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ABSTRACT
Chronic insomnia disorder is the most widely reported clinical condition in medicine. It 
has a significant impact on populations and is characterized by chronically disturbed 
sleep and sleep loss, non-refreshing sleep, and heightened arousal in bed. Poor sleep is 
associated with a wide range of negative health outcomes, and it is reported that poor-
er quality of life and medical, neurological, and psychiatric comorbidities disrupt sleep. 
Sleep difficulties may result from multiple etiologies; however, the neurobiological 
mechanisms underlying chronic insomnia disorder are not sufficiently understood. Re-
cently, numerous neuroimaging studies have been conducted to investigate the struc-
tural or functional derangement in the brains of patients with chronic insomnia disor-
der. The development of neuroimaging techniques has provided insight into the 
pathophysiological mechanisms that make patients with chronic sleep disturbances 
vulnerable to cognitive impairment. 
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INTRODUCTION
Chronic insomnia disorder (CID), a clinical condition, is characterized by the subjective experi-
ence of chronically disturbed sleep and sleep loss, and there is evidence of conditioned sleep 
difficulties and/or heightened arousal in bed [1]. These patients often present with difficulties 
falling asleep and maintaining sleep, and experience significant daytime consequences such 
as fatigue, sleepiness, and poor psychosocial function. In addition, patients with CID common-
ly have cognitive impairments and deficits in memory consolidation during sleep compared to 
that in good sleepers [2,3]. However, the neuroanatomical correlates of these symptoms and 
signs have not been clearly elucidated. Recent magnetic resonance imaging (MRI) studies pro-
viding a unique in vivo assessment of brain structural integrity have suggested that CID is asso-
ciated with cortical and subcortical morphology alteration, which allow for an explanation of 
the characteristics of CID [4-9]. 
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 Brain morphometry using high resolution T1-weighted 
MRI has revealed anatomical brain changes associated with 
insomnia. Previous studies have considered the hippocam-
pus as an important target of pathogenesis in CID [6,10,11]. A 
negative correlation between cognitive decline and hippo-
campal atrophy was reported in CID patients [9]. The frontal 
lobe and cingulate gyrus have been morphometrically evalu-
ated in chronic insomnia [12]. Nevertheless, inhomogeneous 
patient brain compositions and different parameters and 
technologies had yielded inconsistent results across the 
studies. The current article summarizes the significant find-
ings that localize cortical and subcortical changes associated 
with the characteristics of CID. 

EXPLORING THE CORTEX 

It is well-known that structural imaging may identify the ana-
tomical substrates underlying disease-specific symptoms 
and signs in the field of neurology. Although MRI scans of in-
dividual patients with CID appear normal upon visual inspec-
tion, group analyses using diverse imaging techniques may 
reveal the specific changes in the brains. A number of mor-
phometric studies were performed in insomnia patients us-
ing conventional high-resolution T1-weighted magnetic res-
onance images to quantify the size of specific brain struc-
tures. Among numerous methodologies, voxel-based mor-
phometry (VBM) is the most popular automated technique 
as it provides a comprehensive assessment of anatomical 
differences throughout the brain [13,14]. The first optimized 
VBM study revealed that patients with CID had gray matter 
deficits in the left orbitofrontal cortex and precuneus com-
pared to that of controls [15]. Optimized VBM has a signifi-
cant circularity problem since the registration requires an ini-
tial tissue classification and vice versa [16]. In contrast, Sta-
tistical Parametric Mapping 8 (SPM8)-based VBM has updat-
ed a registration method termed Diffeomorphic Anatomical 
Registration Through Exponentiated Lie algebra, which is a 
more sensitive means of identifying differences in gray mat-
ter and white matter [16]. Thus, SPM8-based VBM provides 
more accurate localization than does optimized VBM in 
terms of supporting precise intersubject alignment and seg-
mentation performance throughout the iterative unified 
model [16,17]. 
 The first VBM study reported smaller gray matter volumes 
in the left orbitofrontal and parietal cortices in insomnia pa-
tients and a negative correlation between the orbitofrontal 
gray matter and insomnia severity, without any correlation 

with mood ratings [15]. A subsequent study [18] reported an 
increased volume of the rostral anterior cingulate cortex us-
ing FreeSurfer (Athinoula A. Martinos Center for Biomedical 
Imaging; http://www.freesurfer.net), an automated program 
for measuring the volume of brain structures [19]. However, 
this finding was not duplicated by one study using both the 
same methodology and VBM [6], and by two other studies 
using VBM [7,15]. Another study using the SPM8-based VBM 
method observed a significant reduction of the gray matter 
concentration in the left and right dorsolateral prefrontal 
cortices, pericentral cortex, and superior temporal gyrus 
compared to that in controls with a cluster threshold of 100 
voxels at the level of uncorrected P<0.001. When a cluster 
threshold of more than 50 voxels was applied, the gray mat-
ter concentration was found to be decreased in the larger 
brain areas with the same anatomical coordinates as the re-
sults of the cluster threshold of 100 voxels, and was also ob-
served to be decreased in the medial frontal gyri and cere-
bellum (Fig. 1) [5]. Gray matter deficits in the dorsolateral 
prefrontal cortex were related to attention deficit, frontal 
lobe dysfunction, and nonverbal memory decline in patients 
with CID, which might be associated with poorer sleep. More-
over, reduced gray matter concentrations in the left or right 
frontal cortices were significantly related to insomnia severi-
ty, longer sleep latency, or longer duration of wakefulness af-
ter sleep onset (WASO) (Fig. 2) [5]. This finding suggests that 
disturbed nocturnal sleep has a harmful effect on the frontal 
cortex of CID patients. 
 A previous VBM study identified the areas exhibiting only 
gray matter volume reduction in patients with chronic in-
somnia [15]. Thus, the two previous studies observed de-
creases in both gray matter concentrations and volumes, and 
the brain regions exhibiting volume changes were much 
smaller than those exhibiting concentration reduction. In op-
timized VBM, gray matter concentration in the local unit (i.e., 
voxel) can be transformed to the gray matter volume through 
the commonly known “modulation” process while account-
ing for regional stretching and compression occurring during 
coregistration [20]. The gray matter concentration is typically 
interpreted as gray matter tissue density relative to white 
matter, whereas gray matter volume is interpreted as abso-
lute volume regardless of white matter [21]. Quantifying 
these two measures does not necessarily lead to overlapping 
results due to their different underlying properties but rather 
complements aspects of brain structural alterations [20].
 Although it is unclear whether gray matter reductions are a 
preexisting abnormality or a consequence of insomnia, gray 
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matter reduction as well as a lack of sleep or poorer sleep 
quality in the patients with insomnia might be responsible 
for the clinical features and cognitive dysfunction in chronic 
insomnia. 
 There has been an increase in the number of studies exam-
ining the corticocortical structural covariation network that is 
derived from correlational analysis of morphometrics be-
tween multiple cerebral regions [22-25]. Structural covariance 
may indicate altered neural connectivity resulting from rela-

tively long-term processes such as neurodevelopment [26] or 
neurodegeneration [27]. Analyses of cortical thickness indeed 
demonstrated structural covariance within regions of the de-
fault mode network (DMN) with healthy aging [28]. In 60 se-
lected patients with persistent insomnia symptoms from a 
population-based cohort study, significant cortical thinning 
was observed in both hemispheres of patients with insomnia 
compared to that in controls (left: 2.61±0.13 mm vs. 2.66±
0.11 mm, P<0.05; right: 2.60±0.14 mm vs. 2.67±0.12 mm, 

Fig. 1. Voxel-based morphometry indicating a decrease in the gray matter concentration (GMC) in patients with chronic insomnia disorder 
(CID) compared to that in healthy controls. (A) The GMC was significantly decreased in CID patients (uncorrected at P<0.001, two-sample 
t-test) in the right superior frontal gyrus, left orbitofrontal gyrus, right inferior frontal gyrus, right medial frontal gyrus, right middle frontal 
gyrus, right precentral gyrus, and left postcentral gyrus coronal view; (B) left postcentral gyrus, left inferior frontal gyrus, right middle 
frontal gyrus, right inferior frontal gyrus, right superior temporal gyrus, left middle frontal gyrus, left cerebellum, right superior frontal 
gyrus, and left medial frontal gyus sagittal view; and (C) left postcentral gyrus, right middle frontal gyrus, right precentral gyrus, left inferior 
frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, right superior temporal gyrus, left middle frontal gyrus, and left 
medial frontal gyrus axial view. (D) The overall areas with reduced GMCs are indicated in a three-dimensional brain surface rendering view. 
The results were displayed with a cluster threshold of >50 voxels. The scales in the color bar are t scores. The left side of the images 
represents the left hemisphere of the brain. Adapted from Joo et al., with permission from Oxford University Press [5]. 
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P<0.01) [8]. Regional analyses revealed that cortical thinning 
was circumscribed to the left medial frontal cortex, bilateral 
precentral cortices, and right lateral prefrontal cortex, which 
was a similar pattern of gray matter decreases as that in the 
VBM study. Additional analysis of corticocortical morphologi-
cal covariance demonstrated that insomnia patients only dis-
played a significant correlation of the medial frontal cortex 
with most of the frontal cortices, while high covariance (r>0.5, 
false discovery rate [FDR] <0.001) with the medial frontal cor-
tex seed including the prefrontal cortex, precuneus, and later-

al parietal cortex as well as scattered clusters in the temporal 
lobe was observed in controls. This analysis revealed that 
morphological alterations in the persistent insomnia group 
were circumscribed to multiple cortices, primarily the frontal 
and parietal cortices, and structural covariance was disrupted 
in the link between these two cortices in insomnia patients. 
This seems to be the most comprehensive structural imaging 
study of insomnia, demonstrating anatomical alterations and 
disrupted structural connectivity, as well as the implications 
on cognitive function and sleep quality. This study suggests 

Fig. 2. Correlation between brain cortical regions with the characteristics of patients with chronic primary insomnia. (A) A negative 
correlation was observed between the gray matter concentration (GMC) in the left middle frontal gyrus and the Insomnia Severity Index 
(r=–0.613, P=0.014), (B) between the GMC in the right postcentral gyrus and the sleep latency (r=–0.411, P=0.019), and (C) between the GMC 
in the right precentral gyrus and wakefulness after sleep onset (r=–0.443, P=0.018). The confounding factors of age, sex, and intracranial 
volume were controlled. Adapted from Joo et al., with permission from Oxford University Press [5]. 
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that patients with persistent insomnia symptoms present 
with altered structural connectivity mainly within regions of 
the DMN that reduces their capacity to perform the normal 
transition to sleep, accompanied by a functional disconnec-
tion between the anterior and posterior regions of the DMN. 
This altered connectivity may further contribute to the sus-
tained sleep difficulties and cognitive impairment commonly 
reported by insomnia patients [8]. 
 

EXPLORING THE SUBCORTICAL STRUC-
TURE

The negative association of disturbed sleep with perfor-
mance on memory tasks [2,29,30] implicates hippocampal 
dysfunction in patients. Thus, there have been controversial 
findings concerning hippocampal volume in human insom-
nia studies. A previous pilot study found that the bilateral 
hippocampal volume was significantly lower in CID patients 
than in good sleepers [11]. In contrast, a recent study did not 
find any objective differences in the hippocampal volumes of 
CID patients, although some patients with sleep mainte-
nance problems were found to have smaller hippocampal 
volumes, as determined by wrist actigraphy [18]. Although 
the authors found a significant correlation between reduced 
volumes in the bilateral hippocampi and poor sleep efficien-
cy and increased WASO in those CID patients. The most re-
cent study [4] reported that CID patients did not exhibit any 
definitive differences in intracranial volumes or in absolute 
and intracranial volumes to normalized hippocampal vol-
umes compared to controls. However, a significant correla-
tion was noted between the bilateral hippocampal volume 
and the duration of insomnia (left: r=–0.872, P<0.001; right: 
r=–0.868, P<0.001) and the arousal index of polysomnogra-
phy (left: r=–0.435, P=0.045; right: r=–0.409, P=0.026) in pa-
tients [4]. In addition, they exhibited significantly impaired 
attention, frontal lobe function, and memory, and their ver-
bal and nonverbal memory scores were positively correlated 
with the hippocampal volume. Another study did not reveal 
any statistical differences in hippocampal volumes between 
patients and controls [6]. These conflicting results regarding 
hippocampal volume may be related to the different ana-
tomical landmarks to delineate the boundary of the hippo-
campus and different subsets of patients examined in the 
studies [4]. In particular, we observed that the left and right 
hippocampal volumes in insomnia patients were significant-
ly and negatively correlated with the duration of insomnia 
and suggested that a longer duration of insomnia might neg-

atively influence hippocampal function and volumes. These 
methodological or demographic inconsistencies always exist 
in neuroimaging studies, and well-standardized study proto-
cols are required in multicenter trials to clarify the results. 
 Earlier hippocampal volumetry studies utilized manual 
delineation of the hippocampal boundary, which underlined 
the technical limitations of the low sensitivity of global hip-
pocampal volumetry and the variability of hippocampal seg-
mentation. To overcome these issues, automated subfield 
volumetry was developed and applied in the next study [7]. 
Vertex (=point)-wise morphometry [31-33] based on a sur-
face extracted from the manual segmentation of the whole 
hippocampus has been a surrogate to manual subfield volu-
metry. In 27 CID patients, a significant decrease was ob-
served in the hippocampal volume compared to controls 
(left: 2,980±283 mm3 vs. 3,197±337 mm3; right: 3,079±298 
mm3 vs. 3,247±404 mm3, P<0.05) [7]. This change was hemi-
spherically symmetric; asymmetry between patients and 
controls did not differ. This finding was line with those of the 
manual hippocampal volumetry studies [15,18]. In patients, 
hippocampal atrophy was identified in all subfields. The 
largest cluster of atrophy was detected at the level of the hip-
pocampal body and tail (FDR <0.005, 200 vertices) and was 
located medially, mainly within the region corresponding to 
the combined region of cornu ammonis (CA)2−4 and the 
dentate gyrus (DG) (Fig. 3A) [7]. Atrophy at the level of the 
head was present on the superomedial surface correspond-
ing to the CA1 region (FDR <0.05, 58 vertices). Hippocampal 
subfield atrophy in CID suggests reduced neurogenesis in the 
DG and neuronal loss in CA subfields in conditions of sleep 
fragmentation and the related chronic stress condition of in-
somnia. Atrophy in the CA3−4-DG region was associated with 
impaired cognitive function in patients (Fig. 3B), and these 
observations suggest that patients with chronic sleep distur-
bance are vulnerable to cognitive impairment.
 A recent study exploring the morphological changes in sub-
cortical structures demonstrated that local shape changes in 
the putamen were associated with higher arousal indices of 
polysomnography in CID [9]. In patients, atrophic changes in 
the hippocampus were associated with delayed correct re-
sponse times in a Stroop word test, decreased phonemic word 
fluency in a Controlled Oral Word Association Test (COWAT), 
and lower Korean California Verbal Test (KCVLT) total scores. 
Amygdala atrophy was correlated with lower KCVLT short-de-
lay free recall and recognition. Moreover, shape analysis of 
subcortical structures revealed that that lower sleep quality 
and a higher arousal index were associated with a greater 
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number of atrophic changes in the hippocampus and putamen, 
and atrophic changes in the basal ganglia and thalamus were 
related to cognitive decline in neuropsychological domains 
(Fig. 4). These findings suggested that sleep disturbances in in-
dividuals with chronic insomnia are related to cognitive im-

pairment consistent with the alteration of frontal-subcortical 
circuits. Additionally, this surface-based shape analysis meth-
od is useful in the localization of subcortical changes that are 
associated with cognitive decline in patients with CID.

Fig. 3. Vertex-wise group comparison between patients with chronic insomnia disorder and healthy controls. (A) Regions of volume decrease in 
patients relative to controls are presented. The significance threshold was set at false discovery rate <0.059. (B) A negative association was found 
between the hippocampal subfield volume and clinical (upper) and neuropsychological (lower) parameters in patients with chronic insomnia 
disorder. For each cluster representing significant volume loss in patients relative to controls, its mean volume is correlated with a given clinical or 
neuropsychological parameter while controlling for age, sex, and depressive mood. Linear regression models were plotted for significant 
correlations. Adapted from Joo et al., with permission from Oxford University Press [7]. CA, cornu ammonis; DG, dentate gyrus; FDR, false discovery 
rate; PSQI, Pittsburgh Sleep Quality Index. 
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CONCLUSION 

Sophisticated neuroimaging techniques allow for the in vivo 
visualization of human brain anatomy with exquisite detail 
and the quantification of morphological changes. Compre-
hensive structural imaging studies demonstrated anatomical 
alterations in the frontal cortex, hippocampus, temporal cor-
tex, or cingulate, and disrupted structural connectivity ex-
plaining the cognitive dysfunction and poor sleep quality of 
CID. Additionally, volumetry and subfield shape analysis iden-
tified atrophic changes in the hippocampus and putamen, 
which provided evidence for the pathophysiological mecha-
nisms underlying the susceptibility of patients with CID to 
cognitive impairment. Advancements in imaging technology 
and software in larger, longitudinal studies may enable us to 
better understand CID and related disorders.
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