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For decades, two-dimensional cell culture has been regarded as a major tool in cellular

and molecular biology due to its simplicity, reproducibility and reliable nature. However,

it is now recognized that 2D cell culture underrepresents the in vivo environment of living

cells. The development and use of 3D scaffolds and biomaterials provide researchers an

ability to more closely mimic the in vivo environment. However, many biomaterials are of

animal origin, leading to variability, environmental and ethical concerns. Here we present

three animal-free scaffolds: decellularized plant tissue, chitin/chitosan and recombinant

collagen. Decellularized plant tissue provides a wide array of structures with varying

biochemical, topographical and mechanical properties; chitin/chitosan-based scaffolds

have shown synergistic bactericidal effects and improved cell-matrix interaction; and

lastly, recombinant collagen has the potential to closely resemble native tissue, as

opposed to the other two. These benefits, alongside potential scalability and tunability,

open the door to applications beyond the biomedical realm, such as innovations in cellular

agriculture and future food technologies.
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INTRODUCTION

Since the early 20th century, two-dimensional cell culture has been regarded as a reliable,
simple and reproducible study of cellular behavior (Jedrzejczak-Silicka, 2017). However, a direct
comparison between 2D and 3D cell culture is challenging due to dramatic differences in the
cellular environment. In vivo, cells interact closely with other cells, a complex array of physical
forces/stimuli, and biologically active extracellular matrix (ECM). In contrast, 2D cell culture
is performed on a substrate with drastically different mechanical and biochemical properties
(Figure 1). Comparisons between 2D and 3D cell culture have revealed significant differences
in proliferation, differentiation, drug toxicity resistance, gene expression and protein synthesis
(Huyck et al., 2012; Antoni et al., 2015; Ravi et al., 2015; Cavo et al., 2016; Fang and Eglen, 2017;
Riedl et al., 2017). In order to overcome the gap between 2D cell culture and the 3D environment
sensed by the cell in vivo, a plethora of natural and synthetic polymers, recombinant proteins,
ceramics, and metal-composite scaffolds have been developed and reviewed previously (Carletti
et al., 2011; O’Brien, 2011; Turnbull et al., 2018). Yet, in order to produce scaffolds with similar
characteristics to those of the ECM, animal-derived polymers such as collagen are often considered
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FIGURE 1 | Cells on 3D porous substrate vs. 2D substrate. Cells on 3D

porous substrates can be found on the surface and interior, whereas cells on

Petri dishes are bound to a 2D environment. Proteins naturally found in animal

serum and those synthesized by cells adsorb to the surface of the material

and facilitate cell adhesion. Through focal adhesion, adherent cells are able to

interact with the substrate; therefore, the properties of the material (e.g.,

Stiffness) can influence the cell’s behavior and morphology.

as the gold standard. However, the dependence on animals have
made them undesirable due to variability (Shoseyov et al., 2013),
environmental (Kraham, 2017), and ethical concerns (Verbeke
and Viaene, 2000). Moreover, the scalability and consumer
acceptance of cultured meat products will rely on a disconnect
from animal sources. Research into animal-free scaffolds has
emerged as a potential source for consistent, chemically defined
and low-cost materials.

Synthetic or natural animal-free polymers such as cellulose
(Huber et al., 2012; Hickey et al., 2018), chitin/chitosan
(Jayakumar et al., 2011), alginate (Lee and Mooney, 2012),
recombinant silk (Widhe et al., 2010), PLA (Serra et al., 2013),
and PCL (Li et al., 2017) provide low cost, consistent and
tunable scaffolds. In this concise review we have chosen to
focus on chitin/chitosan, cellulose (bacterial and plant), and
recombinant collagen and their use in tissue engineering and
potential applications in cellular agriculture. The biomaterials
chosen here meet the criteria for cellular agriculture applications,
such as animal-free, abundant, biocompatible, versatile, provide
nutritional benefits, and are already part of commonly consumed
products. However, we recognize that many other biomaterials
and scaffolding approaches do exist and, as above, we refer
the reader to other topical reviews for a deeper examination
of those strategies (Carletti et al., 2011; O’Brien, 2011;
Derakhshanfar et al., 2018).

As tissue engineering and regenerative medicine continues
to expand with promising results, the potential for novel food
applications has arisen due to the similarity in techniques and
approaches. Although meat/tissue has proven to be difficult to
replicate in vitro due to its complex composition (muscle, nerve,
water, minerals, growth factors, hormones, and Extracellular
matrix proteins) (Listrat et al., 2016), the native structure
of foods such as mushroom (Jo-Feeney et al., 2014) and
jackfruit (John et al., 1992) have the potential to contribute the

expected palatable properties of meat. In addition to rheological
properties, these foods contribute nutritional benefits, such as
insoluble fiber (McDougall et al., 1996; Cheung, 2013).

DECELLULARIZED PLANT TISSUE AND
BACTERIAL CELLULOSE

As the most abundant polymer in nature (1.5 × 1012 tons of
total biomass) and the main component of plants, cellulose, a 1-
4β D-glucose polymer has shown great potential as scaffolding
material due its low cost, versatility and overall biocompatibility
(O’Sullivan, 1997; Klemm et al., 2005). Cellulose hydrogels (Isobe
et al., 2018), composites (Huber et al., 2012; Johns et al., 2018),
functionalized plant cellulose (Modulevsky et al., 2014; Fontana
et al., 2017) and decellularized plant tissue (Modulevsky et al.,
2014; Gershlak et al., 2017) have been developed. This in turn
shows the versatility of cellulose. Moreover, cellulose and its
derivatives (e.g., Methylcellulose and 6-carboxycellulose) have
been functionalized and blended with other materials to improve
its mechanical, biological and chemical properties (Novotna
et al., 2013; Thirumala et al., 2013; Fontana et al., 2017). Cellulose
as a biomaterial has been extensively reviewed previously (Kalia
et al., 2011; Hickey and Pelling, 2019). This sectionwill emphasize
on decellularized plant tissue and bacterial cellulose.

It was shown that decellularized apple hypanthium (Figure 2)
can be used as a substrate for 3D cell culture. HeLa cells,
3T3 fibroblast, and C2C12 murine myoblast proliferated
throughout the 3D matrix (Modulevsky et al., 2014). In order to
decellularized the tissue, a surfactant, in this case SDS, was used
to create pores in the plant cell membrane, leading to the release
of cellular components (Brown and Audet, 2008; Modulevsky
et al., 2014). The mechanical properties of these scaffolds which
are known to influence cell behavior, have also been altered
through functionalization and crosslinking (Modulevsky et al.,
2014) and further shown to resemble skeletal (Modulevsky et al.,
2014; Hickey et al., 2018) and cardiac muscle tissue (Gershlak
et al., 2017). However, cellulose based scaffolds do lack a wide
array of mammalian biochemical cues; thus, biofunctionalization
or coating with functional surface proteins may be required
for specific cell lines, especially in a serum-free environment
(Hayman et al., 1985; Courtenay et al., 2017; Johns et al., 2018).
It was noted, however, that the viability of C2C12 cells was not
affected by the bare cellulose scaffold when compared to collagen
and gelatin coating (Hickey et al., 2018). Nonetheless, seeding
efficiency has been shown to be greatly improved with surface
coating and functionalization (Modulevsky et al., 2014; Fontana
et al., 2017; Hickey et al., 2018).

An advantage of decellularized plant tissue is the wide array of
natural topographies that can be used to study cellular behavior
and potentially mimic in vivo conditions without long and costly
processing (Modulevsky et al., 2014, 2016; Fontana et al., 2017).
By utilizing the topographical cues present in the vascularization
of stems and leaves, guided cell alignment was noted (Fontana
et al., 2017). In this case, cell alignment was likely due to
the confinement of cells within the vascularization channels.
Alignment in cell culture is a highly desirable characteristic,

Frontiers in Sustainable Food Systems | www.frontiersin.org 2 May 2019 | Volume 3 | Article 38

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles


Campuzano and Pelling Non-animal Derived Scaffolds

FIGURE 2 | Preparation of cellulose scaffold. Macroscopic appearance of a freshly cut apple hypanthium tissue (A) and the translucent scaffold biomaterial post

decellularization and absent of all native apple cells or cell debris (B). H & E staining of cross sectioned decellularized cellulose scaffold (C). The cell walls thickness

and the absence of native apple cells following decellularization are shown. The 3D acellular highly porous cellulose scaffold architecture clearly revealed by SEM (D).

Scale bar: A–B = 2mm, C–D = 100µm. Reprinted from Modulevsky et al. (2016).

especially in musculoskeletal research. By inducing alignment,
researchers try to mimic the physiological state of myoblast
and myotubes (Zhao et al., 2009; Bettadapur et al., 2016). In
comparison to synthetic microchannel development techniques,
such as 3D printing (Tijore et al., 2018), soft lithography
(Glawe et al., 2005) and photolithography (Lee et al., 2006), the
decellularized vascular bundle of plants depict a low cost, highly
accessible and easy to use material.

The vascularization of a decellularized spinach leaf was
postulated as a way to overcome the 100–200µm diffusion
limitations of 3D scaffolds (Gershlak et al., 2017). Yet, it’s still
unclear if cells growing outside of the vascularization tracts
can benefit from the circulation of nutrients. However, as of
now, the need for vascularization in decellularized plant is not
a requirement. Cells are able to grow throughout the porous
decellularized apple hypanthium without developing a necrotic
center (Modulevsky et al., 2014; Hickey et al., 2018). Yet, a
necrotic center is likely to develop in very large scaffolds which
may possibly be required in food applications. The porosity
of the apple also supported angiogenesis when implanted
in vivo (Modulevsky et al., 2016). This observation will not
necessarily extrapolate to other decellularized plant scaffolds due
to their underlying native tissue geometry which makes plant
species/tissue choice important (Gershlak et al., 2017). Although
decellularization is depicted as a simple biomaterial development

method, it lacks the customizability of “bottom-up” approaches,
such as that of cellulose nanofibril scaffolds and cellulose
composites with varying porosity, biological, and mechanical
characteristics (Khan et al., 2016; Courtenay et al., 2017;
Courtenay et al., 2018).

Cellulose is not only found in the plant kingdom, but is also
produced by certain strains of bacteria, such as Acetobacterspp.
(Schramm and Hestrin, 1954; Jonas and Farah, 1998). Although
plant and bacterial cellulose share an identical α-cellulose
structure, bacterial cellulose possess greater crystallinity, degree
of polymerization and water holding capacity (Esa et al., 2014;
Moniri et al., 2017). These attributes have been invaluable in
a wide array of applications, including medical (Petersen and
Gatenholm, 2011; Fürsatz et al., 2018), cosmetics (Pacheco et al.,
2018) and food (Shi et al., 2014). The food applications include
cultural desserts such as Nata de coco; and functional properties
such as gelling agent, stabilizer and thickener (Shi et al., 2014).
Moreover, bacterial cellulose has been used to incur juiciness and
chewiness in emulsified meats (Lin and Lin, 2004).

An advantage of bacterial cellulose is the wide array of
carbohydrate-rich by-products that have been used for its
production (e.g., Wheat thin stillage, waste fiber sludge, pullulan
fermentation waste water, beer culture broth) (Ha et al., 2008;
Cavka et al., 2013; Revin et al., 2018; Zhao et al., 2018) and
the wide array of chemical modifications that can be introduced
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to further improve biocompatibility and mechanical properties
(Kurniawan et al., 2012; Saska et al., 2012; Lopes et al., 2014;
Ostadhossein et al., 2015). The biocompatibility, low cost and
nutritional attributes make this material a potential candidate for
in vitromeat production.

CHITIN AND CHITOSAN

As the second most abundant polymer in nature, chitin is found
in the exoskeleton of arthropods (e.g., crab and shrimp) and fungi
(Percot et al., 2003; Deguchi et al., 2015). In this review, fungal
chitin is of interest due to the animal-free nature. Although
the chitin sources referenced throughout this section are either
not disclosed or declared to be animal derived (likely due to
abundance) there is currently no reason to believe that it can’t
be replaced with fungi chitin (Bierhalz et al., 2016).

Through alkaline deacetylation, chitin is turned into
chitosan (Rodríguez-Vázquez et al., 2015). The degree of
deacetylation of chitin leads to physical, chemical, and
biological changes, such as interaction with cells directly
or with glycoproteins and proteoglycans through ionic
complexes. In addition to the interaction with glycoproteins and
proteoglycans, chitosan’s resemblance to glycosaminoglycans
has the potential of regulating and modulating bioactive
factors (Madihally and Matthew, 1999; Yang, 2011; Chicatun
et al., 2013). Moreover, it was also shown that chitosan
can be blended with other polymers to further improve the
mechanical properties with the aim of resembling native tissue
(Zakhem et al., 2012; Hajiabbas et al., 2015).

Chitosan has shown to be a desirable material in tissue
engineering due to its biocompatibility (Tamura et al., 2011;
Croisier and Jérôme, 2013), antibacterial properties (Benhabiles
et al., 2012), and accelerated healing rate on skin wounds
(Tchemtchoua et al., 2011). It has been shown that chitosan
and chitosan oligosaccharides provide a synergistic bactericidal
effect on planktonic bacteria and biofilms when combined with
antibiotics such cloxacillin (Decker et al., 2005; Breser et al.,
2018) and sulfamethoxazole (Tin et al., 2009). Chitin and
chitosan alone portrayed a bacteriostatic effect on gram negative
bacteria, Escherichia coli, Vibrio cholerae, Shigella dysenteriae,
and Bacteroides fragilis (Benhabiles et al., 2012). The synergistic
effect with antibiotics and overall bacteriostatic properties are
a desirable attribute for applications in cellular agriculture; as
antibiotic use decreases social acceptability (Karavolias et al.,
2018), has the potential to cause long term health problems, and
increase the development of antimicrobial resistance (Thanner
et al., 2016). However, to our knowledge, the antimicrobial
potential of these compounds in long term cell mammalian cell
culture has yet to be tested or verified.

Often materials for medical applications are segregated
into permanent or temporary. The degradation of chitosan
by lysozymes found in the body can be controlled through
the degree of deacetylation (Muzzarelli, 1997; Tomihata and
Ikada, 1997; Rodríguez-Vázquez et al., 2015). Degradability is
not necessarily an undesirable characteristic, as degradation
rates can be controlled; and the by-products have the potential

to provide neuroprotective (Pangestuti and Kim, 2010) and
anti-inflammatory properties (Azuma et al., 2015; Kim,
2018). Furthermore, biodegradable hydrogels with controlled
degradation rates are expected to be a temporary matrix for
adherent cells. The objective is to match matrix deposition by
cells with the degradation rate of the scaffold (Berthod et al.,
2006; Bitar and Zakhem, 2014; Ren et al., 2018). This not only
applies to medical applications, but also to potential applications
for in vitro meat production. A temporary matrix can allow for
cellular ECM deposition with the end of goal of obtaining a
scaffold with characteristics similar to that of native tissue.

The structure of certain types of mushroom provide a
mouthfeel and umami flavor which resembles that of meat,
often perceived as a vegan alternative (Jo-Feeney et al.,
2014). Moreover, the cell wall components of mushroom
contain chitin, 1-3-alpha-D-gucans and mannans, which confer
nutritional benefits, such as dietary fiber (Cheung, 2013;
Fernandes et al., 2015). The antimicrobial and nutritional
properties, alongside its animal-free nature and abundancy, make
chitin/chitosan-based scaffolds a potential substrate for cellular
agriculture applications.

RECOMBINANT COLLAGEN

The well-known and extensively studied extracellular matrix
protein, collagen, is often derived from bovine (Chan et al.,
2016), porcine (Smith et al., 2000), and murine (Isobe et al.,
2012) sources. Collagen type I, a fibrillar heterotrimeric protein
composed of two α1(I) chains and one α2(I) chain, has been
produced in numerous forms, including porous hydrogels,
composites and a number of substrates with topographical cues
and varying mechanical properties ( Rich and Crick, 1955, 1961;
Vernon et al., 2005; Stein et al., 2009; Antoine et al., 2014;
Wang et al., 2016; Wu et al., 2018). Yet, variability (e.g., age and
physiological state of donor), potential pathogen transmission,
and contaminants including cytokines and growth factors have
been a concern for this animal derived product (BANFIELD,
1956; Kohn and Rollerson, 1960; Keefe et al., 1992; Badylak and
Gilbert, 2008; Shoseyov et al., 2013).

In order to overcome these issues, genetic engineering
has led to the development of transgenic organisms capable
of synthesizing the desired amino acid repeats. Through the
insertion of COL1A1 and COL1A2 genes, the repeating amino
acid sequence, Gly-X-Y, can be translated and transcribed.
In this case, the X and Y often correspond to proline and
hydroxyproline, respectively (Stein et al., 2009; An et al., 2014;
Shoseyov et al., 2014). The repeating amino acid sequence leads
to the triple helical conformation and specific thermal stability of
collagen (Rich and Crick, 1955; Bella et al., 1995; An et al., 2014).

The production of procollagen through recombinant methods
has been observed in bacteria (An et al., 2014), mammalian cells
(Geddis and Prockop, 1993), insect cell culture (Myllyharju et al.,
1997), yeast (Olsen et al., 2001), and plants (Stein et al., 2009; Xu
et al., 2011). The introduction of COL1A1 and COL1A2 genes
encode for the amino acid sequence. Yet, the post translational
modifications are fundamental in the production of collagen with
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similar mechanical and biochemical properties to that of native
collagen found in vivo. Procollagen for in vivo and in vitro use has
been produced in a tobacco plant capable of expressing COL1A1
and COL1A2 proteins, alongside post translational modification
proteins localized in the vacuole: Prolyl 4-hydrolysase (PH-
4) alpha, PH-4beta and Lysine hydroxylase (LH1-3). P4H acts
on the proline residues leading to directionality and thermal
stability, whereas LH1-3 plays a role in collagen fibril formation
and stabilization (Pihlajaniemi et al., 1991; Ruotsalainen et al.,
2006; Shoseyov et al., 2013).

Although the production of recombinant collagen has proven
to be difficult in part due to the need for post translational
modification machinery natively found in mammalian cells
(Werkmeister and Ramshaw, 2012; An et al., 2014), a fibrillar
protein with a similar melting point and overall chemical
structure to collagen has been observed and isolated in microbes,
such as Streptococcus pyogenes. The protein’s properties have been
attributed to the presence of collagen like proteins, scl 1 and scl
2 (Lukomski et al., 2000, 2001; Yu et al., 2014). The production
of this collagen like protein lacks the different biochemical cues
found in vivo due to the lack of post translational modification;
yet, the “blank slate” and gene customizability can be an attractive
property for customization (Peng et al., 2010; An et al., 2014;
Yu et al., 2014).

In order to fulfill the demand for recombinant collagen, yield
optimization has been a major target. Standardized comparison
has been difficult to accomplish due to the properties of the
final product which are influenced by the level and presence of
post translational modification proteins. Collagen production in
plants, more specifically, tobacco, has been considered to be the
most promising. Production of up to 200mg of recombinant
human type I procollagen per kg of fresh leaves (20 g/L reported
by Werkmeister and Ramshaw, 2012) has been achieved through
the vacuole targeted enzymes and genes (Stein et al., 2009). The
biocompatibility of procollagen from transgenic tobacco plants
was shown in vitro and in vivo (Shilo et al., 2013; Willard
et al., 2013). In vitro, an increase in cell proliferation of human
epidermal keratinocytes was noted when compared to bovine
collagen (Willard et al., 2013). Bacteria collagen (Peng et al.,
2010) and recombinant collagen produced in yeast (Liu et al.,
2007;2008) have also shown in vivo and in vitro biocompatibility.

Collagen type I is not the only ECM protein that has been
produced recombinantly. Other types of collagen (e.g., Type
II and III) (Myllyharju et al., 2000; Pakkanen et al., 2003;
Ruottinen et al., 2008), tropoelastin (Martin et al., 1995), and
fibronectin (Staunton et al., 2009) fragments have also been
produced recombinantly.

Collagen production in transgenic tobacco plants, yeast
and/or bacteria has the potential to alleviate issues encountered
through the use of animal derived biomaterials. Subsequently,
the animal-free nature and similarity to native collagen can
be a major step forward in the development of in-vitro meat,
especially if producers wish to replicate the characteristics of
native tissue.

CONCLUSION

Here we present three biomaterials that have shown promising
results in tissue engineering and that can be translated to
cellular agriculture applications in large part due to their
abundance, animal-free nature and current food applications.
Moreover, the wide array of natural topographies and dietary
fiber found in plants, alongside the antimicrobial and rheological
properties of chitin/chitosan further extend their potential in
cell culture and cellular agriculture. However, these materials
do lack the biochemical cues found in native mammalian
extracellular matrices, leading to a need for functionalization.
This need further increases the complexity of the process,
reducing the scalability potential. On the other hand, the
emergence of recombinant collagen extracted from plants has
important advantages as a scaffold in its own right or if
used to functionalize the surfaces of the materials above.
Furthermore, these materials have been modified, either as
microspheres or bulk, to possess the porosity necessary for
diffusion of nutrients through dynamic or static bioreactors
(Oh et al., 2009; Wu et al., 2011; García Cruz et al., 2012;
Varley et al., 2017; Huang et al., 2018; Specht et al., 2018). In
order to scale an animal-free product with similarities to that
of native animal tissue, the need for fetal bovine serum, cost-
effective engineering processes, antibiotic dependence, scaffold
development, and cell line(immortalized vs. primary and cell
co-culture) needs to be addressed (Specht et al., 2018; Stephens
et al., 2018; Lynch and Pierrehumbert, 2019). It’s currently
believed that scaffolding will play a crucial role in the scalability
of cultured meat. Therefore, the aim of this review was to
summarize three animal-free materials with properties (e.g.,
rheological, nutritional and biological) that will likely be desirable
in scaffolding for cultured meat applications. Yet, we wish to
remind the reader that scaffolding is only one component of
a much larger endeavor; and the scalability potential of the
methods presented here is still unknown, and for some unlikely.
Readers are encouraged to refer to Stephens et al. (2018) and
Specht et al. (2018) for an overview on cellular agriculture and
the major challenges.
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