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Abstract
Despite recent advancements in plant molecular biology and
biotechnology, providing food security for an increasing world population
remains a challenge. Drought (water scarcity), salinity, heat, and cold stress
are considered major limiting factors that affect crop production both
qualitatively and quantitatively. Therefore, the development of cost-effective
and environmentally friendly strategies will be needed to resolve these
agricultural problems. This will require a comprehensive understanding of
transcriptomic alterations that occur in plants in response to varying levels
of environmental stresses, singly and in combination. Here, we briefly
discuss the current status and future challenges in plant research related to
understanding transcriptional changes that occur in response to drought,
salinity, heat, and cold stress.
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Introduction
Adverse environmental conditions such as unfavorable tem-
peratures (high or low), drought stress/water shortage, and salt 
stress negatively affect agricultural production and reduce crop 
yield, both qualitatively and quantitatively. Increases in tem-
perature and water scarcity are predicted to occur as an outcome 
of climate change and thus will pose a serious challenge to agri-
cultural production worldwide. Understanding the molecular  
response of plants to abiotic stresses and using this knowl-
edge to develop crop plants that can adapt to and maintain 
high yields under these adverse environmental conditions has 
always been a major objective for molecular breeders1–7. Despite  
concerted efforts and significant discoveries, the challenge still  
persists, highlighting its complexity and the need to develop novel 
approaches to ameliorate the damage resulting from environ-
mental stress. Some plant species have the ability to successfully 
survive in challenging environments by evolving complex and  
integrated cellular or physiological processes that are controlled 
by regulatory and functional genes. It may be difficult, however, 
for plants to respond to the rapid changes occurring because of  
climate change as evolution is a gradual process.

Despite a comprehensive knowledge of the mechanisms gov-
erning cellular responses to abiotic stresses, our understand-
ing of stress signal perception during the early stages of abiotic 
stress response is relatively poor8. Transcriptomic analyses have 
provided an in-depth knowledge of the cellular and molecu-
lar responses underlying plant adaptation to environmental  
stresses9–12.

Transcriptomic changes under drought, salinity, cold, 
and heat stress
Abiotic stresses trigger significant molecular and physiological 
changes in plants, including quick transcriptomic and metabolic 
adjustments, adjustments in osmotic potential, reduction of leaf 
turgor pressure, and ultimately the slowing down or cessation of 
plant growth13,14. The reduction in growth may affect some tissues 
more severely than others. For example, while shoot growth 
is severely inhibited in response to drought stress, roots may 
continue to grow in an effort to increase water absorption15,16.  
Roots of soil-grown Arabidopsis undergo a greater diversity of 
transcriptomic changes compared with shoots in response to 
drought stress conditions, revealing several novel candidate genes 
that might regulate root response to drought stress11,17. These 
studies indicate that plant tissues that initially sense changes in  
environmental conditions may undergo a greater number of  
transcriptomic changes relative to tissues that subsequently sense 
or detect the stress at a later stage. For example, early stages of 
drought and salt stress principally affect roots whereas heat  
and cold stress may initially be sensed by shoots.

The expression of genes belonging to diverse functional and 
regulatory groups, such as transcription factors, protein kinases, 
and phosphatases1,9,11,18–21, are altered in response to abiotic 
stress conditions. Changes in the expression of genes encoding  
enzymes regulating osmolytes, late embryogenesis abundant 
(LEA) proteins, aquaporins, and reactive oxygen species (ROS)  
scavengers and chaperones that protect the integrity of cell mem-
branes and ensure the maintenance of ion transport and balances 

are also variably observed in response to different abiotic 
stresses. Moreover, small peptides, plant hormones, and non-
coding RNAs that regulate gene expression and signal transduc-
tion act as major players and key components in the mechanisms 
underlying abiotic stress response9,22–24. Plant hormones, such 
as abscisic acid (ABA), play an integral role in plant response to  
various types of abiotic stresses, including salt stress, drought 
stress, and extreme temperatures. A common factor among 
these stresses is that they all induce osmotic stress in plant  
cells25. Intracellular sensing and signal transduction of ABA 
result in the activation of downstream effectors, including tran-
scription factors and ion channels, which implement important  
adaptive responses, such as stomatal closure, osmoprotectant 
synthesis, and the induction of a broad range of stress-responsive 
genes, that allow plants to withstand reduced water availability25. 
ABA biosynthesis and its transport and accumulation all increase 
in plant tissues in response to water deficit/water deficiency/
dehydration conditions and other abiotic stresses, providing the 
ability of plants to adapt to the stress by regulating the inter-
nal water status in plants26. ABA-independent responses to  
various abiotic stresses are also crucial and are regulated mainly 
by dehydration-responsive element/C-repeat (DRE/CRT) and 
DRE-/CRT-binding protein 2 (DREB2) transcription factors27.  
Recently, the role of peptide hormones and small open read-
ing frames (sORFs) in regulating the plant response to different 
abiotic stresses, such as drought and salt stress, has been  
reported12,23,24,28. The role of non-coding RNAs has also been 
extensively examined in recent years29. These RNAs play a func-
tional role in diverse plant responses, such as the regulation of 
transcription, splicing and nuclear structure, and epigenomics. 
Thus, care should be taken to choose a technology platform that 
provides the ability to monitor changes in sORFs, non-coding  
RNAs, and so on when designing experiments to study plant 
response to environmental stress.

Alternative splicing may allow the synthesis of more than one 
kind of protein from the same gene when splice sites are differ-
entially recognized and more than one transcript, and potentially 
multiple proteins, are generated from the same pre-mRNA25.  
Different RNA sequence elements are associated with the 
potential for alternate splicing; however, changes in chromatin 
structure, histone modifications, and regulation of transcription 
rates also play important roles in alternate splicing18,25,30–32. The 
alteration of histone modifications and DNA methylation in plants 
that is associated with adaptation to environmental changes is 
coordinated with changes in the expression of stress-responsive 
genes. Several chromatin modifications in plants, such as 
acetylation, methylation, phosphorylation, and SUMOylation, 
occur in response to drought, salinity, and both high and low  
temperature18. Thus, a comprehensive understanding of these 
changes would increase the ability to develop precise strategies 
for fine tuning the genome to increase stress tolerance in crop  
plants.

Factors to consider while generating and using 
transcriptomic data
The above discussion provides a brief overview of transcrip-
tomic alterations affecting abiotic stress tolerance and adapt-
ability in plants in response to different environmental cues. 
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Importantly, however, there is the question of how the available 
transcriptomic data and the discovery of new factors and  
elements can be used to produce crop plants that are more resil-
ient to abiotic stress. Besides generating additional unique  
datasets, the current major challenge is how the existing data can 
be used for crop improvement. The major approach to obtain-
ing transcriptomic information over the past two decades has  
been through microarray analysis, which still represents a  
suitable approach based on the ease of data analysis, informa-
tion handling, and cost-effectiveness. Tilling or customized 
arrays (or both) allow one to delve deeper in the plant genome,  
providing information on non-coding RNAs, sORFs potentially 
coding small peptides, and other transcriptional elements in  
different crops9,33,34. RNA sequencing (RNA-seq) analysis, how-
ever, is gradually becoming the method of choice because of its 
ever-increasing cost-effectiveness, availability of more in-depth 
data analysis tools, its suitability for focusing on alternate 
splicing, and its ability to examine the whole genome. Thus, 
RNA-seq analysis, which provides precise information on 
the transcriptomic changes that occur in response to abiotic 
stress, is now the method of choice for the majority of plant  
scientists35–38.

In addition to the technical aspects associated with transcrip-
tomic studies, other factors should be considered in order to 
advance our understanding of abiotic stress tolerance mecha-
nisms in plants. Transcriptomic data can be used to identify novel 
genes and promoters11,39,40. In this regard, genes whose function 
has not yet been determined could be comprehensively studied 
to reveal their functional roles under different stress conditions.  
These data could also be used to identify genetic markers that 
would advance the tools available for marker-assisted breed-
ing. Such knowledge could also be used to identify cost-effective  
and environmentally safe chemicals, such as acetic acid and  
ethanol, that enhance drought and salt stress tolerance39,41.

Plants may respond differently to the same abiotic stress at dif-
ferent developmental stages in their life cycle. For example, plant 
response to abiotic stress may be significantly different during 
their vegetative versus reproductive stages of growth. The sever-
ity of the applied stress should also be taken into account when 
analyzing or using generated data. Moderate and long-term 
drought stress may only partially trigger specific genes compared 
with a severe and rapid drought stress. Even data collected at dif-
ferent time points during the same stress can be significantly  
different11 as transcriptional changes in response to abiotic 
stress are also regulated by diurnal rhythms42,43. An Arabidopsis  
circadian oscillator is regulated by light, temperature, changes 
in metabolite concentrations such as sugars, hormones such as  
ethylene, and ions such as Ca2+44. As these factors change in 
response to the abiotic stresses discussed above, the expression 
of circadian oscillator–related genes is also subject to change in 
response to these stresses. The combined effect of temperature and 
day length shapes the dynamics of the Arabidopsis halleri tran-
scriptome and adaptation to seasonal changes in a natural habitat45  
and it seems reasonable to predict that crop plants would respond 
in a similar manner.

Recent advances indicate that not only different tissues but  
different cells within the same tissue may exhibit a different  
transcriptomic profile, highlighting the necessity of single-cell  
transcriptomic analyses46. This variation between cells may be due 
to the phenomenon that genes are not continuously transcribed 
but rather undergo short intervals of “on” and “off” states, thus  
making transcriptional monitoring difficult46. Single-cell tran-
scriptomic data analysis, such as evaluating the unsupervised 
clustering of single-cell RNA-seq data which is used to identify 
putative cell types, is also particularly challenging47. Individual  
cells in Arabidopsis roots and embryos have been profiled,  
providing a comprehensive overview of the transcriptome and 
revealing the diversity in gene expression among cell types  
across different developmental stages48,49. These examples indi-
cate that, despite technical difficulties, single-cell analysis  
could enhance the reliability of transcriptomic comparisons 
among different plant species by addressing the variation present 
in tissues or organs (or both)50. In the future, a greater effort 
will be needed to uncover differences in gene expression among  
tissues and cells, particularly in response to abiotic stress.

Future prospects
A significant amount of transcriptomic data obtained from model 
plants is already available, so there is a distinct need to focus 
on crop plants (Figure 1). Several groups have used RNA-seq 
analysis in recent years to investigate transcriptional changes 
in different crop plants and a few examples will now be dis-
cussed. Comparative transcriptome analysis of several chickpea 
genotypes at different developmental stages identified the upreg-
ulation of 4954 genes in drought-tolerant and 5545 genes in  
salinity-tolerant genotypes51. A similar study used an RNA-seq 
approach to identify differentially expressed genes in cold- 
tolerant and cold-sensitive varieties of sorghum in response to 
cold stress and control conditions52. Abiotic stresses altered the 
transcriptome of poplar through alternative splicing, differen-
tial intron retention, and isoform ratio switching in a stress- or  
tissue-specific manner (or both)53. RNA-seq analysis in rice 
revealed the upregulation of genes encoding heat shock  
proteins and heat shock factors during anthesis and the down-
regulation of genes, such as transcription factors, or genes 
related to signal transduction and metabolic pathways in a heat-
tolerant rice cultivar compared with a heat-sensitive cultivar54.  
Genes potentially related to heat stress tolerance in spinach 
have also been identified55. Several studies focused on wheat 
and triticale transcriptional or metabolic changes (or both) to 
elucidate the stress response mechanisms56–58. Transcriptome 
profiling has also revealed temporal changes in the expres-
sion of genes that contribute to heat and drought acclimation in  
wheat (Triticum aestivum L.)59. Comparison of the genomes of 
different pearl millet varieties could serve as a resource for the 
improvement of stress tolerance in arid environments60. The  
creation and maintenance of databases focusing on a particular 
group of genes have also been reported. A rice kinase database  
(RKD) provides the ability to access metadata obtained from 
National Center for Biotechnology Information Gene Expres-
sion Omnibus (NCBI GEO) expression datasets, thus facilitating 
the in-depth transcriptomic analysis of kinase-encoding genes in 
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diverse rice tissues and in response to biotic and abiotic stresses 
and hormone treatments61. Transcriptional databases cover-
ing various developmental stages and the response to various 
stresses have also been maintained for crops such as rice62,  
wheat, barley, maize, potato, tomato, grapes, peanut, straw-
berry, and poplar63,64. Importantly, transcriptomic information 
obtained from plants grown on Murashige and Skoog (MS) 
medium and hydroponic solutions and in soil in response to  
different stress conditions is significantly different62. Several 
groups have monitored transcriptomic changes in crop plants  
under field conditions62,65; however, a greater effort is needed 
to obtain data on plant response to abiotic stress factors under 
field conditions at different developmental stages to obtain 
broad-spectrum applicability of the observed changes in gene 
expression that could be used to produce crops that are more  
resilient to abiotic stress. This approach would help to iden-
tify and regulate genes that have the ability to impact stress  
tolerance under diverse environmental conditions. Moreover, con-
firmation of transcriptomic changes by other -omic technologies, 

such as metabolomics66 and proteomics67, could significantly 
improve the reliability and applicability of transcriptomic data,  
thus leading to the development of sustainable solutions. The 
utilization of such information would greatly facilitate the  
ability to address the challenges posed by climate change and 
speed up the efforts to breed crop plants that can maintain high  
yields under limiting growing conditions.
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Figure 1. Transcriptomic analysis under drought, salinity, heat, and cold stress. The focus of research is shifting from model plants to 
field crops; from whole plants to tissue and single-cell analysis; from functional and regulatory proteins to non-coding RNAs, small peptides, 
and post-transcriptional and epigenomic regulation; from laboratory conditions to field conditions; and from microarray to RNA sequencing 
(RNA-seq) analysis.
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