
69

This is an Open Access article 
distributed under the terms of the 
Creative Commons Attribution 
Non-Commercial License (http://
creativecommons.org/licenses/
by-nc/4.0/).

REVIEW 
ARTICLE

Bioinformatics challenges in molecular 
epidemiology of cancers

Se Hoon Park1, Hong-Hee Won2

1Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
2 Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology (SAIHST), 
Sungkyunkwan University, Seoul, Korea

ABSTRACT
Molecular epidemiology is the integration of molecular biologic techniques into epide-
miologic study. With the advances in understanding of carcinogenesis and the human 
genome, there has been an evolution in the field of cancer epidemiology. However, tra-
ditional analyses of single genetic variants often fail to identify susceptibility genes for 
cancer risk. In particular, recent technological evolution has enabled high-throughput 
analyses for a number of genetic variants and driven accumulation of unprecedentedly 
large genome data, imposing bioinformatics challenges. These studies aim to inte grate 
the genetic basis of complex diseases including cancers in which the interplay of multi-
ple genetic and environmental risk factors may play an important role. Here we outline 
currently available approaches for detecting variants of cancer risk. We also review up-
coming bioinformatics challenges and technical aspects in the field of molecular epide-
miology, and discuss their future impact on the understanding of carcinogenesis and 
personalized strategies for cancer prevention and therapy.
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INTRODUCTION

Epidemiology is the study of sick and well people to determine the crucial difference between 
those who get disease and those who are spared, and has been very successful in identifying 
environmental factors that modify the risk of cancers, leading to cancer prevention strategies. 
Traditional epidemiology is concerned with correlating exposures with cancer incidence, using 
the Bradford-Hill criteria for assigning causality to an association in which a specific exposure 
might cause a specific cancer type [1]. However, the etiology of many types of cancers is still 
poorly understood, despite extensive use of questionnaires and interview-based approaches 
in conventional epidemiologic studies. For example, in certain areas of the world where Heli-
cobacter pylori infection is prevalent, only a small fraction of those infected develop gastric can-
cer. Therefore, it has been widely recognized that not all individuals respond in the same man-
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ner to similar pharmaceutical or environmental exposures. 
Limited knowledge of interindividual variability in response 
to exposures based on inherited variants results in the need 
for rational integration of molecular analysis into cancer epi-
demiologic studies.

Susceptibility to environmental exposures
During the past decade, epidemiologic research has under-
gone major technological and methodological development, 
with incorporation of molecular, cellular, and other biologic 
measurements into traditional approach [2]. The etiology of 
cancers involves strong environmental and genetic compo-
nents, in which the global distribution is characterized by a 
wide geographic variation in incidence. In molecular epide-
miology, the epidemiologist is much more of a participant in 
the assessment of the biologic basis for an association, by 
using biologic measurements to assess exposure, internal 
dose of carcinogen, early biologic effect resulting in altered 
structure and function, and outcome. Furthermore, interin-
dividual differences in the absorption, activation, and detoxi-
fication of carcinogens, or the response to DNA damage cau-
sed by carcinogens, may mediate the relation between expo-
sure and outcome [3]. The most common markers of the sus-
ceptibility are mutations in specific genes that confer increas-
ed or decreased risk. Familial clustering of specific cancer 
sites has long been recognized, and family history of a specif-
ic cancer is associated with increased risk. For example, he-
reditary nonpolyposis colorectal cancer (HNPCC) syndrome 
is associated with mutations in the mismatch repair (MMR) 
genes [4]. Subsequent analyses of a larger set of families show-
ed that germline mutations in the MMR genes are responsible 
for 70% to 90% of all HNPCC cases [5].

Almost all carcinogens require activation induced by meta-
bolic enzymes, and detoxification enzymes frequently exist 
to deactivate carcinogens or their intermediate metabolites. 
Inherited polymorphisms in these enzymes may alter their 
rate of activation or detoxification; thus, increasing or decre-
asing the carcinogenic potential of the environmental expo-
sures they act on. Furthermore, as our knowledge of the mo-
lecular mechanisms of carcinogenesis has expanded rapidly, 
gene pathways have become new focus of molecular epide-
miology research. These include pathways involving DNA re-
pair, cell cycle control, immune response, and the inflamma-
tory response. Genes in these pathways are candidates in the 
search for interindividual genetic variants that may modify 
cancer risk. Of note, the completion of the Human Genome 
Project naturally led us to examine the genetic variations that 

presumably underlie the fact that a family history of cancer is 
a major risk factor for most cancer types [6,7]. These genes 
may also interact with environmental factors such that can-
cer risk is not equally elevated in all persons exposed to a car-
cinogen or all gene carriers.

Determination of treatment outcome
One of the limitations in cancer treatment is the recognition 
that some patients suffer toxicity from chemotherapy that 
may be fatal, compromise quality of life, or limit the dose of 
drugs able to given. The variation in drug tolerance is thought 
to be results from inherited differences in drug metabolism. 
Likewise, some patients respond to certain chemotherapeu-
tic agents, while others experience disease progression or 
toxic reactions. In fact, the application of pharmacogenetic/
genomics to cancer treatment outcomes is the area that holds 
exceptional promise. In studies of cancer etiology or suscep-
tibility, most of the variants identified for cancer risk infer risks 
that are slight, and it is likely that many frequent (>1%) sin-
gle nucleotide polymorphisms (SNPs) will not increase risk of 
cancer but will only become penetrant in the presence of ex-
posures that are relevant for disease etiology. However, for 
studies of treatment outcomes, the exposure is known and 
common to all individuals receiving treatment, yet not all ex-
perience the same toxicities. One of the best examples of in-
herited differences in chemotherapy outcome is the pharma-
cogenomic study of oxaliplatin-induced severe neuropathy 
[8]. About one-third of patients treated with oxaliplatin expe-
rienced severe neuropathy [9]. Genome-wide association 
(GWA) analyses found five polymorphisms (rs10486003, rs2338, 
rs830884, rs843748, and rs797519) that could be associated 
with the toxicity. Theoretically, screening for these SNPs may 
not only avoid the risk of severe toxicity, but may also help 
optimize chemotherapy regimen and dosage.

DETECTION OF GENETIC VARIANTS

Candidate gene studies have provided valuable data in the 
areas of pharmacogenetics and pharmacogenomics. This is 
especially the case for adverse drug reactions attributable to 
alleles of a single gene, which often encodes an enzyme con-
tributing to metabolism of the drug. However, the availability 
of GWA approaches enabled contributions from novel and 
less obvious genes to be detected, especially in the area of 
susceptibility studies, which is more complex and less well 
understood than the pharmacogenetics of drug metabolism. 
Currently, there is considerable interest in applying whole-ge-
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nome sequencing to molecular epidemiology with a view to 
identifying rare genetic variants. This may involve sequenc-
ing of all coding regions (exome sequencing) or entire geno-
mes using the new technologies that are rapidly developing 
[10]. Owing to highly coordinated efforts including the Hap-
Map Project and the 1000 Genomes Project [7,11,12], discov-
ery of genetic variants has become one of the most interest-
ing areas in which many procedures require complex and high-
ly demanding computation [13].

Gene-gene or gene-environmental interactions
The current strategy for revealing the genetic basis of disease 
susceptibility is based on the common disease common vari-
ant hypothesis [14], supporting that genetic variations with 
alleles that are common in the population will explain the 
genetic basis of common disease. That is, if a variant is dis-
tributed non-randomly with a disease, it could be linked to a 
susceptibility gene. Our goal in molecular epidemiology is to 
understand the relationship between individual variation in 
DNA sequences, in environmental exposure and in disease 
susceptibility, resulting in the improvement of diagnosis, pre-
vention, and diagnosis. Unfortunately, despite GWA studies 
have identified a number of common SNPs, the identified 
variants explain only a small proportion of the heritability of 
complex diseases [15], which implies that multiple SNPs or 
environmental risk factors may contribute to disease suscep-
tibility but individual factors confer only modest contributions 
to disease risk. Given the failure to identify novel susceptibili-
ty genes using GWA studies indicates limitations of this appro-
ach, and the major technological advances enabling high-throu-
ghput genotyping or sequencing, there has been the emerg-
ing need to shift from the single SNP approach towards a more 
holistic one in order to recognize the complexity of the gene-
gene and gene-environmental interactions. For example, we 
all know that only a few individuals infected by H. pylori de-
velop gastric cancer [16], even in areas with a high incidence 
of H. pylori infection.

Considering the non-linearity between the genotype and 
phenotype, it can arise from phenomena such as genetic het-
erogeneity (i.e., different DNA sequences leading to the same 
phenotype), phenocopy (i.e., environmentally determined 
phenotype without a genetic basis) and the gene-gene or gene- 
environmental interactions [17]. The value of studying gene- 
environmental interactions may be found in that it is allowed 
to refine risk estimates associated with specific exposures, 
by focusing primarily on those who are most susceptible and 
at risk. While association between cancer risk and specific 

exposure may be weak or absent in a heterogeneous popula-
tion, association may be found in the examination of only those 
who are most susceptible.

“Big data” problem
With the tremendous progress in the technology in genom-
ics, there has been an exponential growth in the amount of 
data, which has been widely recognized to be a critical barri-
er in analyses and interpretation. For instance, the amount of 
data that have been archived in the NCBI database for the 
past two years already exceeded the total amount that had 
been archived before that. Even before analysis step, there 
happen immediate challenges regarding data storage and 
exchange among data generating groups and analyzing groups. 
Such a huge scale of data is far beyond computational capac-
ity in most biomedical research labs. To overcome this prac-
tical difficulty for building a server for data storage and exten-
sive computation in individual labs, many companies such 
as Amazon have developed cloud computing platform and 
provided service to allow researchers use their servers as need-
ed or many research institutes have built clustering comput-
ing platform for their affiliated labs.

On the other hand, the majority of biologic or clinical rese-
archers are still unfamiliar with computational approaches 
to deal with those data, and bioinformatics is a foreign terri-
tory. Recent microarray or sequencing-based experiments 
often generate substantially bigger data and are more broad-
ly applicable than before [18], and the problem may occur 
when most biomedical researchers have very limited capaci-
ty to carry out analyses of such big data using appropriate 
tools that can be fully understood by others. To study the ef-
fects of genetic variants on cancer risk, therefore, involvement 
of computational biologists and bioinformaticians with ex-
pertise and knowledge in genomics and computational do-
mains becomes more unavoidable and impending. In addi-
tion, considering gene-gene or gene-environmental interac-
tions as important factors for cancer susceptibility, as well as 
markers other than genetic polymorphisms including copy 
number variation, mitochondrial DNA, variations in microR-
NAs and other factors that regulate gene expression, there is 
no currently available ideal method to deal with such diverse 
large datasets.

STUDY DESIGNS FOR MOLECULAR  
EPIDEMIOLOGY

Current focus is on integrating findings from the large sets of 
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data that have been generated through large consortia. Stud-
ies of gene-environmental interactions should require care-
ful consideration of epidemiologic study design, exposure 
assessment and methods of analysis, with particular atten-
tion to data quality [19]. Integration of GWA data with expert 
biological knowledge would be equally important.

Epidemiologic study designs include observational (e.g., 
cohort, case-control, or case-only) studies that do not involve 
any intervention or experiment, and experimental studies 
that entail manipulation of the exposure and randomization 
of subjects to exposure groups (Table 1). The issues for choos-
ing appropriate one among different designs include the con-
trol of confounding factors and other sources of bias, the tem-
poral relationship between exposure and disease, data qual-
ity, the ability to test multiple endpoints, and the efficiency 
of detecting rare diseases or rare risk factors. One of the ma-
jor challenges to the success of epidemiologic studies is that 
the uncertainties in exposure assessment can lead to unpre-
dictable biases, especially if they differ with respect to disease, 
as well as induce spurious interactions. Moreover, enough 
sample size required for most epidemiologic studies can be 

enormous. Thousands of cases are typically required for case- 
control studies, and even tens of thousands are needed in 
GWA studies because a more stringent significance level is 
required at the genome scale [20].

Although any of the standard epidemiologic designs for study-
ing effects of genes or environmental factors can be applied 
to the study of gene-environmental interactions (Table 2), the 
computational burden and general absence of prior knowl-
edge about most SNPs result in additional problems. Conven-
tional analyses of GWA data often involve exhaustive scan for 
all possible pair-wise interactions but can still miss those with 
weak marginal effects [21]. In addition, scanning for higher- 
order (i.e., gene-gene-gene or gene-gene-environmental) in-
teractions is computationally less feasible without filtering 
based on lower-order interactions. Another challenge that 
deserves to be mentioned still remains in the biological in-
terpretation of non-linear genetic models. While a computa-
tional model can be made to identify SNPs that increase sus-
ceptibility to disease, the specific mathematical relationships 
cannot be translated into diagnosis or treatment strategies 
without interpreting the results in the context of human biology.

Table 1. Designs for epidemiologic studies

Design Approach Advantage Disadvantage Setting

Cohort Record incidence of new cases 
across groups defined

No biases, clear temporal 
relationship between cause 
and effect

Large cohorts, long follow-up, 
bias from losses to follow-up, 
changes in exposure can be 
missed

Common disease, multiple 
endpoints

Case-control Compare prevalence of factors 
between cases and control

Modest sample size for rare 
disease, can individually 
match on confounders

Recall bias due to retrospec-
tive nature, selection bias for 
control group

Rare disease with common 
risk factors

Case-only Test of risk factors among 
cases

Smaller sample size than 
cohort or case-control

Bias if risk factor assumption 
is incorrect

Gene-environmental interac-
tion

Randomized Cohort study with random 
assignment of risk factors

Control of confounders Often requires very large sam-
ple size

Prevention trials for disease 
incidence

Crossover Exposes each individual to 
different risk factors in order

Control of confounders, with-
in-individual comparisons

Small sample size Confirmation trial for acute 
effects

Table 2. Designs for gene-environmental interactions

Design Approach Advantage Disadvantage Setting

Two-stage geno-
typing

In case-control samples, select a subset of SNPs  
with suggestive interaction; the SNPs tested in  
an independent sample

Cost efficient Only part of sample 
has GWA geno-
types

GWA studies without 
complete SNP data on 
all subjects

Two-step interac-
tion analysis

Preliminary filtering of a GWA scan for interaction; 
followed by testing of a selected subset

More power than 
single-step analysis

Can miss some  
interactions

GWA studies with  
complete SNP data

SNP, single nucleotide polymorphism; GWA, genome-wide association.
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BIOINFORMATICS IN MOLECULAR  
EPIDEMIOLOGY

Previous association studies mainly focused on genetic fac-
tors at a time only taking a limited number of demographic 
variables such as age, gender, ethnicity etc. as covariates with-
out fully considering the environmental complexity of dis-
ease. In addition to the failure to identify relevant suscepti-
bility genes using high-throughput genotyping or GWA stud-
ies [15], as the technology continues to change rapidly, there 
is a challenge arising due to not only too little knowledge but 
also too much information. In mapping relationship between 
interindividual variations in DNA sequences, environmental 
exposures and disease susceptibility, one should consider 
the amount of non-linearity in effects of a genotype or phe-
notype [17]. In addition to large genomics data, various om-
ics data including transcriptome, proteome, metabolome etc. 
will not only provide valuable opportunities to understand 
human cancers systematically but also raise more stubborn 
challenges. The Cancer Genome Atlas Project has shown great 
success of integrative approaches in dealing with such oppor-
tunities and challenges [22]. To address the complexity of the 
underlying genetic basis of disease, and to deal with unbe-
lievably large amount and diversity of data including gene-
gene or gene-environmental interactions, bioinformatics can 
play an important role.

Data mining
Considering the complex biologic phenomena such as gene-
gene or gene-environmental interactions will make up much 
of the genetic basis of disease, computational modeling can 
be very challenging because the combinatorial number of 
genotypes and gene-environmental combinations goes up 
exponentially as more variable is added to the model. Many 
exploratory methods have been developed for multivariate 
analysis of high-dimensional data, ranging from standard 
multiple regression methods to a number of data mining or 
machine learning techniques [21], but traditional linear, para-
metric statistical approaches have limited power for model-
ing high-order, non-linear interactions that are likely to be 
important in the etiology of complex diseases. The advan-
tage of data mining methods is that they are based on fewer 
assumptions and thus less biased about the functional form 
of the model and the effects being modeled [23].

One of the most popular machine learning algorithms for 
studying interactions is random forest (RF). In RF, variables 
such as SNPs, environmental and/or demographic factors are 

designated as attributes. RF is often used for selecting the sub-
set of attributes that can be modeled using decision trees. De-
cision trees are used for modeling the relationship between 
one or more attributes and an endpoint, leading to classifi-
cation of subjects as case or control by sorting them through 
a tree from node to node where each node is an attribute with 
a decision rule. A RF is a collection of individual decision trees, 
where each tree in the forest has been trained using a boot-
strap sample of subjects from the data, and each attribute in 
the tree is chosen from a random subset of attributes [24]. 
The primary advantage of RF is that it is simple and the re-
sulting tree can be interpreted as a series of if-then-else rules 
that are easy to understand. Furthermore, RF is a useful ap-
proach for studying gene-gene or gene-environmental inter-
actions because importance scores for particular attributes 
take interactions into account without demanding a predefined 
model.

Selection or filtering SNPs for combinatorial analysis
A second challenge in human genetics and molecular epide-
miology is the selection of SNPs that should be included in 
the analysis. If non-linear interactions between genes explain 
a significant proportion of the heritability of cancers, then a 
number of combinations of SNPs will need to be evaluated 
from a thousand-to-millions of candidates. It is now common-
ly understood that at least millions of carefully selected SNPs 
are necessary to capture the relevant variation across the hu-
man genome. With these many attributes the number of high-
er order combinations is astronomical. Therefore, filtering or 
selection procedures will play an important role in GWA stud-
ies because there are more possible combinations of SNPs to 
test than can be exhaustively evaluated using modern com-
putational horsepower [25].

To find the optimal number of attributes and to detect un-
known important interactions between attributes, there are 
two approaches to selecting attributes for predictive models. 
The filter algorithm can process the data by assessing the 
quality or relevance of each variable and then using the in-
formation to select a subset for analysis. A standard statisti-
cal strategy in human genetics and molecular epidemiology 
is to assess the association of each SNP with a disease using 
a chi-square test of independence followed by a correction of 
the significance level that takes into account an increased 
false positive rate due to multiple tests. This is very efficient 
in assessing the independent effects of SNPs on disease sus-
ceptibility but it ignores the interactions between attributes. 
Algorithms such as Relief, ReliefF, or SURF (Spatially Uniform 
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ReliefF) show promise for filtering interacting SNPs or attri-
butes [23], but still have a limitation that infrequent, but ac-
tually important, attributes might be discarded prior to anal-
ysis.

On the other hand, the wrapper method iteratively selects 
subsets of attributes for classification using either a determin-
istic or stochastic algorithm; thus, may be more powerful than 
filter method because no attributes are discarded in the pro-
cess. One of the most advanced methods involving wrapper 
algorithm is genetic algorithm (GA), a machine learning meth-
od to search for optimal rules or combinations that satisfy a 
predefined condition [26]. In the wrapper approach, the goal 
of GA is to evolve diverse combinatorial sets of attributes to 
find optimal interactions in a large number of possible com-
binations, which can be accomplished by repeating the fol-
lowing steps: first generating or initializing a population of 
random combinations that are composed of the basic units 
(SNPs or attributes), evaluating the combinations, and then 
delivering combinations with high evaluation to next genera-
tion. For genetic studies the basic units might be a list of SNPs 
or environmental factors along with a list of mathematical 
functions. Each randomly generated combination is evaluat-
ed and the good combinations are selected based on fitness. 
This process of selection and recombination or mutation to 
generate variability is repeated until best combinations are 
identified. One caveat is that the best combinations or SNP 
sets detected in one data should be validated in independent 
datasets to avoid the possibility of over-fitting of model to the 
discovery data.

BIOMEDICAL KNOWLEDGE FOR ANALYSIS 
AND INTERPRETATION

Even when a computational model can be made to identify 
SNPs or interactions that increase the disease risk, the bio-
logical interpretation of the results may be the most import-
ant and difficult challenge of all. It will be more apparent when 
statistically significant SNPs are found in gene desert regions 
[16,27]. As one of these efforts, the ENCODE (Encyclopedia of 
DNA elements) project have generated an amount of func-
tional elements in the human genome [28]. A previous study 
showed that a high portion of disease-associated variants 
are enriched in functional elements [29], which suggests that 
availability functional data enhance our ability to interpret 
statistical findings yet-to-be meaningful. Besides biologic 
data are often difficult to obtain, there is growing recognition 
that biomedical knowledge can guide genetic association 

studies to more meaningful results. For example, for any giv-
en disease there are often multiple biochemical pathways 
that play an important role in disease development. Path-
way-based analyses of genetic association studies are more 
likely to replicate than individual SNPs [30], and the use of 
prior knowledge about pathways can facilitate the analyses 
[31]. Web-based tools such as the gene set enrichment anal-
ysis and the DAVID (database for annotation, visualization 
and integrated discovery) have been widely used for path-
way enrichment analysis [32,33].

Despite of availability of several well-designed web-based 
tools, a general drawback of current computational techniques, 
for biomedical researchers in particular, is the lack of simplic-
ity. There have already been a number of leading-edge anal-
ysis tools often distributed through SourceForge, Google Code, 
and others, including direct downloads from developers’ web-
sites. However, most of these tools are of little use to biomed-
ical researchers because specific skills are often required to 
compile, install, and use them. The key to successful GWA study 
is the close collaboration between biomedical researchers, 
biostaticians, and bioinformaticians.

Gene and pathway-based analysis of GWA data
The common approach to GWA studies is to select tens to 
hundreds of the most significant SNPs for further investiga-
tion. However, as described above, common diseases often 
arise from the joint action of multiple loci or multiple genes 
within a pathway. A gene or a pathway consists of a group of 
interacting components that act in concert to perform specif-
ic biologic tasks. Furthermore, the function of many SNPs 
may not be well characterized yet, but the function of genes 
and particular pathways have been much better investigat-
ed. The gene and pathway-based analysis considers a gene 
or a pathway as the basic unit of analysis [34,35], with the 
aim of identifying simultaneous associations of a group of 
genetic variants in the same gene or biochemical pathway. 
On the other hand, expression quantitative trait loci analysis 
identifies statistically significant correlation between each 
SNPs and gene expression level of particular genes in cis- (lo-
cally) or trans- (at a distance) effects [36]. One of the major ad-
vantages of studies at the gene or pathway level is that path-
way-based analysis can add structure to genomic data and al-
lows us to gain insight into a deeper understanding of the bio-
logic consequences at cellular level as networks of function-
ally related genes. Integration of gene expression data and 
DNA variants increases computations exponentially and nec-
essarily induces false positive findings. Another challenge fac-
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ing us is the fact that the current understanding of human 
gene function is not complete, and a large number of genes 
or pathways are still uncharacterized or poorly characterized.

CONCLUSION

Molecular epidemiology has been focusing on dissecting the 
heterogeneity of susceptibility leading to a better understand-
ing of causes of disease. High-throughput genotyping and 
GWA studies have generated a number of important bioinfor-
matics challenges including modeling of complex genotype- 
phenotype relationships using data mining and developing 
new machine learning methods. As we encounter more and 
more data and discover new complexities in the human ge-
nome, although there has not been a widely accepted theory 
for how to analyze genomics and other omics data and inter-
pret those results, powerful bioinformatics research strate-
gies would be even more critical for identifying genetic risk 
factors for human cancers. Successful genetic and molecular 
epidemiologic study is not only dependent on the quality of 
big data or expert biologic knowledge, but also on data min-
ing requiring high computational efforts. Given these consid-
erations, we indeed need to interact and collaborate among 
biologists, translational researchers, and bioinformaticians 
to tackle emerging important bioinformatics challenges in 
genetic studies.
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