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Multiple myeloma (MM) has two clinical precursor stages of disease: monoclonal
gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma
(SMM). However, the mechanism of progression is not well understood. Because gene
co-expression network analysis is a well-known method for discovering new gene
functions and regulatory relationships, we utilized this framework to conduct differential
co-expression analysis to identify interesting transcription factors (TFs) in two publicly
available datasets. We then used copy number variation (CNV) data from a third
public dataset to validate these TFs. First, we identified co-expressed gene modules
in two publicly available datasets each containing three conditions: normal, MGUS,
and SMM. These modules were assessed for condition-specific gene expression, and
then enrichment analysis was conducted on condition-specific modules to identify
their biological function and upstream TFs. TFs were assessed for differential gene
expression between normal and MM precursors, then validated with CNV analysis to
identify candidate genes. Functional enrichment analysis reaffirmed known functional
categories in MM pathology, the main one relating to immune function. Enrichment
analysis revealed a handful of differentially expressed TFs between normal and either
MGUS or SMM in gene expression and/or CNV. Overall, we identified four genes
of interest (MAX, TCF4, ZNF148, and ZNF281) that aid in our understanding of MM
initiation and progression.

Keywords: multiple myeloma, MGUS, SMM, gene co-expression, copy number variation

INTRODUCTION

Multiple myeloma (MM) is a B-cell malignancy caused by the proliferation of aberrant clonal
plasma cells that secrete monoclonal immunoglobulin protein, also known as M protein. MM is
consistently preceded by a premalignant phase called monoclonal gammopathy of undetermined
significance (MGUS) and clinically defined by thresholds in serum M protein and clonal bone
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marrow plasma cell content with the absence of hypercalcemia,
renal insufficiency, anemia, and bone lesions (known as CRAB
features) or amyloidosis relating to the plasma cell proliferative
disorder (Landgren et al., 2009; Rajkumar et al., 2014). The
risk of developing MGUS is low, thought to be around 3.2%
of individuals aged 50 or older and increases to 5.3% for
those aged 70 or older (Kyle et al., 2006). An individual with
MGUS lives with an increased risk of developing MM at a
rate of 1% per year (Kyle et al., 2002). Additionally, there is
an intermediate precursor between MGUS and MM known as
smoldering multiple myeloma (SMM). This phase is clinically
defined by a higher threshold in M-protein or clonal bone
marrow plasma cell content with the continued absence of CRAB
features (Rajkumar et al., 2014). The risk of progression for
SMM increases at a variable rate, as 10% per year for the first
5 years, 3% per year for the next 5 years, and 1% per year
in the following 10 years (Kyle et al., 2007). Understanding
the biological basis of MM progression from these precursors
is still unclear.

Gene expression profiling studies have been applied to MM to
identify subgroups and biomarkers in order to better understand
the molecular basis of disease, improve prognostic models,
and characterize features associated with a high risk of disease
progression (Davies et al., 2003; Zhan et al., 2006; Chng et al.,
2007a; Shaughnessy et al., 2007; Broyl et al., 2010; Dhodapkar
et al., 2014; López-Corral et al., 2014; Shao et al., 2018). A few
studies have analyzed the disease precursors using hierarchical
clustering and differential expression analysis to identify gene
signatures (Davies et al., 2003; Zhan et al., 2007; López-Corral
et al., 2014). We approached gene expression profiling analysis
from the transcription factor (TF) perspective, using gene co-
expression networks (GCNs).

Gene co-expression networks have been widely used in
discovery of new gene functions and regulatory relationships
(Langfelder and Horvath, 2008; Zhang et al., 2010, 2012; Kais
et al., 2011; Yin et al., 2015; Zhang and Huang, 2016; Miao et al.,
2018). GCNs have been implemented in a few MM studies albeit
these studies focused on differential gene expression and not
co-expression (Dong et al., 2015; Wang et al., 2016; Liu et al.,
2017). We applied GCN analysis on two publicly available MM
datasets to identify regulatory genes specifically associated with
or disrupted in MM precursors.

The GCN algorithm we employed is local maximal Quasi-
Clique Merger (lmQCM) (Zhang and Huang, 2016), previously
developed to mine densely correlated gene modules in weighted
GCNs (Zhang et al., 2010; Zhang and Huang, 2016, 2017; Xiang
et al., 2018). The advantages that lmQCM has over a similar
method such as WGCNA (Langfelder and Horvath, 2008) is the
ability to allow genes to belong to more than one module and
the ability to produce smaller sized modules many of which are
related to copy number variations (CNVs) in cancers (Han et al.,
2016; Zhang and Huang, 2016; Xiang et al., 2018).

We further supported and validated our gene expression
findings with CNVs from microarray technology based on single-
nucleotide polymorphism (SNP) arrays. SNP arrays can be
used in numerous ways to identify genomic imbalances (She
et al., 2008; López-Corral et al., 2012; Johnson et al., 2016;

Mitchell et al., 2016; Mikulasova et al., 2017). We surmised that
some gene expression changes from normal to MM precursors
can be explained by CNVs in order to better understand the
genomic changes of myeloma progression.

MATERIALS AND METHODS

Gene Expression Profiling Datasets:
Processing and GCN
We applied an integrative network-based approach to identify
modules of co-expressed genes associated with MM precursors.
MM microarray datasets GSE5900 and GSE6477 from the Gene
Expression Omnibus (GEO) were obtained, annotated, and
filtered using the TSUNAMI web-tool1. The web-tool retrieved
the gene expression matrices via the R package GEOquery.
We converted probe IDs to corresponding HGNC symbols
according to GEO Platform accession number. In the case of
duplicate gene symbols, we retained the one with the largest mean
expression value. Probes without gene symbols were removed.
We further filtered the data by removing the lowest 20% of
genes quantified by absolute average value. The lowest 50%
of genes quantified by variance in GSE5900 were removed,
while filtering GSE6477 was accomplished by removing the
lowest 10% of genes quantified by absolute average value and
lowest 10% of genes quantified by variance. We applied a
stricter cutoff on GSE5900 because the microarray platform
had a much larger probeset than the platform in GSE6477
(54,675 vs. 22,283 probes). This was conducted in order to
obtain expression sets with similar numbers of genes. The
resulting datasets had 15,388 and 12,530 genes for GSE5900
and GSE6477, respectively. Normalization of the datasets was
confirmed by inspecting the boxplots of the samples for
consistent median values.

SNP Array Dataset: Processing and CNV
Analysis
We obtained raw CEL files from GEO study GSE31339,
sequenced on Affymetrix Genome-Wide Human SNP Array
6.0. The CEL files were analyzed by the R package Rawcopy
(Mayrhofer et al., 2016) and then aggregated by the following
conditions: normal (n = 10), MGUS (n = 20), and SMM
(n = 19). SMM sample GSM777173 was removed from our
analysis after the sample identity distogram suggested some cell
or DNA contamination with other samples (Supplementary
Figure S1). CNVs were detected in genomic segments using
PSCBS, an enhanced method of circular binary segmentation
(Bengtsson et al., 2010; Olshen et al., 2011). We used the reference
data included in Rawcopy for calculating logarithm (base 2)
ratios (log2 ratios) of genome segmentation. Rawcopy defined
the thresholds for copy number gain as segment median log2
ratio > 0.2 and copy number losses as segment median log2
ratio < −0.3 (Mayrhofer et al., 2016). The package also annotated
probes with their corresponding genes.

1https://apps.medgen.iupui.edu/rsc/tsunami/
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Gene Co-expression Network Mining
We separated GSE5900 into three datasets: normal (n = 22),
MGUS (n = 44), and SMM (n = 12). The GSE6477 dataset
was separated in the same fashion into three datasets: normal
(n = 15), MGUS (n = 22), and SMM (n = 22). GCN
mining was conducted using the R package lmQCM. The
lmQCM algorithm has an option for normalizing the edge
weights of the weighted co-expression network by setting the
sums of both rows and columns of the weight matrix to
be all ones similar to the weight normalization in spectral
clustering (Ng et al., 2001). Another important parameter for
lmQCM is gamma that controls the initiation of new gene
modules in the iterative mining process. Here, we applied
the edge weight normalization and also tested varying gamma
values; the rest of the parameters were kept as the default.
The normalization process suppresses high weights between
nodes and boosts edges with relatively lower weights, which
overcomes the issue of unbalanced edge weights in dense module
mining algorithms (Zhang and Huang, 2016). The gamma
variable ranges from 0 to 1 and controls for the number
of generated modules and the maximum module size. For
normalized weights, the suggested range of gamma is 0.3–
0.75. A higher gamma results in more total modules with
fewer genes in the largest module. A lower gamma results
in less total modules with more genes in the largest module.
We selected gamma values that struck a balance between
these two outcomes and elected to keep the largest module
under 500 genes. Different values for gamma were selected
to obtain a similar number of modules between the same
conditions (i.e., normal, MGUS, or SMM) in GSE5900 and
GSE6477. This allows the identified modules to be more
comparable between datasets of the same condition. We
chose the following gamma values for GSE5900: 0.60 for
normal, 0.40 for MGUS, and 0.75 for SMM. The following
gamma values were chosen for GSE6477– normal: 0.65, MGUS:
0.60, and SMM: 0.55.

For comparison, we also applied the widely used weighted
GCN mining algorithm WGCNA (Langfelder and Horvath,
2008) on the same datasets specifying a minimum module size
of 10 and using power 5 or 6 as appropriate, leaving the rest
of the settings as default. We then selected the most similar
modules from lmQCM and WGCNA and calculated gene-wise
Spearman correlations to quantify the co-expression density of
each module. The most similar modules were determined using
the Jaccard index between lmQCM and WGCNA modules in the
same condition, where the Jaccard index is simply defined as the
size of the intersection between two gene modules divided by the
size of the union of the same two modules.

Identification of Condition-Specific
Modules
Condition-specific modules are those in which the expression
profile of the genes in one module is more correlated in one
condition compared to others (e.g., normal, MGUS, or SMM).
We utilized a previously developed metric called Centralized
Concordance Index (CCI) that evaluates the co-expression

of genes within modules identified from GCN analysis (Han
et al., 2016). The CCI describes how strongly genes co-
express and is calculated from a subset of gene expression
data containing the genes from a module and samples from
a single condition. CCI values range from 0 to 1, with a
higher number indicating more densely correlated genes. For
each gene module identified from lmQCM, we calculated
the corresponding CCI in normal, MGUS, and SMM. The
CCIs for each module were then compared across the three
conditions, and a difference of ∼0.2 in CCI values between
MM precursors (MGUS or SMM) and normal were identified as
potentially interesting.

Module Similarity Between Datasets
We further reduced our modules of interest by identifying
modules with similar genes between GSE5900 and GSE6477. The
Jaccard index, described above in Section “Gene Co-expression
Network Mining,” was used to calculate the similarity of modules
in the same conditions between GSE5900 and GSE6477. This
calculation was conducted between every pair of modules in each
condition: normal, MGUS, and SMM. Each resulting matrix was
then transformed into a z-score where the top one percentile of
similar module pairs from each condition were kept to filter the
list of potentially interesting modules for enrichment analysis.

Functional Enrichment Analysis and
Identification of Upstream Regulators
We used the R package enrichR (Kuleshov et al., 2016) to conduct
enrichment analysis of the genes in each module of interest. We
specified the “GO Biological Process 2017b” and “KEGG 2016”
databases for functional and pathway enrichment analyses. For
determining the significance of GO and KEGG pathway terms,
we used Bonferroni significance cutoffs of 0.05/nMods where
nMods is the number of modules corresponding to the specific
dataset. For instance, the p-value cutoff for GSE5900 normal-
specific data is 0.05/31 = 0.00161. We took GO terms with
significant p-values and summarized them using the web-tool
REVIGO (Supek et al., 2011).

Using enrichR, we specified the “TRANSFAC and JASPAR
PWMs” database to identify TFs that regulate the genes in our
modules of interest, using a less stringent Bonferroni cutoff
of 0.1/nMods. We then narrowed down the list of TFs by
identifying those that were differentially expressed among the
three conditions by either gene expression data or CNV segment
median data by conducting Mann–Whitney tests between normal
and MGUS and between normal and SMM samples.

Network Analysis of TF Targets
We used Ingenuity Pathways Analysis (IPA, Qiagen) for network
analysis of TFs and their targets determined from enrichR to
explore possible signaling pathways. We conducted core analyses
(which is a function of IPA) for each TF and its targets, using
experimentally observed knowledge in the Ingenuity Knowledge
Base and specifying direct and indirect gene relationships in
human tissue and cell lines.
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RESULTS

lmQCM Produces Smaller-Sized
Modules Than WGCNA With Stronger
Gene Correlations
Our workflow is shown in Figure 1. After applying the lmQCM
algorithm using the specified gamma values to the GSE5900
datasets, we obtained 78, 60, and 95 modules for normal,
MGUS, and SMM, respectively; module sizes ranged from 10 to
400 genes. In GSE6477, using the specified gamma values, we
obtained 79, 85, and 70 modules for the normal, MGUS, and
SMM samples, respectively; module sizes ranged from 10 to 352
genes. Applying WGCNA to GSE5900, we obtained 40, 41, and
98 modules for normal, MGUS, and SMM, respectively; module
sizes ranged from 11 to 4694 genes. In applying WGCNA to
GSE6477, we obtained 34, 99, and 74 modules for normal, MGUS,
and SMM, respectively; module sizes ranged from 11 to 4324
genes. Detailed breakdowns by sample type are shown in Table 1.

The most similar gene modules were identified from two
SMM modules in lmQCM and WGCNA. The lmQCM module
contained 224 genes and the WGCNA module contained 393
genes. The Jaccard index was 0.396, with an overlap of 175 genes.
Within each respective module, we calculated the Spearman
correlation in a gene-wise manner and conducted a two-sided
Mann–Whitney test between the absolute value of the correlation
coefficients in each population. The correlation coefficients were
significantly higher in the lmQCM module (median: 0.399)
compared to the WGCNA module (median: 0.322) with a p-value
of 2.2E-16 (Supplementary Figure S2).

Module Reduction Using CCI and
Jaccard Similarity
Normal-, MGUS-, and SMM-specific modules were identified
by calculating the CCI difference between normal and MGUS
samples and normal and SMM samples and setting a cutoff
of around 0.2 CCI difference. This resulted in 68 and 79
normal-specific modules, 45 and 72 MGUS-specific modules, 95
and 63 SMM-specific modules across GSE5900 and GSE6477
datasets, respectively. An example of a normal-specific gene
module is visualized using Spearman correlation heatmaps in
Supplementary Figure S3.

To further reduce modules of interest, we used Jaccard
similarity. After module similarity comparison using the Jaccard
index, we reduced the interesting modules to more manageable
numbers than solely using CCI and were left with 31 and 39
normal-specific modules, 22 and 31 MGUS-specific modules,
and 47 and 30 SMM-specific modules across GSE5900 and
GSE6477 datasets, respectively. The module sizes ranged from
10 to 400 genes.

Frequency of CNVs Increase From MGUS
to SMM
Chromosomes 2, 4, 10, 11, 12, and 21 were mostly unchanged
and showed 10% or less allelic imbalance in all conditions.
Chromosomes 1q, 3, 5, 6, 7, 9, 15, 18, and 19 were slightly

amplified in MGUS and more amplified in SMM, with
chromosomes 1q, 5, 9, and 19 showing the highest frequencies of
change in SMM of around 40%. For instance, 1q had about 10%
of MGUS samples amplified and around 40% of SMM samples
amplified. We observed an increased frequency of deletions in
chromosomes 1p, 6, 7, 8p, 10, 12p, 13, 14q, 16q, 18, 20, and 22q;
the highest deletion frequency was around 25% and was observed
in 8p, 13, 16q, and 22q of SMM patients. The CNV landscape
across conditions is shown in Figure 2.

EnrichR GO Results Are Highly Enriched
in Immune-Related Terms
The top GO BP terms from all condition-specific modules
are shown in Supplementary Table S1. In the normal-specific
data, there were 95 significant GO BP terms that appeared
in both GSE5900 and GSE6477, the top few being neutrophil
degranulation, antigen processing and presentation of exogenous
peptide antigen via MHC class II, and antifungal humoral
response. These GO terms are mostly related to immune
system response.

The MGUS-specific data had 40 significant GO BP
terms in common from GSE5900 and GSE6477, with many
immune function terms such as positive regulation of B cell
activation, response to interferon-alpha, and B cell receptor
signaling pathway.

The SMM-specific data shared 125 GO BP terms between
GSE5900 and GSE6477 data, the most significant ones relating
to the process of transcription and translation. There were
also terms related to immune function such as B cell receptor
signaling pathway.

Condition-Specific Modules From Four
Identified TFs Describe Different Aspects
of Myeloma
We identified these TFs as interesting: MAX, TCF4, ZNF148, and
ZNF281. MAX was identified from a normal-specific module,
TCF4 and ZNF148 were identified from MGUS-specific modules,
and ZNF281 was identified from a SMM-specific module. Three
TFs (MAX, TCF4, and ZNF148) were differentially expressed
between normal and a MM precursor (MGUS or SMM) in the
gene expression datasets and/or the CNV dataset (Table 2).
While ZNF281 was not differentially expressed, it showed an
interesting increase in copy number gain from normal to
MGUS and to SMM.

Module Descriptions
The gene co-expression module containing MAX was
functionally enriched in bleb assembly and activation of
MAPKKK activity involved in innate immune response.

The gene co-expression module containing ZNF148 was
functionally enriched in antigen processing and presentation
of exogenous peptide antigen via MHC class II and negative
regulation of peptide hormone processing.

In the gene co-expression module containing TCF4,
multiple assembly complexes containing the genes GEMIN5,
PPARGC1A, and TEAD1 were significantly enriched. They
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FIGURE 1 | Workflow of the methods employed in this study.

TABLE 1 | GCN results from algorithms lmQCM and WGCNA.

Dataset Sample Sample lmQCM total lmQCM WGCNA total WGCNA

type size modules module sizes modules module sizes

GSE5900 Normal 22 78 10–400 40 12–1943

GSE5900 MGUS 12 60 10–332 41 12–4694

GSE5900 SMM 44 95 10–236 98 11–2732

GSE6477 Normal 15 79 10–119 34 11–4324

GSE6477 MGUS 22 85 10–352 99 13–1494

GSE6477 SMM 24 70 10–248 74 11–1652

The total number of resulting modules and size range are detailed by dataset and sample type.

include apoptosome assembly, mitotic checkpoint complex
assembly, and Wnt signalosome assembly.

The gene co-expression module containing ZNF281 is
functionally enriched in genes involved in transcription. These
include transcription, DNA-templated, transcription from RNA
polymerase II promoter, telomeric repeat-containing RNA
transcription, and mRNA transcription.

The details of GO BP enrichment results (top enriched
terms and p-values) for these modules with their corresponding
p-values are listed in Supplementary Table S1.

TFs Exhibit Consistent CNV and Gene Expression
Trends During the Course of Myeloma Progression
MAX did not show differential gene expression; however,
its copy number significantly decreased in MGUS and
SMM compared to normal (p-val = 1.17E-05 and 6.10E-
04, respectively, Figures 3A,B). The CNV pattern showed
deletions in MGUS and amplification and deletions in
SMM (Figure 3B).

ZNF148 was the only TF that showed significantly different
CNV aberrations and gene expression, with gene expression and
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FIGURE 2 | Summary of CNVs across the genome from chromosomes 1–7 in (A) normal, (B) MGUS, and (C) SMM samples. Summary of CNVs across the genome
from chromosomes 8–22 in (D) normal, (E) MGUS, and (F) SMM samples. The y-axis indicates the frequency of the chromosomal aberration. Green indicates
amplification; blue indicates deletion.

copy number amplification both increasing in MGUS and SMM
(p-val range: 1.75E-02–3.11E-04, Figures 4A,B).

TCF4 was differentially expressed between normal/MGUS
(p-val = 3.65E-03) and normal/SMM (p-val = 1.49E-02), with
gene expression progressively increasing from MGUS to SMM
(Figure 5A). In regard to CNVs, TCF4 exhibited amplifications
in MGUS and amplifications and deletions in SMM (Figure 5B).

ZNF281 did not show differential gene expression
(Figure 6A). ZNF281 showed increasing CNV amplifications
from MGUS to SMM, but it was not considered significant by
Mann–Whitney tests (Figure 6B).

TF Signaling Networks Are Related to Cancer
Progression
IPA network analysis showed MAX and its targets
interact with other TFs CCNT1, KLF10, and MYC.
MAX is further predicted to target CCNG2 and TXNIP.
BRD4 is shown to regulate expression of BHLHE40 and
SLC7A2 (Figure 3C).

ZNF148 and its targets were shown to interact with TFs TP53,
FOXO1, SP1, TCF3, HSF1, SMARCA4, and E2F1. Additionally,
CDKN1A was shown to be a common target of the TFs listed
above (Figure 4C).
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TABLE 2 | Transcription factors of interest, identified from condition-specific modules in normal, MGUS, and SMM samples.

Transcription
factor

Chromosomal
region

TF targets

MAX 14q12-q24 NLGN4X, VEGFB, STMN3, CTSW, OVOL1, SGSH, PDP1, LYL1, DRAM1, SH3BP1, ZMIZ1, NFIC, RGL3, PTPRCAP,
FGF13, CUEDC1

ZNF148 3q13-q22 NLGN4X, VEGFB, STMN3, CTSW, OVOL1, SGSH, PDP1, LYL1, DRAM1, SH3BP1, ZMIZ1, NFIC, RGL3, PTPRCAP,
FGF13, CUEDC1

TCF4 18q11-q23 UEVLD, DSP, ALS2CR11, NT5E, RALYL, EFEMP1, GEMIN5, PPARGC1A

ZNF281 1q32-q44 HRK, SLC26A1, TNXB, CRABP2, IBA57, LOC728392, ESPN, AGPAT2, HS6ST1, DLL3, IL4I1, RGS3, FUT7, PDLIM2,
NUP62, POLR2F, GGT1, SLC38A3, ZBTB7B, POLR2J, WNT2, MUC6, POLR2J3, WWTR1, PDIA2, KLF12, ZFHX3,
ACE, POLR2J2, SLC2A11, GP1BB, ABCA3, XRCC1, FNDC11, CTAG2, RENBP, CLDN5, DLG4, TRPV4, NOX5,
IGFALS, HOXB8

The chromosomal regions were determined by Rawcopy. The TF targets were identified by enrichR.

TCF4 and its targets were shown to interact with TFs RUNX2,
CCND1, and HNF4A in addition to nuclear receptor PPARG and
junction protein JUP (Figure 5C).

ZNF281 and its targets were shown to interact with TFs
CREB1, CTNNB1, RELA, NPM1, and POU5F1. ZNF281
was shown to directly target GADD45A. TP53 was shown
to be an intermediate interactor that connected each
subnetwork (Figure 6C).

DISCUSSION

We conducted GCN analyses on two publicly available MM
datasets and identified four TFs by a condition-specific method.
This pipeline has previously not been applied to studying MM
precursors. Our approach identified TFs expressed in condition-
specific gene modules in publicly available MM data. We then
validated our TFs with CNV data taken from a third publicly
available dataset, looking for genes located on chromosomal
segments that showed a consistent trend in aberration from
normal to SMM and identified four TFs: MAX, ZNF148,
TCF4, and ZNF281.

The gene module that MAX belongs to was determined
to be condition-specific in normal samples. This means that
the genes in the module were observed to be co-expressed
in normal samples and less so in MGUS and SMM samples.
This suggests that MAX is dysregulated in MGUS and SMM,
which we observed to be true in the CNV data. MAX is
known to complex with MYC to regulate transcription (Kato
et al., 1992) and MYC is commonly known to be constitutively
active in MM. The MAX–MYC relationship has been targeted
in previous studies to inhibit c-MYC activity in MM cell
lines (Holien et al., 2012). This association appears to conflict
with our data, which shows the chromosomal region of MAX
deleted in some MGUS and SMM samples and decreased gene
expression in some SMM samples. An alternate explanation can
be found in studies that show MYC can function independently
of MAX in pheochromocytoma and small cell lung cancer
(Ribon et al., 1994; Romero et al., 2014). MAX-independent
expression of MYC in MM and its precursors requires further
investigation; a recent abstract identified MAX as a tumor
suppressor driver gene in MM (Garcia et al., 2017), which is a
promising start.

ZNF148 has been implicated in other MM studies
(Magrangeas et al., 2003; Dong et al., 2015), but to our
knowledge, none have directly associated this gene with MGUS
or SMM. The associated chromosomal segment of ZNF148 was
progressively amplified from normal to MGUS and to SMM,
corresponding with increased ZNF148 gene expression. This
suggests that this TF is involved as a driver in disease progression
earlier than previously thought.

TCF4 was differentially overexpressed in MGUS and SMM
compared to normal. TCF4 was not significantly amplified in
MGUS, although this may be due to small sample size. We
suggest that copy number amplification may play a part in
TCF4 dysregulation and may be involved in the initiation of
MGUS but not SMM. This reasoning is due to the observation
that the TCF4 region is solely amplified in MGUS whereas
there is a mix of amplified and deleted regions in SMM. This
is consistent with our identification of TCF4’s gene module
as MGUS-specific. Module enrichment and network analysis
suggest Wnt signaling through TCF4 contributes to RUNX2
and CCND1 overexpression. RUNX2 overexpression has been
shown to be a driver of MM progression (Li et al., 2014;
Trotter et al., 2015). CCND1 overexpression has typically been
observed to occur in MM precursors with chromosomal 11 and
14 translocations (Miura et al., 2003; Zhan et al., 2006). In
gastric cancer, CCND1 has been shown to directly interact with
TCF4 through the Wnt signaling pathway (Zheng et al., 2018),
suggesting that other mechanisms of CCND1 overexpression may
also occur in MM.

ZNF281 was increasingly amplified from MGUS to SMM
patients. However, this is not considered statistically significant,
possibly due to small sample size. Module enrichment results
suggest transcriptional genes are more active in SMM, consistent
with the fact that cancer cells require continued transcription
in order to grow and proliferate. Increased transcription
increases the chances of mutations in the DNA, which
would activate tumor suppressor p53 and lead to cell cycle
arrest or apoptosis in normal functioning cells. Cancer cells
commonly have mutated TP53 to avoid transcriptional control
and apoptosis. However, TP53 mutations are relatively rare
in newly diagnosed MM patients (Chng et al., 2007b; Abdi
et al., 2017). Our IPA network analysis suggests that TP53
may be regulated by CTNNB1. A previous study showed
CTNNB1 suppressed TP53 in smooth muscle cells during artery
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FIGURE 3 | (A) MAX expression across sample groups. Mann–Whitney tests between groups showed no significant difference. (B) Observations of MAX copy
number. Mann–Whitney tests showed significant copy number variation between Normal and MGUS (p = 1.17E-05) and between Normal and SMM (p = 6.10E-04).
(C) A predicted interaction network of MAX and its downstream targets. The gray nodes indicate genes from our module and the white nodes are gene interactions
defined in IPA. Solid lines between nodes indicate a direct interaction supported by the Ingenuity Knowledge Base while the dashed line indicates an indirect
interaction. Significance levels: ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001.

FIGURE 4 | (A) ZNF148 expression across sample groups. Mann–Whitney tests showed significant differential expression between Normal and MGUS
(p = 1.75E-02) and between Normal and SMM (p = 4.05E-02). (B) Observations of ZNF148 copy number. Mann–Whitney tests showed significant copy number
variation between Normal and MGUS (p = 4.76E-04) and between Normal and SMM (p = 3.11E-04). (C) A predicted interaction network of ZNF148 and its
downstream targets. The gray nodes indicate genes from our module and the white nodes are gene interactions defined in IPA. Solid lines between nodes indicate a
direct interaction supported by the Ingenuity Knowledge Base. Significance levels: ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001.

formation (Riascos-Bernal et al., 2016). Something similar may
be occurring in MM.

As previously observed by the original authors (López-
Corral et al., 2012), the incidence of CNVs progressively

increased from normal to MGUS and to SMM. Our analysis
with Rawcopy identified similar regions of amplification
and deletion from normal to MGUS and from MGUS
to SMM. While not all the chromosomal regions were
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FIGURE 5 | (A) TCF4 expression across sample groups. Mann–Whitney tests showed significant differential expression between Normal and MGUS (p = 3.65E-03)
and between Normal and SMM (p = 1.49E-02). (B) Observations of TCF4 copy number. Mann–Whitney tests showed no significant differences between any groups.
(C) A predicted interaction network of TCF4 and its downstream targets. The gray nodes indicate genes from our module and the white nodes are gene interactions
defined in IPA. Solid lines between nodes indicate a direct interaction supported by the Ingenuity Knowledge Base. Significance levels: ∗p ≤ 0.05; ∗∗p ≤ 0.01;
∗∗∗p ≤ 0.001.

FIGURE 6 | (A) ZNF281 expression across sample groups. Mann–Whitney tests between groups showed no significant difference. (B) Observations of ZNF281
copy number. Mann–Whitney tests showed no significant differences between any groups. (C) A predicted interaction network of ZNF281 and its downstream
targets. The gray nodes indicate genes from our module and the white nodes are gene interactions defined in IPA. Solid lines between nodes indicate a direct
interaction supported by the Ingenuity Knowledge Base. Significance levels: ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001.

considered statistically different in the original study, it
is visually striking how the frequency of chromosomal
aberrations increase in patients from MGUS to SMM. The

chromosomal regions of our identified TFs exhibited copy
number changes. We suggest that these copy number alterations
affect gene expression to an extent. The limitation is that we
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cannot offer direct evidence for this, therefore we suggest further
exploration of this relationship in the laboratory.

There are other limitations to our study we should
acknowledge. We filtered our gene lists down to 12,000–15,000
genes out of ∼22,000 and ∼54,000 microarray probes and
identified TFs that showed consistent trends across groups. We
may have removed or overlooked genes that could also play a
part in myelomagenesis or progression. Although we inferred
potential biological mechanisms of the four TFs from literature,
the clinical significance of these genes remains to be investigated.
Further research can be conducted to assess the pertinence of
our TFs in addition to integrating other data modalities into
more analyses. Despite these drawbacks, the biological details
for these genes appear to have a relevant role in MM initiation
and progression.

CONCLUSION

In conclusion, we interrogated the role that TFs have in
MM progression using a pipeline of GCN analysis, condition-
specific gene module selection, TF enrichment analysis, and
CNV analysis. We identified the TFs MAX, ZNF148, TCF4, and
ZNF281 from gene expression data and validated that their CNVs
change from normal to MGUS and SMM. We examined the
biological relevance of these TFs in MM and suggest further study
of these genes in the laboratory.
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FIGURE S1 | Sample identity distograms of SMM samples produced by
Rawcopy. (A) Distogram including GSM777173 that suggests this sample has
some relatedness to other samples. (B) Distogram after removing GSM777173.

FIGURE S2 | Gene-wise correlation heatmap of the two most highly similar
modules in (A) lmQCM (n = 224) and (B) WGCNA (n = 393). The correlation
coefficients are the absolute value of the Spearman correlation. The median
correlation coefficient is higher in lmQCM (0.403) compared to WGCNA (0.344).
SCC, Spearman correlation coefficient.

FIGURE S3 | Gene-wise correlation heatmap of a normal-specific gene module.
The genes in the module were identified by lmQCM in the normal samples.
Gene-wise correlation coefficients are calculated from gene expression in each
respective condition: (A) Normal, (B) MGUS, and (C) SMM. The correlation
coefficients are the absolute value of the Spearman correlation. The genes are
more correlated in normal samples and decrease in correlation in MGUS and
SMM samples. The CCI values are 0.697, 0.226, and 0.252, respectively. SCC,
Spearman correlation coefficient.

TABLE S1 | GO BP enrichment results identified by enrichR. The most relevant
enrichment terms are included along with the enrichment size and p-value
associated with the corresponding dataset.
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