoma, immunotherapy is becoming an increasingly
attractive treatment strategy. It is generally assumed that
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adaptive immune cells, especially CTLs, have the greatest
potential to eliminate tumors, due to their professional antigen
recognition activity and specific killing of tumors (218). However,
the characteristics of osteosarcomas (e.g., low expression of
MHC-I molecules, absence of specific tumor antigens, and
impaired antigen presentation) impede the anti-tumor capacity
of CTLs (3, 20). Innate immune cells have unique advantages
related to eliminating osteosarcoma due to their roles in
antigen presentation, antigen-specific T cell priming, and
MHC-independent direct cell killing. Efficacy can be further
improved by using auxiliary strategies such as epigenetic
modification, gene engineering, and mAb therapy. However,
existing immunosuppressive mechanisms, especially the immune
checkpoints imposed on immune cells, act as major obstacles
to efficacy of innate immune cell-based therapy. Considering

the role of OVs in induction of innate immune response, it is
reasonable to combine innate immune cell-based therapy with
ICPIs or OVs to treat osteosarcoma.
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