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ABSTRACT

Network motifs play an important role in the structural analysis of biological networks.
Identification of such network motifs leads to many important applications such as
understanding the modularity and the large-scale structure of biological networks,
classification of networks into super-families, and protein function annotation.
However, identification of large network motifs is a challenging task as it involves the
graph isomorphism problem. Although this problem has been studied extensively in
the literature using different computational approaches, still there is a lot of scope for
improvement. Motivated by the challenges involved in this field, an efficient and
scalable network motif finding algorithm using a dynamic expansion tree is proposed.
The novelty of the proposed algorithm is that it avoids computationally expensive
graph isomorphism tests and overcomes the space limitation of the static expansion
tree (SET) which makes it enable to find large motifs. In this algorithm, the
embeddings corresponding to a child node of the expansion tree are obtained from the
embeddings of a parent node, either by adding a vertex or by adding an edge. This
process does not involve any graph isomorphism check. The time complexity of vertex
addition and edge addition are O(n) and O(1), respectively. The growth of a dynamic
expansion tree (DET) depends on the availability of patterns in the target network.
Pruning of branches in the DET significantly reduces the space requirement of the SET.
The proposed algorithm has been tested on a protein—protein interaction network
obtained from the MINT database. The proposed algorithm is able to identify large
network motifs faster than most of the existing motif finding algorithms.

Subjects Bioinformatics, Computational Biology, Computational Science, Data Mining and
Machine Learning
Keywords Biological network, Network motif, Expansion tree, Subgraph, Graph isomorphism, DET

INTRODUCTION

Biological networks exhibit both global properties as well as local properties. Some of the
global statistical properties are small-world property, scale-free network characteristics,
power-law degree distribution, etc. Milo et al. (2002) first coined the concept of a network
motif. This is treated as one of the important local property of a biological network.
Network motifs are statistically over-represented patterns having significant functional
properties. They constitute the basic building blocks of complex biological networks and
essential for functional analysis. Detection of network motifs is a demanding task in
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order to define classes of networks and network homologies (Milo et al., 2002).
Network motif plays a key role in understanding the modularity and the large-scale
structure of a biological network (Vazquez et al., 2004). They have also been used for
network superfamily classification (Milo et al., 2004a) and artificial network model for a
real-world network, prediction of breast cancer survival outcome (McGee et al., 2017),
cancer disease diagnosis (Gupta, Fayaz ¢ Singh, 2016), drug repositioning (Mullen et al.,
2016), analysis of functional network in diabetes patients (Li et al., 2016), etc. Network
motifs act as a key feature in a wide range of applications of biological networks. Most
studied functionally important network motifs are of small-size such as feed-forward-loop,
Bifan, autoregulation, feedback loops, and dense overlapping regulons, etc. However,
some of the large network motifs found in the protein-protein interaction (PPI) network of
Human herpesvirus-8 and Saccharomyces cerevisiae have biological significance. One

such large motif of size-10 is cited by Elhesha ¢ Kahveci (2016), which is responsible for
Kaposi’s sarcoma disease. This motif is found in the PPI network of Human herpesvirus-8.
Li & Kim (2011) cited large motifs found in the PPI network of S. cerevisiae. A network
motif consisting of 15 nodes, found in this network is responsible for transcriptional
machinery and cell cycle regulation. Large network motif discovery will be helpful in the field
of neuroscience. A common problem in this field is to find large clique formed by several
nodes in a network of neurons (Song et al., 2005; Perin, Berger ¢ Markram, 2011).

The largest clique finding problem is an NP-hard problem (Howbert ¢» Roberts, 2007).

Milo et al. (2004b) measure the significance of a network motif by comparing the real
network to a suitably large number of randomized networks having the same degree
distribution as the real network. They used a backtracking algorithm, mfinder for
discovering network motifs. The exponential space complexity of this algorithm made this
method incapable to deal with large motifs. Kashtan et al. (2004) improved the execution
time of the motif-finding algorithm by using a sampling approach, but the results obtained
are biased. Wernicke (2006) proposed a specialized algorithm ESU that could avoid
redundancy in computation through proper enumeration. This method uses a third-party
algorithm NAUTY (McKay, 1981) for checking isomorphism. The flexible pattern finder
(FPF) algorithm (Schreiber & Schwobbermeyer, 2005) proposed three different frequency
concepts for computing pattern frequency. These are F1, F2, and F3. Frequency measure
F1 allows overlapping of both nodes and edges while counting the matches of a
pattern. This concept does not satisfy downward closure property (Kuramochi ¢» Karypis,
2005). This indicates that the motif frequency may increase with respect to increase in
motif size. Frequency measure F2 allows edge-disjoint matches and F3 measure count
completely disjoint matches of a pattern. The downward closure property is satisfied
by both the frequency measures F2 and F3. In the FPF algorithm, the number of patterns
grow rapidly with respect to increase pattern size. Therefore, searching all patterns
systematically is a time-consuming task even for a medium-size pattern.

The algorithms discussed so far are network-centric that discover motifs for the whole
network. Grochow ¢ Kellis (2007) proposed a motif-centric algorithm, where frequency
counting is done on a specific isomorphic class. This algorithm avoids unnecessary and
redundant searches by mapping the query graph only on one representative of its
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equivalence class. The symmetry conditions are removed by adding constraints on the
labeling of the vertices. Kashani et al. (2009) brought a new network-centric algorithm
named Kavosh. It differs from other algorithms in that it builds an implicit tree rooted at the
chosen vertex, and then generates all combinations with the desired number of nodes.

Omidi, Schreiber & Masoudi-Nejad (2009) proposed MODA, which is based on a
pattern growth methodology. This is a subgraph-centric algorithm. The core idea of
this algorithm is to first find the frequency of acyclic subgraphs, save the respective
embeddings in memory and then use those embeddings in order to quickly find out the
frequencies of cyclic subgraphs. MODA introduces the concept of the expansion tree
(ET) which is static in nature and built at the beginning of the algorithm.

A novel algorithm proposed by Liang et al. (2015) named CoMoFinder to accurately
and efficiently identify composite network motifs in genome-scale co-regulatory networks.
CoMoFinder is developed based on a parallel subgraph enumeration strategy to efficiently
and accurately identify composite motifs in large TF-miRNA co-regulatory networks.

Elhesha ¢ Kahveci (2016) proposed a motif-centric algorithm (Elhesha-Kahveci) for
finding disjoint motifs in a target network. The core idea of this method is to build a set of
basic building patterns and find instances of these patterns. Then, the size of the motif
increased by joining the known motifs with the instances of basic building patterns.
This algorithm is able to discover large motifs up to size-15.

Lin et al. (2017) present a novel study on network motif discovery using graphical
processing units (GPUs). The basic idea is to employ GPUs to parallelize a large number
of subgraph matching tasks in computing subgraph frequencies from random graphs,
so as to reduce the overall computation time of network motif discovery. Chen ¢ Chen
(2017) published an efficient sampling algorithm for network motif detection. However,
the sampling approach may lead to a biased result.

Network motif discovery has been proved to be a computationally hard problem
(Garey & Johnson, 1990). The major challenges of this process are:

1. In order to count the frequency of a motif with known topology, it requires to solve
the subgraph isomorphism problem, which is NP-Complete (Cook, 1971). Two subgraphs
S = (Vs1 , Esl) and S, = (Vs2 , Esz) of G are said to be identical if they have the same
set of edges. A less constrained association between two subgraphs is an isomorphism.
Two subgraphs S; and S, are isomorphic with each other under the following condition.
There exists a bijection f : Vs, — Vg, such that V(u,v) € Es, (f(u),f(v)) € Es,. An
example of two isomers is shown in Fig. 1. Canonical labeling is used for checking graph
isomorphism. This labeling is based on the adjacency matrix representation of the graph.
The adjacency matrix is ordered in a defined way so that the labeling is invariant to
the initial ordering of the matrix. By comparing the canonical labeling, graphs can be
checked for isomorphism. The principle of the algorithm for the generation of a canonical
label is described in Kuramochi ¢ Karypis (2005).

2. The numbers of alternative topology increase exponentially with respect to the number of

edges in the motif when the motif topology is not known in advance (Tran et al., 2014
Elhesha & Kahveci, 2016).
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Figure 1 Graph (A) and graph (B) is isomorphic with each other, where the bijective function
f:Vs, — Vs, definedasa — x,b — y,c > zandd — t.  Full-size Kl DOTL: 10.7717/peerj.6917/fig-1

The existing methods face major challenges when the motif size increases (Luo et al,
2018; Ciriello & Guerra, 2008; Parida, 2007; Wernicke & Rasche, 2006; Wernicke, 2005).
This motivates us to design an efficient and scalable algorithm which can discover large
motifs in a practical time bound. The objective of this paper is to discover large motifs
present in a biological network. In order to achieve this, a motif-centric algorithm is
proposed that eliminates costly isomorphic test and overcome the limitation of existing
algorithms.

The central idea of the proposed method is to use a dynamic expansion tree (DET)
that grows depending on the availability of the search pattern in the target network.
The ET is initialized with a root node which contains a size-3 tree. Edge-disjoint subgraphs
corresponding to this root node are computed first. Then the child nodes of the ET are
created from the parent node by first adding vertices then edges. Vertex addition continues
until the size of the subgraph reaches the desired motif size and then edges are added
until a complete graph is obtained. The embeddings of a subgraph in the target network are
computed along with the growth of the ET. The F2 measure is used to compute the
frequency of a pattern in the target network. This frequency measure satisfies downward
closure property. Hence, pruning criteria can be applied to control the growth of the ET.
A branch of the ET is not expanded further when the frequency of the subgraph failed
to cross a threshold. Therefore, the space requirement reduces significantly as compared to
the static expansion tree (SET). The proposed method developed efficient mechanisms
to avoid computationally expensive isomorphism tests during the addition of graph
elements. Vertex addition can be done with time complexity O(n) and edge addition can be
done approximately with time complexity O(1). Representation of a graph in canonical
form plays a crucial role in the proposed algorithm to reduce the time complexity.

Each pattern of the DET is represented in canonical form. The mapping required to
convert the parent pattern to child pattern is also stored in the ET. During tree census
and graph census, the embedding of a child node is directly converted to a canonical form
using the stored map. This eliminates the repeated conversion of the graphs to their
canonical form which is computationally very expensive. Evaluation of the proposed
method using PPI networks indicates that the proposed method is significantly faster
than most of the existing methods. In addition, the memory limitation of the SET is
eliminated for large motif discovery.
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The rest of this paper is organized as follows: The proposed method is described in
the next section. Then the proposed motif finding algorithm is discussed along with
computational complexity in the “Proposed Algorithm” section. Data sets, experimental
results, and comparison with the existing algorithms are covered in the “Results and
Discussion” section. In the “Conclusion” section, the paper is concluded with a
brief conclusion and future direction.

Motif finding using dynamic expansion tree
In this section, a motif-centric algorithm is proposed to discover large network motifs.
Pattern growth approach is used in this motif-centric algorithm.

The central idea of the proposed method is to use a DET which regulates the motif
finding mechanism. The root node of the ET is a minimally connected acyclic graph of
three vertices (size-3 tree) and hence the number of embedding can be computed
directly from the adjacency list and adjacency matrix of the target network. The ET grows
in two steps; first vertices are added to the parent pattern in each successive level to reach
a size-k tree. In this step, each node of the ET is an acyclic graph and the embeddings
of these nodes are computed from the embeddings of their parent node using a tree
census algorithm. In the next step, edges are added to the parent pattern in each successive
level until a complete graph is obtained. In this step, the embeddings of each node are
obtained by graph census algorithm. Prior to the computation of the frequency of a query
graph present at a particular level of ET, the frequency of its parent must be computed
and the parent embeddings are obtained from their parent and this process continues
in a bottom-up manner. The frequency of a node in ET represents the number of
embeddings of the subgraph in the target network. In each step, edge-disjoint embeddings
are computed by using a maximum independent set (MIS) finding algorithm (Elhesha ¢
Kahveci, 2016). A node in the ET is expanded only when the F2 frequency exceeds the
predefined threshold. This pruning criterion is an implication of downward closure
property of the F2 frequency measure. Hence, most of the branches of the DET vanish
much before the SET. This feature of DET improves the performance of the algorithm
substantially in terms of running time. In the next section, the SET, the DET and the
key steps used in this algorithm are discussed.

Static expansion tree

The central idea of the proposed motif finding algorithm is to use an ET for searching
patterns in a target network. The ET is represented by Ty, where k represents the size of
the target motif. A size-5 SET is shown in Fig. 2. A size-3 tree is present at level-0 of the ET.
At the first level, there are two non-isomorphic size-4 trees, and at the second level, three
non-isomorphic size-5 trees are present. Up to this level, a child graph is obtained by
adding a vertex with the parent graph. Isomorphic graphs may obtain by adding a vertex
with alternative parent vertices. This is elaborated in the vertex addition step. An edge
is added to the parent graph to form a child graph in each successive level. Similar to
vertex addition, alternative edge additions also produce isomorphic graphs. Edge addition
continues until a complete graph is obtained.
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Figure 2 Static expansion tree T for size-5 motifs. The root node consists of a size-3 tree and the first
level consists of two non-isomorphic size-4 trees. At the second level, there are three non-isomorphic
size-5 trees and at each successive level, an edge is added to the parent graph to form a child graph. All
graphs present in this tree are non-isomorphic to prevent redundancy. The depth of T} is determined by a
node that holds a complete graph of k nodes. Full-size 4] DOT: 10.7717/peerj.6917/fig-2

Dynamic expansion tree

In contrast to the SET, the expansion of DET depends on the available motif instances in
the target network. The DET also starts with a size-3 tree as the root node and grows
similar to the SET. However, the growth is interrupted by the pruning criterion. The ET
does not build a priori. A branch of this tree is expanded depending on the presence of
embeddings of the pattern in the target network. In this paper, the F2 measure is used
to compute the frequency of the pattern in the target network. This frequency measure
satisfies the downward closure property. Hence, there is no possibility of increasing the
frequency of the child pattern as compared to the parent pattern. The branch of the ET in
which the node frequency is failed to cross the threshold value is pruned without
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Figure 3 Dynamic expansion tree T for size-5 motifs. The root node consists of a size-3 tree and the
first level consists of two non-isomorphic size-4 trees. At the second level, there are three non-isomorphic
size-5 trees and at each successive level, an edge is added to the parent graph to form a child graph. All
graphs present in this tree are non-isomorphic to prevent redundancy. The depth of T} is determined by
threshold frequency. The shaded nodes A and B represent subgraphs whose frequency is less than the
frequency threshold. Full-size K&l DOT: 10.7717/peerj.6917/fig-3

further expansion. This reduces the space requirement significantly. A size-5 DET is
shown in Fig. 3. The shaded nodes in the DET (Fig. 3) represent subgraphs whose
appearances in the target network is less than the frequency threshold. Hence, the
subtrees rooted with these nodes are pruned without further expansion.

Vertex addition step

During vertex addition, in the adjacency matrix of the parent node an extra row and
an extra column are appended. Depending on the new vertex to be added, a row
entry and its corresponding column are set as 1. The new tree is taken as a new child
node when it is non-isomorphic to its sister nodes (from all parents). The canonical
string of the child node and the mapping required to convert the resultant graph to
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the corresponding mapping and the canonical order.
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canonical form is stored in the child node. During tree census, the embeddings of

the child node are directly converted to the canonical form using the stored map.
Conversion of a graph to a canonical form required only once at the time of building
the ET. This reduces the time complexity significantly. In Fig. 4, tree B and tree C result
after a new vertex is added to tree A. These are isomorphic with each other as the mapping
leads to the same canonical order. Similarly, tree D and tree E are also isomers with
each other.

Edge addition step

Edge addition can be performed by replacing a 0 by 1 in an entry of the adjacency matrix of
the parent node. The new graph is taken as a new child node when it is non-isomorphic
to its sister nodes (from all parents). The canonical string of the child graph and the
mapping required to convert the child graph to canonical form are stored in the child
node. During graph census, the embeddings of a child node are directly converted to their
canonical form using the stored map. This eliminates the repeated conversion of a
graph into a canonical form and the time requirement is significantly reduced. The child
graphs generated by the addition of an edge with the parent graph may be isomorphic
with each other as shown in Fig. 5. The isomorphic graphs are represented by a single node
in the DET.
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PROPOSED ALGORITHM

In this section, the proposed motif finding algorithm using a dynamic expansion tree
(MDET) is explained with pseudo-code present in Algorithm 1 and a block diagram as
shown in Fig. 6. MDET is used to discover statistically significant network motifs in a
biological network.

The input to the Algorithm 1 is a biological network G, a user-defined frequency
threshold F, a user-defined uniqueness threshold A, and a user-defined maximal network
motif size K. The output of the algorithm is a set U of repeated and unique motifs
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Algorithm 1 MDET (G, N, K, A, F)

Input : G: Target network, N: Number of randomized networks, K: Maximal network motif size, k: Subgraph size, A: Uniqueness threshold
(z-score), F: Frequency threshold

Output : U: Unique and frequent network motif set

for k < 3 to Kdo

-

D = Calculate Subgraph Frequency (G, k, F); /I D: Frequent Subgraph List in target network
for i < 1to N do
G,ana = Randomized Network Generation (G); /! G,ana: Random network with same degree distribution as G
D; = Calculate Subgraph Frequency (G 4.4 k, F); /| D;: Frequent Subgraph List in i" random network

end

end

U=®;

o 0 NN N1 R W

foreach ¢ € D do

[
=}

s = Get Uniqueness Value (g);
if s > A then
U =U U{g};

-
N -

end

o
w

end

ot
'

return U;

o
19

from size-3 to size K. The proposed algorithm consists of three major steps. First, the
frequency of repeated subgraphs in the real network (line 2) is computed by using
Algorithm 2. Then the frequency of the repeated subgraphs in the randomized
networks (lines 3-6) is computed. Switching method is used to generate random
networks (Milo et al., 2004b). Finally, the unique network motifs from the frequent
subgraphs (lines 9-14) is obtained by using z-score. The uniqueness threshold is set as
2 and the frequency threshold is set as 5% of the size of the network. The motif size is
taken up to K = 15 and statistical significance is measured by taking N = 100 random
networks.

Calculate subgraph frequency

This module calculates the frequency of size-k subgraphs and returns a list of all
subgraphs having a frequency higher than the frequency threshold. Along with the
pseudo-code, the frequency calculation is explained with a flow chart as shown in Fig. 7.
The proposed algorithm constructs the ET (T%) along with the computation of
subgraph frequency. At first, the algorithm creates the root node of the DET and then
fetches the size-3 query graph represented by the root node of Ty and finds all

its embeddings in the target network using Algorithm 3. Then, it computes the
edge-disjoint embeddings by using MIS algorithm and store these calculated
embeddings for future use. The DET is expanded either by adding a vertex or by
adding an edge to the parent node. This expansion takes place only when the frequency
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Algorithm 2 Calculate Subgraph Frequency (G, k, F)
Input : G: Target network, k: Motif size, F: User-defined frequency threshold
Output : Frequent Subgraph List: List of all subgraphs having a frequency higher than the frequency threshold

LocalVariable : E: Set of embeddings of H in the target network G, E": Set of edge-disjoint embeddings of H in the target network G, D: Set of size-k
subgraphs present in Dynamic Expansion Tree (DET)

Initialize Frequent Subgraph List = ®;

[a—

Construct root node of Tj; // root node is a size-3 tree H
call BasicTreeEmbedding(Tx, G); // Return list of embeddings E of size-3 tree H
call EdgeDisjointEmbedding(E); // Return edge disjoint embeddings E' obtained from set E
if |[E'| < F then

return ®;

end

if k > 3 then

call TreeCensus(Ty, G, H, E’, k); // return D

o 0 NN Nl R W N

else

[
=}

call GraphCensus(Ty, G, H, E', k); // return D

[a—
[

end
foreach H € D do
if [HF| > F then

—
W N

add H into Frequent Subgraph List;

p—
9]

end

Yt
=)}

end

ot
N

return Frequent Subgraph List;

it
[+]

of the parent node exceeds the predefined frequency threshold. After that, the query
graph at the second level of Ty is fetched and the frequencies of these graphs are
calculated either by tree census or by graph census depending on the target motif size.
Again edge-disjoint embeddings are obtained by using MIS algorithm and the pruning
criterion is checked by comparing the subgraph frequency with the predefined
frequency threshold. This process continues in a depth-first order till the pruning
criterion is satisfied or a leaf node is obtained where there is no provision for

adding new edges. The pseudo-code of the algorithm for calculating the frequency of
size-k subgraphs is present in Algorithm 2. In this algorithm, a BasicTreeEmbedding
function is called in line 3 which returns all the embeddings of the size-3 tree.

Then in line 4, the EdgeDisjointEmbedding function is called which returns edge-
disjoint size-3 tree list using MIS algorithm. Then, depending on the input value of
k, either the TreeCensus function or GraphCensus function is called; lines 8-12
perform this task. If the frequency of a size-k subgraph is more than the user-defined
frequency threshold F then that is added into the Frequent Subgraph List; lines 13-17
perform this task.
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Figure 7 Flow chart to calculate subgraph frequency. Full-size k&) DOT: 10.7717/peerj.6917/fig-7

Basic tree embedding

In this function, all the subgraphs isomorphic to the root node of T} are obtained. In
Algorithm 3, the vertex set of the graph G is denoted as G.V and the neighboring vertices
of a vertex u in the underlying network denoted as Neighbour(u). In line 1 the set of all
embeddings of the basic tree is initialized to empty set. All the subgraphs of the underlying
network are added to set E; lines 3-8 perform this task.

Tree census

This module finds a list of all subgraphs isomorphic to the child node using the
embeddings of parent node where the child node has an extra vertex and an extra edge
than the parent node. This procedure can be divided into two phases: (1) construction
phase; and (2) expansion phase. In the construction phase, non-isomorphic children are
generated from the parent node using vertex addition. In the expansion phase, the
frequency of each child is computed and called for expansion if the frequency exceeds the
threshold. Suppose we want to calculate the frequency of a query graph H’, we can extract
all the embeddings represented by set E corresponding to its parent node H, then
enumerate all embeddings in E that can support G and H' then store them in E'. Let (u, v)
be a new edge in H' and there exists a vertex f(v) adjacent to f(u) in the target network
G, then e can be added to the set E'. Where f : H — G. The pseudo-code of tree census is
present in Algorithm 4 and the flow chart as shown in Fig. 8.
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Algorithm 3 BasicTreeEmbedding(T}, G)
Input : G: Target Network, Tj: Expansion tree of size-k

Output : H: size-3 tree, E: List of all embeddings of H

ol

E=3;
H = root(Ty);
foreach u € G.V do
foreach v € Neighbour(u), w € Neighbour(u) and v < w do
e =< v,wu >;
add e into E;
end

end

o NN e WN

return H and E;

Algorithm 4 returns a list of embeddings of child node H in the target network G.
Child nodes of ET Ty, are created in lines 1-18. In line 2 an extra row and an extra column
are added with the adjacency matrix of H. In line 6 a new edge is created between an
old vertex and the newly added vertex. Lines 7-12 check whether the newly generated
graph is an isomer to one of the children created from the same parent; if it is an isomer,
then the edge difference between the parent and the new subgraph and the mapping
required to convert the graph into the canonical form are saved in the existing child.
Then it jumps to the next iteration. Lines 13-15 check whether the newly generated
graph is an isomer to any nodes in the ET; if it is an isomer then it jumps to the next
iteration. Lines 16-17 creates a new child in the ET corresponding to the new subgraph
and store the canonical order of the subgraph along with edge difference between the
parent and the new subgraph and the mapping required to convert the graph into the
canonical form. Expansion phase starts at line 19. All the child nodes of H present in the
expansion tree Ty are traversed one by one. The embedding set of child subgraph H' is
denoted as E' and it is initialized to an empty set in line 20. The extra edge needs to be
added into the parent graph to obtain the child graph is denoted as (u, v). In line 22, the
algorithm iterates over all the embeddings of the parent graph. Lines 23-28 generates
the embeddings of the child graph from the embeddings of the parent graph. In line 30
edge-disjoint embeddings of the child node are obtained from the overlapped embeddings
using MIS algorithm. If the F2 frequency of the child node failed to cross the threshold
then the algorithm continues with the next child. This is shown in lines 31-33. This
function recursively calls itself until the child graph size reaches to the value k otherwise
graph census is called; line 34-38 perform this task.

Graph census

This module finds a list of subgraphs isomorphic to the child node using the embeddings
of the parent node, where the child node has an extra edge than the parent node. This
procedure can be divided into two phases: (1) construction phase; and (2) expansion
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Algorithm 4 TreeCensus (T}, G, H, E, k)

Input : Tj: Expansion tree, G: Target Network, H: Parent subgraph, E: List of embedding of parent node H, k: Motif size
Output : H': Child subgraph, E": List of embeddings of child subgraph H’, E": List of edge-disjoint embeddings of child subgraph H'

/* Construction phase

1 A = Adjacency Matrix(H);
2 A = Append ZeroRow and ZeroColumn(A);
3 n = Size(A);
4 fori < 1tondo
5 A=A
6 A'(in) =1and A'(n, i) = 1;
7 foreach L € child(H, T;) do
8 if CheckIsomer(H', L) == true then
9
10 continue with next counter i;
11 end
12 end
13 if CheckSisterIsomer(H', T}) == true then
14 continue with next counter i;
15 end
16 Create new child H' in Tj;
17
18 end

/* Expansion phase

19 foreach H' € child(H, T;) do

20 E =,

21 Let (u, v) € H.E — H.E;

22 foreach ¢ € E do

23 Let a=f(u) where u € H,a€ eand H —G;
24 foreach b € Neighbour(a) and b € G do

25 append b in e;

26 e'=Map(e);

27 add €' to E';

28 end

29 end

30 | call EdgeDisjointEmbedding(E’);
31 | if |[E”| < F then

32 continue;

33 end

34 | if |H.V| < k then

35 call TreeCensus(Ty, G, H, E", k);
36 else

37 call GraphCensus(Ty, G, H', E”, k);
38 end

39 end

/

// Adjacency matrix of child node H'

Save Map of H' to L and edge difference between H and H' in node L;

Map A’ to Canonical(H') and save Map, Canonical order and edge difference between H and H' in new node H’;

*/

/I H.E: Set of edges of H, H'.E: Set of edges of H,uce H,v¢ Hand u,ve H

// a is the vertex in the embedding e corresponding to u in H’

// if e has n vertices then ¢ will have n+1 vertices

// Map is extracted from T}

// Return edge disjoint embeddings E” obtained from set E'

// Pruning subtree rooted at H’'

Patra and Mohapatra (2019), PeerJ, DOI 10.7717/peerj.6917
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Input expansion tree (T}), target network (G),
parent subgraph (H), and motif size (k)
{
n=no. of vertices of H
Initialize i=1
Yes @ No
Add a vertex with the ith m = no. of children of H
EEI vertex of H and represent Initialize i=1
Lo the child subgraph as H’

No

IsH’ an

isomer to existing Yes

nodes of T, Let H’ is the i® child of H

? Find embeddings of H’
Return E
L [Add T in T, as a child node of H | 1 i=itl |
Find edge disjoint

i embeddings of H’” from E

/ Return Frequent-Subgraph-List / Return E”

Add H’ to Frequent-Subgraph-List
Perform Graph Census by taking H’
as parent subgraph
Return Frequent-Subgraph-List

Perform Tree Census by taking H’
as parent subgraph
Return Frequent-Subgraph-List

Figure 8 Flow chart of tree census. Full-size K] DOLI: 10.7717/peerj.6917/fig-8

phase. In the construction phase, non-isomorphic children are generated from the parent
node using edge addition. In the expansion phase, the frequency of each child node is
computed and called for expansion if the frequency exceeds the threshold. Say that we
want to calculate the frequency of a query graph H'. The embeddings (E) of parent node H
extracted first, then enumerate all embeddings in E that can support G and H' and

store them in E'. Let (1, v) be a new edge in H' and there exists an edge (f(u), f(v)) in the
target network G, then e can be added to the set E'. Where f : H' — G. The pseudo-code of
tree census is present in Algorithm 4 and the flow chart as shown in Fig. 9.

Algorithm 5 returns a list of embeddings of the child node H in the target network G.
Child nodes of ET Ty are created in lines 1-21. In line 7 a new edge is created in the
adjacency matrix of child node H'. Lines 8-13 check whether the newly created graph is an
isomer to one of the children created from the same parent; if it is an isomer, then the
edge difference between the parent and the new subgraph and the mapping required to
convert the graph into the canonical form are saved in the existing child. Then it jumps to
the next iteration. Lines 14-16 check whether the newly generated graph is an isomer to
any nodes in the ET; if it is an isomer, then it jumps to the next iteration. Lines 17-18
creates a new child in the ET corresponding to the new subgraph and store the canonical
order of the subgraph along with the edge difference between the parent and the new
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/ Input expansion tree (T,), target network (G), /

parent subgraph (H), and motif size (k)

J

n=no. of vertices of H
Initialize i=1

m = no. of children of H

=i = Initialize i=1
Yes
Let H’ is the it child of H
Find embeddings of H’
Add an edge (i, j) to H Return E
and represent the child \L _
subgraph as H’ Find edge disjoint Eid1 ]
embeddings of H’ from E
Return E’
isomer to existing
fT %
nodes of T, No
——Add H’ in T, as a child node of H] JYes
Add H’ to Frequent-Subgraph-List
{ Perform Graph Census by taking H’

/ Return Frequent-Subgraph-List / as parent subgraph

Return Frequent-Subgraph-List

Figure 9 Flow chart of graph census. Full-size k&) DOT: 10.7717/peerj.6917/fig-9

subgraph and the mapping required to convert the graph into a canonical form. Expansion
phase starts at line 22. This algorithm iterates over all the child nodes of H present in
the expansion tree Ty. The embedding set of child subgraph H is denoted as E and it is
initialized to an empty set in line 23. The extra edge need to be added into the parent graph
to obtain the child graph is denoted as (u, v); line 24 perform this task. In line 25, the
algorithm iterates over all the embeddings of the parent graph. Lines 26-29 perform the
task whether the addition of a new edge in the parent embedding support the target
network or not. In line 27 mapping is done based on the canonical order of the resultant
graph after edge addition. In line 31 edge-disjoint embeddings of the child graph are
obtained from the overlapped embeddings using MIS algorithm. If the F2 frequency of the
child node failed to cross the threshold then the algorithm continues with the next child.
This is shown in lines 32-34. This function recursively calls itself until the child graph
become a complete graph; lines 35-37 perform this task.

Computational complexity

In this section, the time complexity of the proposed method is analyzed. The complexity
of the algorithms is expressed with respect to two parameters: (1) the number of
vertices of the target network (n) and (2) motif size (k).
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Algorithm 5 GraphCensus (T}, G, H, E, k)
Input : Tj: Expansion tree, G: Target network, H: Parent subgraph, E: List of embedding of parent node H, k: Motif size
Output : H': Child subgraph, E": List of embeddings of child subgraph H’, E": List of edge disjoint embeddings of child subgraph H’'

/¥ Construction phase */
1 A = Adjacency Matrix(H);
2 n = Size(A);
3 fori<—2tondo
4 | for j—1toi-1do
5 if A(i,j) == 0 then
6 A = A; // Adjacency matrix of child node H'
7 A'(i,j)=land A'(j, i) = 1;
8 foreach L € child(H, Tk) do
9 if CheckIsomer(H', L) == true then
10 Save Map of H' to L and edge difference between H and H'in node L;
11 continue with next counter j;
12 end
13 end
14 if CheckSisterIsomer(H', Tk) == true then
15 continue with next counter j;
16 end
17 Create new child H' in Tk;
18 Map A’ to Canonical(H') and save Map, Canonical order and edge difference between H and H' in new node H';
19 end
20 | end
21 end
/* Expansion phase */
22 foreach H' € child(H, Tk) do
23 E =&
24 Let (u, v) € H.E —H.E; /I H.E: Set of edges of H, H'.E: Set of edges of H,u,ve Hand u,ve H'

25 foreach e € E do
26 if (f (u), f (v)) € G where f: H — G then

27 e'=Map(e); // Map is extracted from Tk
28 add €' to E/;

29 end

30 | end

31 | call EdgeDisjointEmbedding(E'); // Return edge disjoint embeddings E” obtained from set E’
32 | if |E"| < F then

33 continue; // Pruning subtree rooted at H’
34 | end

35 | if [H.V] <*EY then

36 call GraphCensus(Tk, G, H', E”, k);

37 | end

38 end

Patra and Mohapatra (2019), PeerJ, DOI 10.7717/peerj.6917 17/28


http://dx.doi.org/10.7717/peerj.6917
https://peerj.com/

Peer/

Algorithm 3 (Basic tree embedding)
In this step, the embeddings of the size-3 tree are generated directly from the adjacency

matrix. Let d(v;) represents the degree of node v;. The time complexity of collecting the

eV d(zv")). In the worst case d(v;) = O(n),

subgraphs isomorphic to the size-3 tree is )
hence the complexity can be derived as

S(5) =n-(5) = "5 = o) 0

Algorithm 4 (Tree census)

In the construction phase, the graph isomorphism check is done which has exponential
time complexity. However, checking isomorphism is required only for creating the
child nodes. This is limited in number, and once the child nodes are created no further
isomorphism check required in the expansion phase. In the expansion phase, candidate
vertices of the parent graph are checked for extension one by one. Let m is the number
of candidate vertices for a possible extension where m lying between 1 and k. In order to
add a vertex to a candidate vertex, all neighbors of the candidate vertex are checked
one by one. Thus, the complexity of vertex addition is ) _, _,; d(vi). In the worst case
d(v;) = O(n) and the complexity becomes O(nk) which can be approximately taken as
O(n), when k << n.

Algorithm 5 (Graph census)

Similar to the TreeCensus here also isomorphism check is required only in the
construction phase. Hence, it is also limited in numbers and does not require in the
expansion phase. In the expansion phase, an edge is added to the parent graph to obtain
the child graph. Let m is the number of candidate edges which is lying between 1 to
(k—1)(k —2)/2. An edge can be added in O(1) time complexity. Thus, the complexity of
edge addition is » , .\, 1. In the worst case scenario, the complexity of this algorithm
becomes O(k?) which can be approximately taken as O(1).

Algorithm 2 (Calculate subgraph frequency)

Algorithm 3 is called only once. The TreeCensus function is called at max (k — 2) times
for each embedding of the basic tree, but most of the embeddings do not appear in

the child nodes with the increasing depth of the ET. Similarly, the GraphCensus function
is called at max (k — 1)(k — 2)/2 times for each embedding of the size-k tree, but most
of them disappear much before leaf position. In addition to that, the pruning criteria
interrupt the growth of most of the branches of the ET.

RESULTS AND DISCUSSION

Performance of the proposed motif finding algorithm is evaluated on real networks taken
from the MINT database (Chatr-Aryamontri et al., 2007). The running time and the
number of motifs discovered by the proposed algorithm are evaluated across six real
networks. The statistical significance of potential motifs is evaluated using p-value and
z-score (Wong et al., 2011). The z-score is defined as z = freq —frandom / O'randoms Where frea
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Table 1 PPI networks of six different species taken from the MINT database.

Network name Network code Number of proteins Number of interactions
Human herpesvirus-8 Hhv8 92 170

Human herpesvirus-1 Hhvl 176 353

Escherichia coli Eco 402 727

Helicobacter pylori Hpy 738 1,643

Rattus norvegicus Rno 1,825 3,471

Saccharomyces cerevisiae Sce 3,187 9,171

and f__, . are the frequencies of a motif in the target network and the mean frequency

of the motif in randomized networks, respectively. 0 .ndom represents the standard
deviation of the frequencies in the randomized networks. Higher z-score represents
significant motif. The p-value represents the probability that the number of times a motif
appears in a randomized network, greater than or equal to the number of times the
motif appears in the target network. The lower p-value means significant motif. In this
paper, the F2 measure is used to compute the motif frequency and the statistical
significance of a network motif is measured using z-score. Performance of the proposed
algorithm is compared against FANMOD, MODA, and Elhesha-Kahveci.

Data set and implementation environment

The PPI networks of six different organisms from the MINT database are used for
evaluation. The details of these networks are given in Table 1. The proposed algorithm
is implemented in C++. The experiment is conducted on a machine with Intel(R),
Xeon(R), E5-2670 Processor, 2.3 GHz CPU, 64 GBs of main memory, and running
Redhat Linux (Version: 3.10.0) operating system. The program is run with GNU GCC
compiler version 4.8.3 and the compilation flag sets are Wno-write-strings, O3, and g.
The program is able to handle a maximum motif size-15 in a practical time bound.

Runtime evaluation

In this section, the runtime of the proposed motif finding algorithm is computed on

six real PPI networks. The frequency threshold is set as 5% of the size of the network and
the z-score is set as 2. The F2 measure is used to compute motif frequency. The effect
of motif size on the running time is observed by varying the motif size from 5 to 15.
The experiment is repeated for 10-100 times depending on the motif size and the network
size and the average running time are shown in Fig. 10. The behavior of the result is a
clear indication of the scalability of the proposed algorithm with respect to graph size and
motif size. The proposed algorithm takes only a few seconds to run for motif size 5-7 for
all the networks selected for this experiment. For instance, the average time taken by the
large network of S. cerevisiae is only 8.4524, 38.8153, and 163.0275 s for size-5, size-6,
and size-7 motif, respectively. It takes only a few minutes to run for motif size 8 and 9 for
all six networks. For instance, the average time taken by the S. cerevisiae network is
only 9.0308 and 35.2975 m for size-8 and size-9 motif, respectively. The proposed
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Figure 10 Running time of MDET for six different PPI networks by varying motif size. Network
numbers from left to right along the x-axis represent Hhv-8, Hhv-1, Escherichia coli, Helicobacter pylori,
Rattus norvegicus, and Saccharomyces cerevisiae, respectively. The position of networks along the x-axis
depends on the network size mentioned in Table 1. The running time is measured in seconds.
Full-size &) DOT: 10.7717/peerj.6917/fig-10

Table 2 Number of significant motifs for six different PPI networks.

Motif size Hhv8 Hhvl Escherichia coli Helicobacter pylori Rattus norvegicus Saccharomyces cerevisiae
5 10 9 11 9 8 10

10 5368 4219 5718 3241 2816 4065

15 8152 7529 8418 6719 5245 7916

algorithm takes only a few minutes to run for motif size 10-15 for small networks like
Human herpesvirus-8, Human herpesvirus-1, and Escherichia coli and it is limited to a
few hours for very large networks such as Helicobacter pylori, Rattus norvegicus, and
S. cerevisiae. For instance, the average time taken by the small network of Human
herpesvirus-8 is only 2.7236, 4.3665, 7.8017, 11.0834, 19.3652, and 27.7275 m for size-10,
size-11, size-12, size-13, size-14, and size-15 motif, respectively, and the average time taken
by the large network of S. cerevisiae is only 4.8204, 10.3752, 15.9310, 21.4861, 27.0475,
and 35.3752 h for size-10, size-11, size-12, size-13, size-14, and size-15 motif, respectively.
For higher motif size, the running time is more influenced by the motif size as compared
to the size of the network. This behavior is observed due to the number of alternative
patterns increases exponentially with respect to motif size. Irrespective of this limitation, the
proposed method is able to discover motif up to size-15 within a practical running time.
Table 2 contains the number of motifs found in each of the above networks by setting
the frequency threshold as 5% of the size of the network. These motifs are statistically
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(a) (b)

Figure 11 (A) A motif of 10 nodes in the left found in the PPI network of Human Herpesvirus-8
(Elhesha ¢ Kahveci, 2016) and (B) a motif of 15 nodes in the right found in the PPI network of
S. cerevisiae. Full-size K&l DOT: 10.7717/peerj.6917/fig-11

Table 3 Sensitivity of MDET with respect to the frequency threshold on Human herpesvirus-8 (Hhv8) network.

Frequency threshold (% of number of nodes) 1 2 3 4 5 6 7 8 9 10

Number of potential motifs

Number of motifs after z-test

9985 9726 9152 8671 8224 7818 7465 6640 5816 4835
7681 7654 7628 7602 7529 7361 7102 6245 5558 4729

Note:
Motif size is taken as 15.

Table 4 Sensitivity of MDET with respect to the frequency threshold on Escherichia coli network.

Frequency threshold (% of number of nodes) 1 2 3 4 5 6 7 8 9 10

Number of potential motifs

Number of motifs after z-test

9856 9526 9015 8517 7894 7182 6265 5407 4738 4135
7018 6954 6828 6802 6719 6134 5509 5006 4496 4023

Note:
Motif size is taken as 15.

significant as they are over-represented in the target network. Some of these motifs
may not be biologically significant. One of the biologically significant motifs found in
the PPI network of Human herpesvirus-8 is shown in Fig. 11. This network motif of 10
nodes causes Kaposi’s sarcoma disease. Another biologically significant motif found in
S. cerevisiae consists of 15 nodes as shown in Fig. 11. This network motif is responsible
for transcriptional machinery and cell-cycle regulation in the said network.

Impact of frequency threshold on MDET

In this section, the sensitivity of the proposed method with respect to the frequency
threshold is discussed. The frequency threshold is computed as a percentage of order
(number of nodes) of the network. A higher value of frequency threshold saturates the
branches of DET much before normal saturation and a lower threshold value allow the
growth of the branches even though the nodes may not represent statistically significant
motif. The impact of the threshold frequency on the number of motifs found is
observed in three different networks, such as Human herpesvirus-8, E. coli, and S.
cerevisiae. The computed results are shown in Tables 3-5, respectively. Frequency
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Table 5 Sensitivity of MDET with respect to the frequency threshold on Saccharomyces cerevisiae network.

Frequency threshold (% of number of nodes) 1 2 3 4 5 6 7 8 9 10

Number of potential motifs 10985 10426 9658 9170 8642 7915 7462 6840 6216 5315

Number of motifs after z-test 8124 8075 8012 7955 7916 7661 7102 6542 5968 5125
Note:

Motif size is taken as 15.
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Figure 12 Runtime comparisons between MODA, Elhesha-Kahveci, FANMOD, and MDET in
Human herpesvirus-8 (Hhv8). Full-size K&l DOT: 10.7717/peerj.6917/fig-12

threshold defines the number of potential motifs, which are later applied for z-testing to
measure statistical significance. The results indicate that the number of potential motifs
linearly decreases with respect to the frequency threshold. However, the number of statistically
significant motifs found after z-test remains steady up to the frequency threshold value 5% of
the size of the network. Then it decreases abruptly as some of the statistically significant
motifs failed to cross the higher threshold value. Therefore, in this paper, 5% of the size of the
network is taken as a standard frequency threshold value for finding network motifs.

Comparison with the existing methods

The running time of the proposed method is compared to FANMOD, MODA, and
Elhesha-Kahveci. The FANMOD and MODA count overlapping motif instances; whereas
Elhesha-Kahveci and MDET count disjoint embeddings of the potential motif. In order
to get disjoint embeddings of potential motifs, MIS finding algorithm is applied to the
overlapping motif instances of FANMOD and MODA. The effect of this additional step on
the overall running time of the above two methods is negligible. However, it makes
these algorithms eligible to produce disjoint embeddings. Now all four algorithms
produce disjoint embeddings and hence the comparison of the runtime is meaningful.
The experiment is conducted on three PPI networks such as Human herpesvirus-8, E. coli,
and S. cerevisiae. The running time is compared between these methods by varying motif
size as applicable. The experiment is repeated for 10-100 times depending on motif

size and network size. The average runtime is shown in Figs. 12-14 for Human
herpesvirus-8, E. coli, and S. cerevisiae, respectively. These algorithms are able to determine
the frequency of both induced and non-induced subgraphs.
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Figure 13 Runtime comparisons between MODA, Elhesha-Kahveci, FANMOD, and MDET in
Escherichia coli. Full-size K&l DOTI: 10.7717/peerj.6917/fig-13
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Figure 14 Runtime comparisons between MODA, Elhesha-Kahveci, FANMOD, and MDET in
Saccharomyces cerevisiae. Full-size K&l DOT: 10.7717/peerj.6917/fig-14

Network motif finding problem exhibits two important characteristics; (1) the number
of alternative motif topologies increases exponentially with respect to the motif size,
(2) the cost of solving subgraph isomorphism also grows exponentially with respect to the
size of the subgraph. Despite these two major concerns, the running time of the proposed
method increases in polynomial order with respect to the motif size. Across all three
networks, FANMOD and MODA are able to find motifs only up to size-8 and size-10,
respectively, within a practical time bound. Elhesha-Kahveci and the proposed
algorithm (MDET) are able to discover large motifs up to size-15. However, the proposed
algorithm does not involve any graph isomorphism check during the census, that makes
it faster as compared to Elhesha-Kahveci. A broader picture of running time ratio (RT

ratio) of MDET to other algorithms are shown in Tables 6-8 for FANMOD, MODA and
Elhesha-Kahveci, respectively.
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Table 6 Running time ratio of MDET to FANMOD.

RT ratio 5 6 7 8

Hhv-8 4.25 2.95 1.32 0.74
Escherichia coli 3.14 1.96 1.37 0.84
Saccharomyces cerevisiae 1.85 1.25 1.07 0.93

Table 7 Running time ratio of MDET to MODA.

RT ratio 5 6 7 8 9 10

Hhv-8 0.26 0.25 0.23 0.21 0.19 0.16
Escherichia coli 0.23 0.20 0.18 0.17 0.15 0.12
Saccharomyces cerevisiae 0.38 0.34 0.31 0.27 0.23 0.18

Table 8 Running time ratio of MDET to Elhesha-Kahveci.

RT ratio 5 6 7 8 9 10 11 12 13 14 15
Hhv-8 067 066 064 061 058 056 053 050 047 045 042
Escherichia coli 061 058 054 051 049 046 044 041 036 033 029

Saccharomyces cerevisiae  0.66 0.67 0.65 0.63 062 060 059 057 056 054 0.52

The RT ratio between FANMOD and MDET indicates that though FANMOD
performs better than MDET for motif size 5 and 6, it is closed to 1 for motif size 7 and 8.
The reason for the higher run time of MDET is it takes extra time to build the ET.
However, this extra time is negligible for the higher motif size. The RT ratio of MDET
to MODA indicates the superiority of MDET as the ratio is in between 0.1 and 0.4 and
hence MDET takes only 10-40% time of MODA depending on the motif size. The RT
ratio of MDET to Elhesha-Kahveci indicates that MDET takes approximately 50% time of
Elhesha-Kahveci. The RT ratio gradually decreases which indicates that the relative
performance increases with increase motif size.

The MODA algorithm uses the SET and hence runs out of space long before it runs
out of time. MDET uses the DET, hence this problem is abolished. This fact can be
demonstrated with the help of Tables 9 and 10.

The total number of non-isomorphic trees starting from size-3 to size-k are listed in
column 2. This also represents the number of internal nodes in the ET Tj. The number of
non-isomorphic subgraphs is listed in column 3. The total number of nodes in the ET
is obtained by adding column 3 with the previous row entries of column 2. It can be observed
that up to motif size-10, the space requirement of the ET is less than 1 GB. But beyond
motif size-10, the space requirement increases exponentially, and it is impractical to build
a static tree for running MODA. However, in a DET, the nodes are generated on-demand
basis. Hence it is quite less than the number of nodes specified in Table 9.

In Table 10, a comparison between the number of nodes present in the static
and the DET of the E. coli network is given. The number of nodes present in the DET
of all six networks for the size-15 motif is given in Table 11. These numbers are quite less in
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Table 9 Number of nodes in the static expansion tree.

Motif Cumulative number of Number of Number of nodes
size (k) non-isomorphic non-isomorphic in expansion tree
trees of size 3 to k graphs

3 1 2 2

4 3 6 7

5 6 21 24

6 12 112 118

7 23 853 865

8 46 11117 11140

9 93 261080 261126

10 199 11716571 11716664

11 434 1006700565 1006700764

12 985 164059830476 164059830910

13 2286 50335907869219 50335907870204

14 5445 29003487462848061 29003487462850347

15 13186 31397381142761241960 31397381142761247405
Note:

Table is prepared using the program geng from McKay’s gtools package (McKay, 1981).

Table 10 Comparison between the number of nodes in the static and the dynamic expansion tree.

Motif size 3 4 5 6 7 8 9 10

Number of nodes in static expansion tree 2 7 24 118 865 11140 261126 11716664

Number of nodes in dynamic expansion tree 2 7 15 56 171 645 2158 7292
Note:

Escherichia coli network is used to prepare this table.

Table 11 Number of nodes in the dynamic expansion tree of various networks.

Network name Hhv8 Hhvl Escherichia coli Helicobacter pylori Rattus norvegicus Saccharomyces cerevisiae

Number of nodes in dynamic expansion tree 12852 11297 13418 9713 8525 11791

Note:
Motif size is taken as 15.

compared to the SET which is 31397381142761247405 for the size-15 motif. In order to
obtain these tables, the uniqueness threshold is set as 5% of the size of the network and the F2
frequency measure is used which satisfies downward closure property. Thus, a branch in
the ET does not expand further if the frequency of the subgraph fails to cross the threshold
value. Therefore, most of the branches of the DET pruned well before the maximal depth

in contrast to the SET. It is observed from Table 9 that the number of nodes in the SET increases
exponentially with respect to the motif size whereas in the case of the DET it increases linearly.
Hence space limitation can be eliminated in the MDET method by the use of DET.

CONCLUSION

In this paper, the dynamic expansion tree (MDET) is used to find large motifs in
the biological networks. The novelty of the proposed algorithm is that it avoids
computationally expensive graph isomorphism test and overcome the space limitation of
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the SET. A key feature of this algorithm is that the root of the ET always started with a size-3
tree and it is expanded iteratively by addition of graph elements in each successive level. The
F2 measure is used to compute the frequency of the pattern in the target network. This
frequency measure satisfies downward closure property. Hence, pruning criteria can be
applied to control the growth of the ET. A branch of the ET is not expanded further when the
frequency of the subgraph failed to cross a predefined threshold. This reduces the space
requirement significantly as compared to the SET. The representation of the graph in
canonical form plays a crucial role in the proposed algorithm to reduce the time complexity.
During the tree census and the graph census, the embeddings of the child node are directly
converted to the canonical form using the stored map. This eliminates the repeated conversion
of the graphs to their canonical form which is computationally very expensive. The pattern
growth approach is used in this motif-centric algorithm that eliminates costly isomorphism
tests. The running time of the proposed algorithm is evaluated by varying the motif size
and the size of the target network. The implementation results on the PPI networks from
MINT database indicate that the proposed algorithm is significantly faster than most of the
existing motif finding algorithms. The proposed algorithm is able to discover large motifs up to
size-15 within a few hours. The DET eliminates the memory limitation of the SET. But

the space requirement can be further reduced by taking a balanced DET instead of a simple
ET. Network motif finding using a balanced DET can be explained in the future.
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