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ABSTRACT
Colistin is an old drug, and its use has recently resurged because of increasing antibiotic 
resistance in gram-negative bacteria such as Acinetobacter baumannii. Although the 
colistin resistance rates in gram-negative bacteria are currently not high, many colis-
tin-resistant isolates are being identified and the possibility of horizontal transmission 
of colistin resistance has increased because of the plasmid-borne colistin resistance 
gene mcr-1 (mobilized colistin resistance). In this review, we have discussed colistin re-
sistance in A. baumannii. In addition, we have reviewed an abnormal phenomenon 
called colistin dependence in A. baumannii. 
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INTRODUCTION

Acinetobacter was most probably first described as Diplococcus mucosus in 1908. In 1954, Bri-
sou and Prévot proposed the genus Acinetobacter to indicate that the bacteria were non-mo-
tile because they lacked flagella: the Greek “akineto” means “immobile” [1]. Acinetobacter 
spp. are glucose-non-fermentative, non-motile, non-fastidious, catalase-positive, oxida-
tive-negative, aerobic, and gram-negative coccobacilli [2]. The genus Acinetobacter includes 55 
species (as of July 18, 2017; http://www.bacterio.net/acinetobacter.html), and the number of 
species is increasing [3]. Acinetobacter baumannii is the most common species to cause infec-
tions, followed by Acinetobacter nosocomialis and Acinetobacter pittii [4,5]. Acinetobacter 
lwoffii, Acinetobacter haemolyticus, Acinetobacter johnsonii, Acinetobacter junii, Acineto-
bacter ursingii, Acinetobacter schindleri, Acinetobacter calcoaceticus, and Acinetobacter seif-
ertii have occasionally been reported in humans [5,6]. A. baumannii, A. calcoaceticus, A. noso-
comialis, and A. pittii have very similar biochemical traits and could be separated well; they 
were grouped into the so-called “A. calcoaceticus-A. baumannii (Acb) complex” [7]. A. seifertii 
is also closely related to the species of the Acb complex [8,9]. 

Acinetobacter spp., including A. baumannii, have long been known as colonizers in humans, 
but they do not cause severe infections [10]. However, A. baumannii causes infections in im-
munosuppressed patients, patients with serious underlying diseases, and those subjected to 
invasive procedures and treated with broad-spectrum antibiotics; it may be a pathogen that 
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has adapted the most to the hospital environment in the 21st 
century [11]. A. baumannii has become a representative 
pathogen that threatens human health. It is a member of the 
ESKAPE group, which is the main bacterial group that causes 
infections in humans [12], and has been recently ranked as a 
bacterium that poses the greatest health threat by World 
Health Organization [13]. In the United States, A. baumannii 
has been estimated to cause more than 2% of the health-
care-associated infections [14]. Acinetobacter spp. are the 
seventh most-isolated bacteria in Korean hospitals [15], and 
they are the most frequent isolates from adults with hospi-
tal-acquired pneumonia or ventilator-associated pneumonia 
in Asian countries, including South Korea [16]. 

Although β-lactam antibiotics are the preferred choice for 
susceptible A. baumannii infections, carbapenems have be-
come the main therapeutic option because of an increase in 
resistance [2,6]. However, imipenem-resistant isolates were 
found in the early 1990s [17], and the rate of carbapenem re-
sistance in A. baumannii, mainly due to OXA-type (oxacil-
lin-hydrolysing) carbapenemases, has increased rapidly 
[7,11]. In South Korea, more than two-thirds of the A. bau-
mannii isolates were resistant to imipenem on the basis of 
several surveillance studies [4,15,18]. Most of the carbapen-
em-resistant A. baumannii isolates showed multidrug resis-
tance (MDR) or extreme drug resistance (XDR), which is de-
fined as resistance to all available antibiotics, except for one 
or two agents [19]. Current treatment options for XDR A. bau-
mannii infections remain quite limited. In addition to tigecy-
cline, a recently developed antibiotic—an old drug, colistin—
is often the last resort for treating XDR A. baumannii [6,20]. 

COLISTIN 

Polymyxin antibiotics include colistin (also known as poly-
myxin E), and polymyxin B is an antimicrobial polypeptide 
that was originally isolated in 1947 from the soil bacterium 
Paenibacillus polymyxa [21]. Colistin differs from polymyxin 
B by only one amino acid at position 6 in the peptide ring: a 
leucine in colistin and a phenylalanine in polymyxin B [22]. 
Although they have similar antimicrobial spectra and resis-
tance mechanisms, the method for administration is differ-
ent: while polymyxin B is administered directly in the active 
form, colistin is administered in the form of an inactive prod-
rug, colistin methanesulphonate (also known as colisti-
methate [CMS]). CMS itself lacks antibacterial activity, but it 
is converted into colistin after administration [23,24]. Al-
though colistin has shown significant activity against a wide 

variety of gram-negative pathogens, its use was stopped in 
the 1970s because of its nephrotoxicity and neurotoxicity 
[25]. However, the emergence of MDR or carbapenem-resis-
tant gram-negative bacterial pathogens and the lack of new 
antibiotics to treat them have led to the resurgence of colis-
tin [26,27]. 

Colistin mediates bactericidal activity by interacting with 
the lipid A component of the lipopolysaccharide (LPS) pres-
ent on gram-negative pathogens, including A. baumannii 
[28]. Because of an electrostatic interaction between the 
positively charged colistin on one side and phosphate groups 
of the negatively charged lipid A membrane on the other 
side, divalent cations such as Ca2+ and Mg2+ are displaced 
from the membrane lipids. This destabilizes LPS and, conse-
quently, increases the permeability of the membrane, lead-
ing to outer membrane disruption and cell death [26]. Other 
action mechanisms of colistin have been proposed: endotox-
in effect, inhibition of vital respiratory enzymes, and hydroxyl 
radical production [28,29].

Colistin exhibits bactericidal activity in a concentration-de-
pendent manner against gram-negative bacteria, including A. 
baumannii, with a minimal post-antibiotic effect [30]. How-
ever, re-growth with time has frequently observed [31], and 
the inoculum effect, a phenomenon of decreasing efficacy of 
an antibiotic with increasing bacterial density, has been re-
ported [30]. Colistin has a relatively narrow in vitro bacte-
ria-killing spectrum. It is active against gram-negative bacilli, 
such as Acinetobacter spp., Pseudomonas aeruginosa, Esch-
erichia coli, Klebsiella spp., and Enterobacter spp. However, 
it has shown inactivity against some gram-negative bacilli, 
such as Burkholderia cepacia, Proteus spp., Providencia spp., 
and Serratia spp., as well as against gram-negative and 
gram-positive cocci, gram-positive bacilli, anaerobes, fungi, 
and parasites [32]. In addition, some Acinetobacter species, 
such as A. seifertii and Acinetobacter colistiniresistens, have 
exhibited very high colistin resistance rates or seem to be in-
trinsically resistant to it [3,4]. 

COLISTIN RESISTANCE

Colistin resistance in gram-negative bacteria is known to oc-
cur via several mechanisms. The main mechanism is the ad-
dition of a cationic group, such as 4-amino-4-deoxy-L-arabi-
nose (L-Ara4N) or phosphoethanolamine (pEtN) to the lipid A 
moiety of LPS, which results in a decrease in the net negative 
charge of the bacterial outer membrane [33-37]. In most 
gram-negative bacteria, the addition of cationic groups is 
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regulated mainly by both PhoPQ and polymyxin resistance 
(pmr) PmrAB, which are two-component regulatory systems 
[28,38]. However, the phoPQ genes have not been found in 
the genome of Acinetobacter spp. [39]; thus, lipid A modifica-
tion in A. baumannii is mediated by mutations in PmrAB 
[33,34,40-43]. Mutations in the pmrA or pmrB genes cause 
upregulation of the pmrCAB operon, leading to the synthesis 
and addition of pEtN, which is responsible for colistin resis-
tance in A. baumannii. Amino acid alternations in PmrCAB of 
A. baumannii reported to date are presented in Fig. 1 [34,40-
48]. As shown in Fig. 1, most amino acid substitutions associ-
ated with colistin resistance have been found in PmrB, a 
membrane-bound histidine kinase. However, it has not been 
verified experimentally if most variations are really responsi-
ble for colistin resistance in A. baumannii. Colistin-resistant 
mutants with no mutations in the pmrA and pmrB genes 
have also been identified, implying that the amino acid 
changes in the PmrAB two-component system are not essen-
tial for A. baumannii colistin resistance [41]. 

In addition to lipid A modification of LPS, loss of LPS has 
been reported to be associated with colistin resistance in A. 

baumannii [49]. Alterations in the lipid A biosynthesis genes 
(lpxA, lpxC, and lpxD) by amino acid substitutions, deletions, 
or insertion of ISAba1 are responsible for the loss of LPS 
[49,50]. A recent metabolomic study revealed that an LPS-de-
ficient, colistin-resistant A. baumannii strain showed pertur-
bation in specific amino acid and carbohydrate metabolites, 
particularly pentose phosphate pathway and TCA (tricarbox-
ylic acid) cycle intermediates [37]. In addition, depletion of 
peptidoglycan metabolites was observed in LPS-deficient 
strains. Several studies have reported increased susceptibili-
ty to some antibiotics rather than polymyxins in LPS-defi-
cient, colistin-resistant A. baumannii strains [51,52], which 
has been postulated to be due to an increase in the passive 
diffusion of antibiotics. Decreased virulence in LPS-deficient 
strains has also been observed, which is compared with no 
change in the virulence of colistin-resistant strains due to 
pmrAB mutations [44,53]. To date, colistin resistance through 
the loss of LPS has not been detected in bacteria other than 
Acinetobacter spp.

Other colistin resistance mechanisms have been suggested 
in other gram-negative bacteria: overproduction of the cap-

Fig. 1. Overview of amino acid substitutions associated with colistin resistance in the polymyxin resistance (pmr) operon in Acinetobacter 
baumannii. Amino acid alterations are indicated with different colors, according to the references. Location of domains within the pmr 
operon was predicted using the SMART (simple, modular, architecture, research, tool) program (http://smart.embl-heidelberg.de/). fs, 
frameshift; ∆, deletion. a)On the top right of the letter indicates that an amino acid change found in vitro induced a colistin-resistant 
mutant.
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sule polysaccharide (CPS) and efflux pumps [54,55]. For CPS 
production, reduced production of CPS in colistin-resistant 
mutants was observed in Klebsiella pneumoniae, which is a 
contradictory finding [56]. While an efflux pump inhibitor, 
carbonyl cyanide 3-chlorophenylhydrazone (CCCP) increased 
colistin susceptibility in A. baumannii, other efflux pump in-
hibitors, including phenylalanine-arginine β-naphthylamide 
(PAβN) did not show such an effect [31]. Thus, the roles of 
CPS overproduction and efflux pumps in colistin resistance 
should be further investigated. 

Unlike the chromosome-related colistin resistance mecha-
nisms described above, the plasmid-borne resistance gene 
mobilized colistin resistance (mcr-1) has been recently re-
ported from E. coli isolates in China [57]. Since the first re-
port, mcr-1, which encodes pEtN transferase, has been de-
tected in dozens of countries worldwide, including South Ko-
rea [58,59]. Although it has been reported in diverse bacterial 
species, such as E. coli, K. pneumoniae, Enterobacter cloa-
cae, Enterobacter aerogenes, Salmonella spp., and Shigella 
sonnei, it has not been found in Acinetobacter spp. isolates 
[60]. However, a mcr-1-carrying plasmid could be introduced 
into A. baumannii, and reduced susceptibility to colistin was 
observed, highlighting the risk of horizontal transfer of colis-
tin resistance in A. baumannii [61]. 

It is estimated that colistin preserves its activity against 
many gram-negative pathogens, including Acinetobacter 
spp. An antimicrobial susceptibility study based on world-
wide collection during 2006 and 2009 exhibited that colistin 

showed potent in vitro activities against Acinetobacter spp. 
(MIC90, 1 mg/L; 98.6% susceptibility) [62]. Recent SENTRY An-
timicrobial Surveillance Program data also show that more 
than 95% of Acinetobacter spp. isolates from Europe, China, 
and the United States are susceptible to colistin [63,64]. In 
South Korea, colistin resistance rates among A. baumannii 
isolates have been estimated to be 7.0% and 2.4% [4,8]. A re-
cent study has also shown a colistin resistance rate of 8.6% 
among Acinetobacter spp. clinical isolates [65]. However, it 
did not delineate Acinetobacter spp. and may have overesti-
mated the colistin resistance rate in A. baumannii because of 
high colistin resistance rates in other species of the Acb com-
plex, A. seifertii and A. pittii [4,8]. While colistin resistance in A. 
baumannii seems to occur readily by simple mutation in 
both laboratories and patients [45,66], a genotyping study 
revealed that colistin-resistant A. baumannii isolates did not 
disseminate clonally [67]. 

COLISTIN DEPENDENCE

Several investigators have reported heteroresistance to colis-
tin in A. baumannii, which has been supposed to cause the 
emergence of colistin resistance by exposure to colistin [68-
70]. Heteroresistance is generally defined as a case in which 
subpopulations of antibiotic-susceptible bacteria show resis-
tance to certain antibiotics [71]. The heteroresistant subpop-
ulations survive at high antibiotic concentrations in a ratio of 
~10-6 in a population analysis profiling (PAP) or appear as dis-

Fig. 2. Results of the disc diffusion assay for the colistin-susceptible, colistin-resistant, and colistin-dependent phenotypes. H06-855R and 
H06-855D are the colistin-resistant and colistin-dependent mutants, respectively, that originated from the colistin-susceptible Acinetobacter 
baumannii strain H06-855. The colistin-dependent mutant was obtained from colonies that survived 10 mg/L of colistin during the 
population analysis. While the colistin-resistant mutant grew throughout the plate, irrespective of the colistin disc, the colistin-dependent 
mutant grew only around the colistin disc. 

H06-855 H06-855R H06-855D
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tinct colonies growing within the clear zone of inhibition in 
the disc or E-test assay [71]. 

Unusually, some surviving A. baumannii subpopulations at 
high colistin concentrations in PAP exhibit the colistin depen-
dence phenomenon. That is, when surviving colonies at ≥8 
mg/L colistin during PAP were plated on solid agar with discs 
of 10 mg colistin, the bacteria grew only near the disc (Fig. 2). 
Such colistin dependence was first identified in an Acineto-
bacter sp. isolate from a calcaneus bone specimen of a pa-
tient with calcaneal osteomyelitis and bacteremia by Hawley 
et al. [72] during a population analysis. It was the first report 
on colistin dependence, and they identified the isolate as A. 
baumannii-A. calcoaceticus because they did not identify it 
to the species level.

The antibiotic dependence phenomenon was first reported 
in vancomycin-dependent Enterococcus faecalis in 1994 [73]. 
Vancomycin dependence in enterococci has subsequently 
been identified [74-76]; it may not be rare and may occur re-
gardless of the use of vancomycin [77]. Because vancomy-
cin-dependent isolates lack ligase activity because of muta-
tions in the D-alanine D-alanine ligase (ddl) gene encoding 
the D-Ala-D-Ala ligase protein, they require glycopeptide an-
tibiotics for cell-wall synthesis [78]. Although linezolid-de-
pendent Staphylococcus epidermidis and β-lactam-depen-
dent Staphylococcus saprophyticus have been reported 
[79,80], antibiotic dependence has been rarely identified in 
gram-negative bacteria. 

After Hawley et al. [72], Garcia-Quintanilla et al. [81] identi-
fied partial colistin dependence by using the E-test assay. 
They found that some LPS-deficient, colistin-resistant A. 
baumannii strains with mutations in lpxA, lpxC, and lpxD 
showed partial colistin dependence. However, colistin resis-
tance through LPS modification due to mutations in the Pm-
rAB did not convert into colistin dependence. Although they 
proposed the loss of LPS as a colistin dependence mecha-
nism, they did not address why a colistin-resistant isolate 
with the loss of LPS converted into colistin dependence. 
Thus, the mechanism underlying colistin dependence in A. 
baumannii is unclear. 

Recently, we reported the development of colistin depen-
dence in clinical colistin-susceptible A. baumannii isolates af-
ter exposure to colistin [82]. In that study, development of 
colistin dependence was not rare; 32.9% of 149 colistin-sus-
ceptible isolates developed colistin dependence. Genotypic 
analyses revealed that colistin dependence originated from 
the corresponding susceptible parental isolates, and no evi-
dence of clonal dissemination of the isolates that developed 

colistin dependence was found. Colistin-dependent mutants 
have shown increased susceptibility to several antibiotics, 
such as carbapenems [72,81,82], which is the feature of 
LPS-deficient, colistin-resistant isolates [51,52]. Of note, pa-
tients with colistin-dependent strains have shown higher 3- 
and 7-day treatment failure than the patients without colis-
tin-dependent strains [82]. Thus, the development of colis-
tin-dependent mutants may have clinical significance, and it 
should be investigated. A recent study showed that the colis-
tin-dependent phenotype may arise from the loss of LPS or 
defects in its structure, resulting from the disruption of LpxC 
[83]. In that study, transition of colistin dependence into 
colistin resistance was also demonstrated in the absence of 
antibiotic selection pressure [83].

CONCLUSION

The need for new antibiotics is growing in this era of antibiot-
ic resistance; however, the development of new antibiotics, 
particularly for MDR gram-negative bacteria, has slowed 
down. Thus, the importance of older drugs, such as colistin, 
is increasing. However, the colistin resistance rate seems to 
be increasing, and information on the colistin resistance 
mechanism is limited. In addition to colistin resistance, ab-
normal phenomena such as colistin dependence have been 
found; however, there are few studies on colistin depen-
dence. To cope with the antibiotic resistance era and use 
colistin effectively, a wide range of studies on colistin resis-
tance and dependence should be performed.
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