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Researchers have increasingly employed family-based or longitudinal study designs

to survey the roles of the human microbiota on diverse host traits of interest (e. g.,

health/disease status, medical intervention, behavioral/environmental factor). Such study

designs are useful to properly control for potential confounders or the sensitive changes in

microbial composition and host traits. However, downstream data analysis is challenging

because the measurements within clusters (e.g., families, subjects including repeated

measures) tend to be correlated so that statistical methods based on the independence

assumption cannot be used. For the correlated microbiome studies, a distance-based

kernel association test based on the linear mixed model, namely, correlated sequence

kernel association test (cSKAT), has recently been introduced. cSKAT models the

microbial community using an ecological distance (e.g., Jaccard/Bray-Curtis dissimilarity,

unique fraction distance), and then tests its association with a host trait. Similar

to prior distance-based kernel association tests (e.g., microbiome regression-based

kernel association test), the use of ecological distances gives a high power to cSKAT.

However, cSKAT is limited to handling Gaussian traits [e.g., body mass index (BMI)]

and a single chosen distance measure at a time. The power of cSKAT differs a lot

by which distance measure is used. However, choosing an optimal distance measure

is challenging because of the unknown nature of the true association. Here, we

introduce a distance-based kernel association test based on the generalized linear

mixed model (GLMM), namely, GLMM-MiRKAT, to handle diverse types of traits, such

as Gaussian (e.g., BMI), Binomial (e.g., disease status, treatment/placebo) or Poisson

(e.g., number of tumors/treatments) traits. We further propose a data-driven adaptive

test of GLMM-MiRKAT, namely, aGLMM-MiRKAT, so as to avoid the need to choose the

optimal distance measure. Our extensive simulations demonstrate that aGLMM-MiRKAT

is robustly powerful while correctly controlling type I error rates. We apply aGLMM-

MiRKAT to real familial and longitudinal microbiome data, where we discover significant

disparity in microbial community composition by BMI status and the frequency of

antibiotic use. In summary, aGLMM-MiRKAT is a useful analytical tool with its broad

applicability to diverse types of traits, robust power and valid statistical inference.

Keywords: microbiome association studies, correlated microbiome studies, longitudinal microbiome studies,

community-level association analysis, distance-based association analysis, adaptive association analysis

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.00458
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.00458&domain=pdf&date_stamp=2019-05-16
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nzhao10@jhu.edu
https://doi.org/10.3389/fgene.2019.00458
https://www.frontiersin.org/articles/10.3389/fgene.2019.00458/full
http://loop.frontiersin.org/people/684870/overview
http://loop.frontiersin.org/people/628873/overview
http://loop.frontiersin.org/people/701930/overview
http://loop.frontiersin.org/people/685248/overview


Koh et al. aGLMM-MiRKAT for Correlated Microbiome Studies

INTRODUCTION

The recent surge in next-generation sequencing technologies has
dramatically advanced the human microbiome studies by
enabling generic characterization of the microbes in the human
body (Hamady and Knight, 2009; Caporaso et al., 2010; Thomas
et al., 2012). As the sequencing technology evolves, researchers
are able to obtain more accurate metagenomic information
with lower cost at a faster speed. Various types of metagenomic
information can be obtained by the sequencing platforms, such
as microbial abundances and functional/metabolic expressions
(Mallick et al., 2017). In this study, we focus on the data
for the microbial abundance and phylogenetic information

of the surrogate microbial species, known as, operational
taxonomic units (OTUs). Furthermore, we focus on the
microbiome association studies which test the disparity in
microbial community (e.g., bacterial kingdom) composition
by a host trait of interest (e.g., health/disease status, clinical
intervention, behavioral/environmental factor) (Li, 2015). For
example, recent studies have found disparity in microbial
community composition for a variety of health/disease status

[e.g., obesity (Arslan, 2014), type I diabetes (Zhang et al., 2018a),
type II diabetes (Qin et al., 2012), human immunodeficiency
virus (Bandera et al., 2018), inflammatory bowel disease
(Knights et al., 2013; Borren et al., 2018), and cancers (Zitvogel
et al., 2015)], medical interventions [e.g., administration of
antibiotics (Zhang et al., 2018a)], and behavioral/environmental

factors [e.g., diet, residence, smoking and birth mode
(Charlson et al., 2010; Liu et al., 2017)].

Notably, researchers have increasingly employed family-based
(Goodrich et al., 2014; Schloss et al., 2014) or longitudinal study
designs (Yang et al., 2017; Zhang et al., 2018a). Such study
designs are advantageous in properly controlling for potential
confounders or the sensitive changes in microbial composition
and host traits. That is, because family members share similar
environmental/genetic factors (refer that monozygotic twins
even have the same genetic background), the use of family
controls can efficiently rule out some potential confounding
factors. Moreover, because microbial composition and host traits
can vary by time, repeated measurements over a lengthy follow-
up period can ensure more reliable analysis outcomes. Examples
for such correlated microbiome studies include the familial
(Goodrich et al., 2014) and longitudinal (Zhang et al., 2018a)
studies, the data of which we use for our real data applications
(see Real data applications). Briefly, Goodrich et al. (2014)
have collected stool samples from families with twins in the
United Kingdom to assess the relationship between obesity and
gut microbiota. Zhang et al. (2018a) longitudinally collected
fecal, cecal, and ileal samples from non-obese diabetic mice
to evaluate whether the intestinal microbiota altered by early-
life antibiotic exposure affects maturation of innate immunity.
The downstream data analysis for such studies is challenging
because the measurements within clusters (e.g., families,
subjects including repeated measures) tend to be correlated.
We need to properly model the within-cluster correlation
structure for valid statistical inferences. Besides, the unique
features of the microbiome data (e.g., high-dimensionality,

sparsity, and phylogenetic structure) need to be properly
accounted for.

However, most of the current microbial community-level
association tests [e.g., PERMANOVA (Anderson, 2001; McArdle
and Anderson, 2001; Tang et al., 2016), MiRKAT (Zhao et al.,
2015), MiSPU (Wu et al., 2016), OMiAT (Koh et al., 2017),
aMiAD (Koh, 2018)] assume independent samples. Hence, they
cannot be used for correlated microbiome studies. Zero-inflated
Beta regression model (ZIBR) (Chen and Li, 2016) and negative
Binomial mixed model (NBMM) (Zhang et al., 2017, 2018b)
have recently been proposed for correlated microbiome studies.
However, ZIBR and NBMM test individual microbial biomarkers
(e.g., OTUs, taxa), not the microbial community as a whole.
Hence, they are subject to a substantial loss of power after the
requisite multiple testing correction. To our best knowledge,
a remarkable community-level association test for correlated
microbiome studies is the correlated sequence kernel association
test (cSKAT) (Zhan et al., 2018). cSKAT is based on the linear
mixedmodel (Laird andWare, 1982), where the inherent random
effect captures the within-cluster correlation of a host trait,
and models the variance covariance structure of the microbial
community based on an ecological distance, such as Jaccard
dissimilarity (Jaccard, 1912), Bray-Curtis dissimilarity (Bray and
Curtis, 1957) or unique fraction (UniFrac) distances (Lozupone
and Knight, 2005; Lozupone et al., 2007; Chen et al., 2012). The
use of ecological distances, which has also been widely adopted
for many prior community-level association tests (Anderson,
2001; McArdle and Anderson, 2001; Zhao et al., 2015; Tang
et al., 2016; Koh et al., 2017, 2018; Plantinga et al., 2017;
Zhan et al., 2017), gives cSKAT a higher power than the ones
based on non-ecological distances (Zhan et al., 2018). This is
because the ecological distances are well-informed by properly
modeling themicrobial abundance and phylogenetic information
(Jaccard, 1912; Bray and Curtis, 1957; Lozupone and Knight,
2005; Lozupone et al., 2007; Chen et al., 2012).

However, cSKAT has two major limitations. First, cSKAT is
based on the linear mixed model (Laird andWare, 1982). Hence,
it is limited to handling Gaussian traits [e.g., body mass index
(BMI)]. However, in practice, investigators can be interested
in other trait types. Therefore, we introduce a distance-based
kernel association test based on the generalized linear mixed
model (GLMM), namely, GLMM-MiRKAT, to handle diverse
types of traits, such as Gaussian (e.g., BMI), Binomial (e.g.,
disease status, treatment/placebo) or Poisson (e.g., number of
tumors/treatments) traits. Second, cSKAT is limited to the item-
by-item use of the ecological distances (i.e., the approach based
on a single chosen ecological distance measure at a time). It
is well-recognized in the microbiome research community that
the power differs a lot by which distance measure is used, while
it is also highly depending on the true underlying association
pattern (Zhao et al., 2015; Koh et al., 2017, 2018). In practice,
the true association pattern is usually unknown; hence, it is
highly difficult to predict which distance measure performs
best and choose a single optimal distance measure to use. The
approach of individually testing multiple distances also requires
multiple testing correction leading to a loss of power. Therefore,
for a robustly high power, without the need to choose the
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optimal distance measure, we propose a data-driven adaptive
test of GLMM-MiRKAT, namely, aGLMM-MiRKAT. aGLMM-
MiRKAT robustly adapts to diverse association patterns by jointly
considering multiple candidate ecological distance measures.
Jaccard dissimilarity (Jaccard, 1912), Bray-Curtis dissimilarity
(Bray and Curtis, 1957), UniFrac distances (Lozupone and
Knight, 2005; Lozupone et al., 2007; Chen et al., 2012) are
included as the candidate ecological distance measures because
of their well-known features and distinguished performances
(details are addressed later) (Zhao et al., 2015). Through extensive
simulation experiments, we estimate robustly high power with
well-controlled type I error for aGLMM-MiRKAT.

The rest of the paper is organized as follows. (1) In
Materials and Methods, we address methodological details. (2)
In Simulation, we address extensive simulation experiments. (3)
In Real data applications, we apply aGLMM-MiRKAT to real
familial and longitudinal microbiome data sets, where we test
the association of the microbial community composition with
BMI and the frequency of antibiotic use, while making interesting
testing attempts and interpretations. (4) In Discussion, we finish
with discussion and concluding remarks.

MATERIALS AND METHODS

Notations and Models
We let yij denote a host trait of interest (e.g., health/disease status,
medical intervention, behavioral/environmental factor) for the
j-th measurement in the i-th cluster (i = 1, . . . , n, j =

1, . . . , mi), zijk denote the abundance level of the k-th OTU
among p OTUs in the microbial community (k = 1, · · · , p),
and xijl denote a covariate among q covariates (e.g., age, gender)
that we want to adjust for (l = 1, . . . , q). We also let N denote
the total number of measurements (i.e.,N =

∑n
i=1mi), Ig denote

the g-th order identity matrix and 1g denote the g × 1 vector of
ones. Throughout the paper, we use non-bold lowercase letters
for scalars, bold lowercase letters for vectors, and bold uppercase
letters for matrices.

To relate the microbial community composition with a host
trait adjusting for covariates, we consider a generalized linear
mixed model (Breslow and Clayton, 1993) (Equation 1).

g(µij) = xTijα + sTijυ i + h(zij), (1)

where g(·) is a canonical link function (e.g., identity function for
Gaussian traits, logistic function for Binomial traits, log function

for Poisson traits) and µij = E(yij). α =
(

α0, . . . , αq

)T
are

fixed effects for the covariates xij =
(

1, xij1, . . . , xijq
)T
. υi is the

random effect for the pre-specified sij to account for the within-
cluster correlation in responses (i.e., conditional on υi and h(zij),
yij are independent with a diagonal variance-covariance matrix
σ 2

ε Imi ). For example, when sij = 1, υi is the random intercept
which is assumed to follow a normal distributionN(0, σ 2

γ ). When

sij =
(

1, tij
)T
, where tij is the time point for the i-th cluster and j-

th measurement, υ i = (υi1, υi2) is the random intercept and slope
which are assumed to follow normal distributions υi1 ∼ N(0,
σ 2

γ 1) and υi2 ∼ N(0, σ 2
γ 2). Then, γ i ≡ (si1υi, . . . , simiυi)

T follows

a normal distribution with mean zero and mi × mi variance-
covariance matrix 6i. The random effect υi is to capture the
within-cluster correlation in responses, while h(·) is a function
which features the microbiome effect.

Here, we are particularly interested in testing H0: h(zij) =

0 (i.e., no association between microbial composition and a
host trait adjusting for covariates) and, notably, with different
specifications for h(zij), we can characterize different association
patterns between microbial composition and a host trait. One
may specify h(zij) as a fixed effect using a linear or non-linear
function for the OTUs. For example, we can specify h(zij) =

ϕ(zij)
Tβ , where ϕ(·) is an element-wise transformation (e.g.,

identity or quadratic) function and β = (β1, . . . , βp)
T are

regression coefficients for the p OTUs, and then test H0: β = 0

using a p-degrees of freedom test. However, because of the high-
dimensional nature of the data (i.e., p>> n) and, for example, the
resulting issue of low-rank matrices, testingH0: β = 0 with fixed
effects might be challenging or even impossible. Therefore, we
apply the kernel trick (Cristianini and Shawe-Taylor, 2000) and

specify δij ≡ h(zij)=
∑n

i
′
= 1

∑mi

j
′
= 1

ωijκ(zij, z
′

i j
′
), where κ(·,·) is

a positive semi-definite kernel function which measures pairwise
similarities in microbial composition, zij = (zij1, . . . , zijp)

T is
the p × 1 vector for the p OTUs and ωij’s are coefficients; as
such, h(·) lies in a reproducing kernel Hilbert space spanned
by κ(·,·). Then, via the connection between kernel machine
regression and mixed effect models (Liu et al., 2007), δ =

(δ11, . . . , δ1m1 , . . . , δn1, . . . , δnmn )
T is assumed to follow a

distribution with mean zero and variance-covariance matrix τK,
where δ is anN × 1 vector, τ is the unknown variance component
and K is an N × N pairwise similarity matrix. Then, we can
perform a variance component test for H0: τ = 0 vs. H1: τ > 0
(Lin, 1997).

To address details on the kernel matrix K and the test statistic
for H0: τ = 0, we first re-write the model (Equation 1) with
matrix forms for all the measurements across all the clusters
(Equation 2).

g(µ) = Xα + γ + δ, (2)

where µ = (µ11, . . . , µ1m1 , . . . , µn1, . . . , µnmn )
T is an N

× 1 vector, α = (α0, . . . , αq)
T is an (q+1) × 1 vector,

X = (x11, . . . x1m1 , . . . , xn1, . . . , xnmn )
T is an N × (q+1)

matrix, γ = (γ 1, . . . , γ n) is an N × 1 vector, and δ =

(δ11, . . . , δ1m1 , . . . , δn1, . . . , δnmn )
T is an N × 1 vector. Again,

δ is assumed to follow a distribution with mean zero and
variance-covariance matrix τK. We further assume that the two
random effects γ and δ are independent as in (Lin, 1997).
The kernel matrix K is an N × N pairwise similarity matrix
which is converted from the use of an ecological distance (Zhao
et al., 2015), such as Jaccard dissimilarity (Jaccard, 1912), Bray-
Curtis dissimilarity (Bray and Curtis, 1957) or UniFrac distances
(Lozupone and Knight, 2005; Lozupone et al., 2007; Chen et al.,
2012), via (Equation 3).

K(h) = −
1

2

(

IN −
1N1

T
N

N

)

D2
(h)

(

IN −
1N1

T
N

N

)

, (3)
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where D(h) is the N × N pairwise distance matrix and D2
(h)

is

its element-wise square matrix, where h is an index for a chosen
measure among diverse ecological distances. This kernel matrix
(Equation 3) externally models ecologically meaningful pairwise
similarities (correlation) in microbial composition among all
the measurements across all the clusters, where the block-
diagonals (i.e., K(1,m1), (1,m1), K(m1+1,m1+m2 ), (m1+1,m1+m2), . . . ,
K(N−mn+1, N), (N−mn+1, N)) model the within-cluster similarities
while the off-diagonals model the between-cluster similarities.
The extent of OTU abundance and phylogenetic information
is properly modulated by different ecological distance measures
(Zhao et al., 2015).

GLMM-MiRKAT
While we will soon address the issue that the testing performance
differs according to the choice of distance measure, we first
introduce the variance component score statistic for a single
chosen distancemeasure (i.e., item-by-item approach). Following
(Lin, 1997), the variance component score statistic can be
formulated with (Equation 4). Here, we construct the kernel
matrix K(h) based on an ecological distance, and all the detailed
derivation procedures are referred to (Lin, 1997).

∂ l(α, γ , τ )

∂τ
|τ=0, α=α̂0 ,γ=γ̂0 (4)

=
1

2

(

y
∗
− Xα̂0

)T
V̂−1
0 K(h)V̂

−1
0 (y

∗
− Xα̂0)+ tr(V̂−1

0 K(h)),

where y
∗
= Xα̂0 + γ̂0 + 1̂0(y - µ̂0) is the working vector and

V̂−1
0 = (6̂0 + Ŵ0)

−1
. Here, 1̂0 = diag(g

′
(µ̂0)) (i.e., 1̂0 = IN ,

1̂0 = diag((µ̂0(1 − µ̂0))
−1) and 1̂0 = diag(µ̂0

−1) for Gaussian,

Binomial, Poisson traits, respectively), 6̂0 = diag(6̂1,0, . . . ,
6̂n,0), and Ŵ0 is the dispersion parameter for the errors estimated
as Ŵ0 = diag(var(µ̂0), . . . , var(µ̂0)) for Gaussian traits and
Ŵ0 = IN for Binomial and Poisson traits, where α̂0, γ̂0, µ̂0

and 6̂0 are estimated under the null generalized linear mixed
model by the restricted maximum likelihood estimation (REML)
method (Harville, 1977) and var(·) is the variance function.
This test statistic (Equation 4) is the penalized quasi-likelihood
estimating equation in Breslow and Clayton (1993) and the
variance component score statistic for testing random effects in
Lin (1997) under the above model specifications. This is also
the unadjusted variance component score statistic proposed for
cSKAT which is based on the linear mixed model for Gaussian
traits (Zhan et al., 2018). Similar test statistics have also been
widely used for various family-based and longitudinal studies
in genetics and neuroscience (Schifano et al., 2012; Chen et al.,
2013; Zhang et al., 2014; Wang et al., 2017), while assuming
different variance covariance structures and/or applying different
weighting schema. Since our p-value computation is based on
a permutation approach, the scaling (i.e., 1

2 ) and additive [i.e.,

tr(V̂−1
0 K(h))] terms do not change the comparative ranks of the

observed and null (i.e., permuted) statistic values (see P-value
calculation). Hence, we use a reduced-form statistic (Equation 5).

Q(h) =
(

y
∗
− Xα̂0

)T
V̂−1
0 K(h)V̂

−1
0 (y

∗
− Xα̂0) (5)

aGLMM-MiRKAT
The testing performance depends on the choice of distance
measure (Zhao et al., 2015). To explain, non-phylogeny-based
distances, such as Jaccard (1912) and Bray and Curtis (1957)
dissimilarities, measure the disparity only in abundance, while
phylogeny-based distances, such as UniFrac distances (Lozupone
and Knight, 2005; Lozupone et al., 2007; Chen et al., 2012),
measure the disparity both in abundance and phylogeny. Hence,
non-phylogeny-based distances are well-suited when associated
OTUs have disparity in abundance, while phylogeny-based
distances are well-suited when they have disparity both in
abundance and phylogeny. Moreover, Jaccard dissimilarity and
unweighted UniFrac distance are based on incidence information
(i.e., presence/absence of OTUs), while Bray-Curtis dissimilarity
and weighted UniFrac distance are based on full abundance
information [refer that generalized UniFrac distance modulates
the intensity of abundance information between unweighted and
weighted UniFrac distances by its parameter θ (Chen et al.,
2012)]. Hence, Jaccard dissimilarity and unweighted UniFrac
distance are well-suited when associated OTUs are rare in
abundance in the sense that prevalent OTUs are likely to exist in
all samples, while Bray-Curtis dissimilarity andweightedUniFrac
distance are well-suited when they are rich in abundance.
However, prior knowledge about the true association pattern
is usually absent in reality. Hence, it is highly challenging to
choose a single optimal distance measure to use. For a robustly
high performance throughout various (but unknown) association
scenarios, we propose aGLMM-MiRKAT which is based on the
test statistic of the minimum p-value frommultiple item-by-item
GLMM-MiRKAT analyses (Equation 6).

TaGLMMMiKAT = min
h∈Ŵ

P(h), (6)

where h is an index for a distance in a set of candidate
ecological distances (Ŵ), where Ŵ = {Jaccard dissimilarity, Bray-
Curtis dissimilarity, Unweighted UniFrac distance, Generalized
UniFrac distance (θ = 0.5), Weighted UniFrac distance}.
Obviously, we do not report the genuine minimum p-value
(i.e., TaGLMMMiKAT) as it is. Instead, TaGLMMMiKAT (Equation
6) is the test statistic of aGLMM-MiRKAT, and we estimate
the p-value for aGLMM-MiRKAT (PaGLMMMiKAT) using a
permutation approach (see P-value calculation). Our extensive
simulations reveal that aGLMM-MiRKAT maintains high power
throughout all surveyed association scenarios, while the item-by-
item GLMM-MiRKAT analyses are limitedly powerful only for
some association scenarios. Further details are addressed in the
Simulation section.

P-value Calculation
We calculate the p-values for the item-by-item GLMM-MiRKAT
tests and aGLMM-MiRKAT using a permutation approach. Our
permutation approach is semi-parametric as we fit the null model
g(µ̂0) = Xα̂0 + γ̂0 (Equation 2) (excluding the microbiome
portion) parametrically, and then draw the empirical null
distribution of the test statistic (Equations 5, 6) through
permutations non-parametrically. In this way, we can estimate
the p-values without making distributional assumptions for the
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microbiome portion. Moreover, we do block permutations to
account for any potential mis-specified within-cluster correlation
structure based on the procedures in (Winkler et al., 2015). To be
specific, for the random intercept model [i.e., rij = 1 (Equation
1)], we permute (1) the whole clusters (only the exchangeable
clusters which have the same number of measurements) and
(2) the measurements within each cluster, simultaneously. For

the random slope model [i.e., rij =
(

1, tij
)T

(Equation 1)], we
permute only the whole clusters (the exchangeable clusters which
have the same number of measurements and the same time
points). The detailed procedures for our permutation approach
can be found in S1. Computational algorithm.

RESULTS

Simulation
Simulation Designs
Our simulation designs are based on prior studies (Zhao et al.,
2015; Koh et al., 2017; Zhan et al., 2018), but here we conduct
more extensive simulation experiments for diverse trait types
with different within-cluster correlation structures. In particular,
we simulated the data for Gaussian, Binomial and Poisson
traits, respectively, based on the following generalized linear
mixed models.

yij = 0.5×scale(xi1 + xij2)

+ β×scale(
∑

a∈A
zija)+ sTijυi + ǫij

logit(E(yij = 1)) = 0.5×scale(xi1 + xij2)

+ β×scale(
∑

a∈A
zija)+ sTijυi

log(E(yij)) = 0.5×scale(xi1 + xij2)

+ β×scale(
∑

a∈A
zija)+ sTijυi

In these equations, xi1 is a cluster-specific (e.g., gender)
covariate generated from the Bernoulli distribution with success
probability 0.5, and xij2 is a non-cluster-specific (e.g., time-
varying) covariate generated from 0.5 × scale(

∑

a∈A
zija) +

N(0, 1). Note that, xij2 is a confounder as it is associated with
both of the microbial composition and host trait. A is a set of
associated OTUs among the total p OTUs in the community,
and zija is the a-th OTU in A. β is a regression coefficient for
the OTUs in A. scale is the standardization function to have
mean zero and standard deviation one. υi is the random effect
for the pre-specified sij, and εij are errors generated from N(0, 1).
We investigate small (n = 20) and moderate (n = 50) numbers
of clusters, respectively, while assigning two, three and four
measurements, respectively, into each one third of the clusters
(i.e., when n= 20,mi = 2 for i= 1, . . . , 7,mi = 4 for i= 8, . . . , 14
andmi = 3 for i= 15, . . . , 20; when n = 50,mi = 2 for i= 1, . . . ,
17,mi = 3 for i= 18, . . . , 34 andmi = 4 for i= 35, . . . , 50). This is
tomimic (possibly) unbalanced numbers ofmeasurements across
clusters. As before, we let i = 1, . . . , n, j = 1, . . . , mi, k = 1, . . . , p
and l= 1, . . . , q. For the random effect vi, we generate (1) random
intercepts and (2) random intercepts and slopes, respectively, as
follows. For the random intercepts (i.e., sij = 1), we generate vi
from N(0, σ 2

γ ), while setting σ 2
γ = 1

2 , 1 and 3
2 , respectively, to

investigate different within-cluster correlations, that is, ρ
j 6=j

′ =

σ 2
γ /(σ 2

γ +σ 2
ε )=

1
3 ,

1
2 and

3
5 . For the random intercepts and slopes

(i.e., sij =
(

1, j
)T
), we generate vi1 and vi2 from N(0, σ 2

γ ), while

setting σ 2
γ = 1

2 , 1 and 3
2 , respectively and tij = j, to investigate

different within-cluster correlations, that is, ρ
j 6=j

′ = σ 2
γ /(σ 2

γ +σ 2
ε )

=
(1+j2)

(j2+3)
,
(1+j2)

(j2+2)
and

(1+j2)

(j2+ 5
3 )
.

For the OTUs in the community, we first estimated
proportional means and a dispersion parameter for 856 OTUs
(i.e., p= 856) in the bacterial kingdom from the real respiratory-
tract microbiome data (Charlson et al., 2010). Then, OTU counts
for each measurement per cluster (i.e., Zij for i = 1, . . . , n, j
= 1, . . . , mi) were generated from the Dirichlet-multinomial
distribution (Mosimann, 1962) with the pre-specified parameter
values of the estimated proportional means and dispersion.
The total reads for each measurement were set to be 10,000.
To reflect possible within-cluster relatedness among microbial
communities, we updated the second and third measurements of
microbial community using a random perturbation function: Zij
= 1

2 (Zi(j−1) + Zij) for j=2, . . . ,mi.
To estimate empirical type I error rates, we set β = 0. To

estimate statistical powers, we set β = 1, while selecting a set of
associated OTUs (A) by four different association scenarios as
in Koh et al. (2017, 2018) and Koh (2018) (1) 50 random OTUs
among the OTUs in lower half of abundance, (2) 50 random
OTUs, (3) 50 random OTUs among the OTUs in upper half
of abundance, and (4) OTUs in a cluster among 10 clusters
partitioned by the partition around medoids (PAM) algorithm
(Reynolds et al., 2006) based on OTUs’ cophenetic distances
(Sneath et al., 1975), respectively. The first three scenarios mimic
the situations when associated OTUs are rare, medium and
abundant, respectively, while the fourth scenario mimics the
situation when they are close in phylogeny. For the fourth
scenario, we randomized the selection of an associated cluster
among the 10 clusters to avoid arbitrary cluster selection. To
estimate empirical type I error rates, we conducted 30,000
replicates for each combination of the model, sample size
and correlation structure. To estimate statistical powers, we
conducted 10,000 replicates for each combination of the model,
sample size, correlation structure and association scenario.

Model fitting
We fit the random intercept model (i.e., sij = 1) when the random
intercepts are generated, and we fit the random slope model

(i.e., sij =
(

1, j
)T
) when the random intercepts and slopes are

generated, while including the two covariates and all the 856
OTUs in the community.

Simulation Outcomes

Type I error
We estimate well-controlled empirical type I error rates at
the significance level of 0.05 for any item-by-item GLMM-
MiRKAT or aGLMM-MiRKAT test, for any type of traits
(i.e., Gaussian, Binomial and Poisson traits), for both small
(n = 20) and moderate (n = 50) numbers of clusters, for
any imposed within-cluster correlation, and for both random
intercept (Table 1) and slope models (Table 2). However, we
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TABLE 1 | Estimated type I error rates at the significance level of 5% for

GLMM-MiRKAT/aGLMM-MiRKAT based on the random intercept model with

Gaussian, Binomial or Poisson responses (Unit: %).

n = 20 n = 50

ρ
j 6=j

′ L M H L M H

Gaussian

KJ 5.06 4.89 5.12 5.08 5.06 4.98

KBC 4.78 4.80 4.85 4.83 4.86 4.73

KU 5.07 4.96 5.04 5.19 5.05 5.06

K0.5 5.03 4.83 4.94 5.15 4.95 4.74

KW 4.97 5.00 4.91 4.75 4.73 4.54

adaptive 4.89 4.74 4.74 4.92 4.79 4.73

Binomial

KJ 5.08 4.93 4.91 5.00 5.13 4.88

KBC 4.98 4.95 4.92 5.29 5.00 4.96

KU 5.09 5.04 5.00 5.08 5.19 4.74

K0.5 5.05 4.88 4.89 5.03 5.13 5.12

KW 4.92 4.89 5.04 5.11 4.90 5.11

adaptive 4.87 4.90 4.89 5.06 4.99 4.92

Poisson

KJ 4.98 4.93 5.11 4.95 5.17 5.06

KBC 5.04 5.03 4.69 5.01 4.95 5.03

KU 5.07 4.85 5.16 4.95 5.17 5.06

K0.5 5.10 4.92 4.85 4.97 4.95 5.02

KW 5.11 4.87 4.64 5.03 5.09 4.90

adaptive 4.96 4.91 4.83 4.95 5.00 5.07

KJ: Jaccard dissimilarity; KBC: Bray-Curtis dissimilarity; KU: Unweighted UniFrac distance;

K0.5: Generalized UniFrac distance (θ =0.5); KW : Weighted UniFrac distance; adaptive:

adaptive GLMM-MiRKAT (aGLMM-MiRKAT). L: low within-cluster correlation (ρ
j 6=j

′ =

1
3 ); M: medium within-cluster correlation (ρ

j 6=j
′ = 1

2 ); H: high within-cluster correlation

(ρ
j 6=j

′ = 3
5 ).

estimate inflated empirical type I error rates (>0.05) for the
prior microbial community-level association tests, OMiRKAT
(Zhao et al., 2015), aMiSPU (Wu et al., 2016), OMiAT (Koh
et al., 2017), and aMiAD (Koh, 2018) (Table 3). This is because
these tests treat all the measurements across all the clusters as
independent samples in an exaggerated manner. We also observe
in general that the higher the within-cluster correlation, the
greater the type I error inflation (Table 3), as explained by the
higher the within-cluster correlation, the smaller the effective
sample size.

Power
We estimate in general that the moderate number of clusters
(n =50) (Figures 1, 2) is more powerful than the small number
of clusters (n = 20) (Figures S1, S2), yet we observe the
same comparative powers among different GLMM-MiRKAT
analyses for the small (n = 20) and moderate (n = 50)
number of clusters. Thus, to save space, the power outcomes
for the small (n = 20) number of clusters are placed in
(Figures S1,S2).

We estimate in general that the Gaussian models
(Figures 1A–C, 2A–C) are more powerful than the Binomial
(Figures 1D–F, 2D–F) and Poisson (Figures 1G–I, 2G–I)
models, where the Binomial models are the least powerful.

TABLE 2 | Estimated type I error rates at the significance level of 5% for

GLMM-MiRKAT/aGLMM-MiRKAT based on the random slope model with

Gaussian, Binomial or Poisson responses (Unit: %).

n = 20 n = 50

ρ
j 6=j

′ L M H L M H

Gaussian

KJ 5.10 4.96 5.12 4.87 4.98 5.04

KBC 5.11 4.89 4.97 5.10 4.88 5.03

KU 5.03 4.95 5.13 5.03 5.03 5.10

K0.5 5.07 4.91 4.90 4.89 4.91 5.09

KW 4.96 4.95 4.87 4.83 5.03 5.01

adaptive 4.97 4.94 5.01 4.94 4.86 5.04

Binomial

KJ 5.08 4.80 5.01 5.09 5.02 4.83

KBC 4.93 4.94 5.1 4.89 5.02 4.88

KU 5.04 4.99 5.04 5.07 5.40 4.83

K0.5 5.02 4.97 4.84 5.00 5.08 4.96

KW 4.89 5.07 5.02 4.96 5.08 4.85

adaptive 4.99 4.94 4.85 4.86 5.11 4.82

Poisson

KJ 5.01 4.98 4.76 4.93 5.10 4.90

KBC 5.16 4.76 5.02 5.03 5.03 5.02

KU 4.90 5.06 4.92 5.09 5.19 4.93

K0.5 5.14 4.87 5.10 4.85 4.88 5.10

KW 5.12 4.82 5.28 4.86 5.06 5.18

adaptive 5.05 4.70 4.88 5.00 4.94 4.78

KJ: Jaccard dissimilarity; KBC: Bray-Curtis dissimilarity; KU: Unweighted UniFrac distance;

K0.5: Generalized UniFrac distance (θ =0.5); KW : Weighted UniFrac distance; adaptive:

adaptive GLMM-MiRKAT (aGLMM-MiRKAT). L: low within-cluster correlation (ρ
j 6=j

′ =

(1+j2 )
(j2+3)

); M: medium within-cluster correlation (ρ
j 6=j

′ = (1+j2 )
(j2+2)

); H: high within-cluster

correlation (ρ
j 6=j

′ = (1+j2 )

(j2+ 5
3 )
).

This is because the continuous traits are better informed than
the discrete traits, but not because our methods better suit
the Gaussian models. We also observe in general that the
higher the within-cluster correlation, the lower the power
(i.e., Figures 1A,D,G, 2A,D,G > Figures 1B,E,H, 2B,E,H >

Figures 1C,F,I, 2C,F,I), as explained by the higher the within-
cluster correlation, the smaller the effective sample size. We
observe similar comparative powers among different GLMM-
MiRKAT analyses across Gaussian, Binomial and Poissonmodels
for both of the random intercept (Figure 1) and slope (Figure 2)
models. We address the detailed description on the comparative
powers below.

GLMM-MiRKAT using Jaccard dissimilarity or unweighted
UniFrac distance is more powerful in the first scenario when
associated OTUs are rare in abundance (Figures 1, 2: P1), while
GLMM-MiRKAT using Bray-Curtis dissimilarity or weighted
UniFrac distance is relatively more powerful in the second and
third scenarios when associated OTUs are mid-abundant and
abundant (Figures 1, 2: P2-P3), as expected by their distinct
weighting schema. GLMM-MiRKAT using weighted UniFrac
distance or generalized UniFrac distance is more powerful
in the fourth scenario when associated OTUs are close in
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TABLE 3 | Estimated type I error rates at the significance level of 5% for the prior

microbial community-level association tests, OMiRKAT, aMiSPU, OMiAT, and

aMiAD, for the clustered microbiome data (Unit: %).

Random intercepts

n = 20 n = 50

ρ
j 6=j

′ L M H L M H

Gaussian

OMiRKAT 24.36 79.89 97.44 37.98 96.61 99.96

aMiSPU 14.64 52.5 80.78 20.47 75.69 95.65

OMiAT 22.13 79.27 97.77 40.63 98.65 99.97

aMiAD 5.70 6.79 8.22 6.11 7.39 8.82

Binomial

OMiRKAT 7.12 20.19 41.40 9.35 30.02 62.19

aMiSPU 6.17 12.32 24.13 6.88 16.18 34.86

OMiAT 6.87 18.54 39.62 9.09 33.68 71.1

aMiAD 5.41 5.71 6.31 5.64 5.98 6.62

Random intercepts and slopes

Gaussian

OMiRKAT 81.86 99.27 99.89 97.53 99.92 99.94

aMiSPU 72.20 96.42 98.58 92.87 99.88 99.98

OMiAT 81.31 99.41 99.91 98.70 99.93 99.97

aMiAD 8.59 10.68 11.57 8.51 10.24 10.58

Binomial

OMiRKAT 23.98 63.69 84.53 36.73 86.82 97.98

aMiSPU 15.87 42.33 62.83 21.83 63.68 84.62

OMiAT 22.64 63.08 85.10 40.63 93.27 99.49

aMiAD 6.15 7.30 8.35 6.20 7.45 8.24

L: low within-cluster correlation (ρ
j 6=j

′ = 1
3 for the random intercepts, ρ

j 6=j
′ = (1+j2 )

(j2+3)
for the

random intercepts and slopes); M: medium within-cluster correlation (ρ
j 6=j

′ = 1
2 for the

random intercepts, ρ
j 6=j

′ = (1+j2 )
(j2+2)

for the random intercepts and slopes); H: high within-

cluster correlation (ρ
j 6=j

′ = 3
5 for the random intercepts, ρ

j 6=j
′ = (1+j2 )

(j2+ 5
3 )

for the random

intercepts and slopes).

phylogeny (Figures 1, 2: P4), where GLMM-MiRKAT using
Jaccard dissimilarity or Bray-Curtis dissimilarity is less powerful
(Figures 1, 2: P4), as expected by their use or non-use of
phylogenetic information. Notably, none of the item-by-item
GLMM-MiRKAT analyses are consistently powerful throughout
all different association scenarios (i.e., they are powerful for some
scenarios to which they are well-suited, but they are under-
powered for the other scenarios to which they are not well-suited)
(Figures 1, 2). On the contrary, we estimate that the adaptive
test of GLMM-MiRKAT, aGLMM-MiRKAT, is robustly powerful
(closely reaching the highest power among the item-by-item
GLMM-MiRKAT analyses) throughout all different association
scenarios (Figures 1,2).

We additionally compare aGLMM-MiRKAT with the item-
by-item cSKAT analyses for the random intercept Gaussian
models as cSKAT can handle only the Gaussian traits based
on the random intercept model (Zhan et al., 2018). Similar to
the previous item-by-item GLMM-MiRKAT analysis outcomes,
none of the item-by-item cSKAT analyses are consistently

powerful throughout all different association scenarios (i.e., they
are powerful for some scenarios to which they are well-suited,
but they are under-powered for the other scenarios to which
they are not well-suited) (Figure 3). Here again, we observe
that aGLMM-MiRKAT maintains a high power throughout all
different scenarios (Figure 3).

Real Data Applications
A Family-Based Study on the Association Between

Obesity and Gut Microbiota
Goodrich et al. (2014) have collected fecal samples from
the United Kingdom twin population to study the roles of
host genetics on gut microbiome, while addressing a breadth
of associations between obesity indices and gut microbiota.
Here, we analyze a small portion the original data to
evaluate the association between BMI and microbial community
composition. The raw sequence data are publicly available in
the European Bioinformatics Institute (EBI) repository (Assess
codes: ERP006339 and ERP006342). We processed them using
the QIIME pipeline (Caporaso et al., 2010) with open reference-
based OTU picking by targeting the V4 region of the 16S
ribosomal RNA (rRNA) gene, and quantified OTUs at the
97% sequence similarity level and constructed a phylogenetic
tree. Among the total of 1,024 measurements from 536
families, we focused on monozygotic twins. After excluding
measurements with low sequencing depth (i.e., <10,000 total
reads), 311 measurements from 145 families were included in
our analysis. The data originally include 7,365 OTUs, but we
removed OTUs with average relative abundance < 10−5, and
then the data were rarefied to control unequal library sizes
(Weiss et al., 2017); as such, 2,128 OTUs were included in
our analysis.

We first visually check with principle coordinate
analysis (PCoA) plots based on each distance measure
to see if there is any disparity in microbial composition

by BMI categories [i.e., under-weighted: BMI (
kg

m2 ) <

18.5; normal: 18.5 ≤ BMI (
kg

m2 ) < 25; over-weighted: 25

≤ BMI (
kg

m2 ) < 30; obese: 30 ≤ BMI (
kg

m2 )] (Figure 4).
It is not very clear in the visual inspection if there is
any significant separation by BMI categories, and we
observe the smallest separation based on weighted UniFrac
distance (Figure 4).

We fitted GLMM-MiRKAT with random intercepts
for BMI in continuous scale (Gaussian traits) adjusting
for age. GLMM-MiRKAT using Jaccard dissimilarity
(p-value: <0.001), Bray-Curtis dissimilarity (p-value:
<0.001), unweighted UniFrac distance (p-value: <0.001)
or generalized UniFrac distance (θ = 0.5) (p-value: 0.005)
estimates significant association between BMI and microbial
composition, while GLMM-MiRKAT using weighted UniFrac
distance (p-value: 0.157) does not. This matches with
our visual inspection of the smallest separation for the
weighted UniFrac distance (Figure 4). This also indicates
that the item-by-item GLMM-MiRKAT analyses are
considerably sensitive to the choice of distance measure.
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FIGURE 1 | Estimated statistical powers for GLMM-MiRKAT/aGLMM-MiRKAT based on the random intercept model with Gaussian, Binomial or Poisson responses (n

= 50) (Unit: %). L: low within-cluster correlation (ρ
j 6=j

′ = 1
3 ); M: medium within-cluster correlation (ρ

j 6=j
′ = 1

2 ); H: high within-cluster correlation (ρ
j 6=j

′ = 3
5 ).KJ: Jaccard

dissimilarity; KBC: Bray-Curtis dissimilarity; KU: Unweighted UniFrac distance; K0.5: Generalized UniFrac distance (θ = 0.5); KW : Weighted UniFrac distance; adaptive:

adaptive GLMM-MiRKAT (aGLMM-MiRKAT). P1, P2, P3, and P4 represent the four different association scenarios: P1. A = {50 random OTUs in lower half of

abundance}; P2. A = {50 random OTUs}; P3. A = {50 random OTUs in upper half of abundance}; P4. A = {A random cluster among 10 clusters partitioned by

PAM}. (A) Gaussian (L); (B) Gaussian (M); (C) Gaussian (H); (D) Binomial (L); (E) Binomial (M); (F) Binomial (H); (G). Poisson (L); (H) Poisson (M); (I). Poisson (H).

aGLMM-MiRKAT estimates the significant association
(p-value: <0.001).

For another demonstration, we fitted GLMM-MiRKAT with
random intercepts for BMI in binary scale (Binomial traits)
adjusting for age, comparing the normal and obese populations
(i.e., 140 measurements from 85 families in the normal vs.

63 measurements from 41 families in the obese). However,
we could not find any significant association by any item-
by-item [i.e., Jaccard dissimilarity (p-value: 0.354), Bray-Curtis
dissimilarity (p-value: 0.107), unweighted UniFrac distance (p-
value: 0.336), generalized UniFrac distance (θ =0.5) (p-value:
0.231), weighted UniFrac distance (p-value: 0.333)] or adaptive
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FIGURE 2 | Estimated statistical powers for GLMM-MiRKAT/aGLMM-MiRKAT based on the random slope model with Gaussian, Binomial or Poisson responses (n =

50) (Unit: %). L: low within-cluster correlation (ρ
j 6=j

′ = 1
3 ); M: medium within-cluster correlation (ρ

j 6=j
′ = 1

2 ); H: high within-cluster correlation (ρ
j 6=j

′ = 3
5 ). KJ: Jaccard

dissimilarity; KBC: Bray-Curtis dissimilarity; KU: Unweighted UniFrac distance; K0.5: Generalized UniFrac distance (θ = 0.5); KW : Weighted UniFrac distance; adaptive:

adaptive GLMM-MiRKAT (aGLMM-MiRKAT). P1, P2, P3, and P4 represent the four different association scenarios: P1. A = {50 random OTUs in lower half of

abundance}; P2. A = {50 random OTUs}; P3. A = {50 random OTUs in upper half of abundance}; P4. A = {A random cluster among 10 clusters partitioned by

PAM}. (A) Gaussian (L); (B) Gaussian (M); (C) Gaussian (H); (D) Binomial (L); (E) Binomial (M); (F) Binomial (H); (G) Poisson (L); (H) Poisson (M); (I) Poisson (H).

[i.e., aGLMM-MiRKAT (p-value: 0.253)] analysis. This power
loss, of course, is related to the reduced sample size in the selected
comparison. This may also indicate that BMI in continuous scale

is better informed than BMI in binary scale, which matches
with our simulation result, where the Gaussian models are more
powerful than the Binomial models (Figures 1,2).
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FIGURE 3 | Estimated statistical powers for the item-by-item cSKAT tests and aGLMM-MiRKAT based on the random intercept model with Gaussian responses

(n=50) (Unit: %). L: low within-cluster correlation (ρ
j 6=j

′ = 1
3 ); M: medium within-cluster correlation (ρ

j 6=j
′ = 1

2 ); H: high within-cluster correlation (ρ
j 6=j

′ = 3
5 ).KJ : cSKAT

for Jaccard dissimilarity; KBC : cSKAT for Bray-Curtis dissimilarity; KU : cSKAT for Unweighted UniFrac distance; K0.5 : cSKAT for Generalized UniFrac distance

(θ =0.5); KW : cSKAT for Weighted UniFrac distance; adaptive: adaptive GLMM-MiRKAT (aGLMM-MiRKAT). P1, P2, P3, and P4 represent the four different

association scenarios: P1. A = {50 random OTUs in lower half of abundance}; P2. A = {50 random OTUs}; P3. A = {50 random OTUs in upper half of abundance};

P4. A = {A random cluster among 10 clusters partitioned by PAM}. (A) n = 20 (L); (B) n = 20 (M); (C) n = 20 (H); (D) n = 50 (L); (E) n = 50 (M); (F) n = 50 (H).

A Longitudinal Study on the Association Between the

Frequency of Antibiotic Use and Gut Microbiota
Zhang et al. (2018a) collected fecal, cecal and ileal samples
from non-obese diabetic mice for microbiome profiling studies
based on a longitudinal study design to evaluate if the intestinal
microbiota altered by early-life antibiotic exposure affects
maturation of innate immunity. The raw sequence data are
publicly available in the Qiita database (Identifier: 11242). We
processed them using the QIIME pipeline (Caporaso et al., 2010)
with open reference-based OTU picking by targeting the V4
region of the 16S rRNA gene, and quantified OTUs at the 97%
sequence similarity level and constructed a phylogenetic tree.
The original study (Zhang et al., 2018a) contains enormous
amount of data for a number of sub-studies, but, for a
demonstration of our proposed method, we only analyze a
small portion of the data. To be specific, we focused on
fecal samples to evaluate the disparity in microbial community
composition by the frequency of antibiotic use (i.e., 0, 1, 2, and
3 course(s) of antibiotic use). After excluding measurements

with low sequencing depth (i.e., <10,000 total reads), 229
measurements from 87 mice were included in our analysis. The
study design is longitudinal and unbalanced in that each mouse
has different numbers of repeated measurements: 61 mice have
three measurements, 20 mice have twomeasurements and 6 mice
have one measurement through different time points. Among
the total of 229 measurements, 120 have had no antibiotic use,
43 have had one course of antibiotic use, 26 have had two
courses of antibiotic use, and 40 have had three courses of
antibiotic use.

Here, we first visually check with the PCoA plots based
on each distance measure to see if there is any disparity in
microbial composition by different numbers of antibiotic
use (Figure 5). We observe a very clear visual separation,
especially from no antibiotic use group to at least one
course of antibiotic use group, based on any distance
measures (Figure 5).

We fitted GLMM-MiRKAT with random intercepts
for the number of antibiotic use (Poisson traits) (i.e.,
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FIGURE 4 | The two-dimensional PCoA plots depicting the microbial profiles among BMI categories (i.e., Under: BMI < 18.5; Normal: 18.5 ≤ BMI < 25; Over: 25 ≤

BMI < 30; Obese: 30 ≤ BMI). Jaccard: Jaccard dissimilarity; Bray-Curtis: Bray-Curtis dissimilarity; U. UniFrac: unweighted UniFrac distance; G. UniFrac: generalized

UniFrac distance (θ = 0.5); W. UniFrac: weighted UniFrac distance.

0, 1, 2, and 3 course(s) of antibiotic use) adjusting for
gender. We found significant association between the
number of antibiotic use and microbial composition by
all the item-by-item analysis [i.e., Jaccard dissimilarity
(p-value: <0.001), Bray-Curtis dissimilarity (p-value:
<0.001), unweighted UniFrac distance (p-value: <0.001),
generalized UniFrac distance (θ = 0.5) (p-value: <0.001),
weighted UniFrac distance (p-value: <0.001)]. We also
found the significant association for aGLMM-MiRKAT
(p-value: <0.001).

DISCUSSION

In this paper, we introduced a distance-based kernel association
test based on the generalized linear mixed model, GLMM-
MiRKAT, for correlated (e.g., family-based or longitudinal)

microbiome studies. GLMM-MiRKAT can relate microbial

community composition with any type of host traits that are
distributed as an exponential family distribution. Thus, GLMM-
MiRKAT can be regarded as an extension of cSKAT (Zhan

et al., 2018) to handle non-Gaussian host traits. Furthermore,
we developed aGLMM-MiRKAT to incorporate multiple kernels
for a robustly high power. aGLMM-MiKRAT is especially
useful in practice, where there are various types of host
traits, but our knowledge about the true association pattern
is limited.

We calculate the p-values for the item-by-item GLMM-
MiRKAT and aGLMM-MiRKAT using a permutation approach.
The permutation approach is robust to any small or large
sample size without making distributional assumptions. GLMM-
MiRKAT/aGLMM-MiRKAT can be implemented for either
the random intercept model or the random slope model
while cSKAT is only for the random intercept model. For
the random intercept model, we permute both the whole
exchangeable clusters and the measurements within each cluster.
We can do so because the random intercept model assumes
an exchangeable (a.k.a. compound symmetry) within-cluster
correlation structure. Therefore, for the random intercept model,
our permutation approach works in any study design with
either balanced or unbalanced numbers of measurements per
cluster. However, for random intercept model, we permute
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FIGURE 5 | The two-dimensional PCoA plots depicting the microbial profiles among different groups defined by the number of antibiotic use (i.e., 0, 1, 2, and 3

course(s) of antibiotic use). Jaccard: Jaccard dissimilarity; Bray-Curtis: Bray-Curtis dissimilarity; U. UniFrac: unweighted UniFrac distance; G. UniFrac: generalized

UniFrac distance (θ = 0.5); W. UniFrac: weighted UniFrac distance.

only the whole exchangeable clusters. Therefore, for the
random slope model, our permutation approach is limited
to the balanced study design with a sufficient number of
whole exchangeable clusters. In practice, the random intercept
model has been more widely used for many prior tests
(Min and Agresti, 2005; Schifano et al., 2012; Chen et al.,
2013; Zhang et al., 2014; Chen and Li, 2016; Wang et al.,
2017) because the random intercepts are usually sufficient to
capture the within-cluster correlation structure in responses.
The model selection procedures are beyond the scope of this
study and we defer the details to popular longitudinal data
analysis books.

Throughout this paper, we have surveyed the bacterial

kingdom as the microbial community of interest because it is
usually in our shared interest (bacteria make up most of the

human microbiota). However, without loss of generality, the

methods can be applied to any other microbial communities,
such as the kingdom of yeasts, fungi or viruses, or the

lower level microbial assemblages (e.g., phyla, classes) (Koh
et al., 2017). We use OTUs as the sub-units consisting of

the microbial community because they are often used as the
surrogate microbial species. However, any other sub-units (e.g.,
phylum, species, genera) can be alternatively used by researchers’
choice. We considered the ecological distance measures [i.e.,
Jaccard dissimilarity (Jaccard, 1912), Bray-Curtis dissimilarity
(Bray and Curtis, 1957) or UniFrac distances (Lozupone and
Knight, 2005; Lozupone et al., 2007; Chen et al., 2012)] due
to their popularity in the microbiome research community.
However, any other distance measures or kernel matrices can
be alternatively used by researcher’s choice. We also make no
distinction between the 16S rRNA gene sequencing (Hamady
and Knight, 2009; Caporaso et al., 2010) and the shotgun
metagenomic sequencing (Thomas et al., 2012) for the use of our
proposed methods.
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