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Whole-genome sequencing (WGS) will soon replace traditional phenotypic methods
for routine testing of foodborne antimicrobial resistance (AMR). WGS is expected to
improve AMR surveillance by providing a greater understanding of the transmission of
resistant bacteria and AMR genes throughout the food chain, and therefore support risk
assessment activities. At this stage, it is unclear how WGS data can be integrated into
quantitative microbial risk assessment (QMRA) models and whether their integration will
impact final risk estimates or the assessment of risk mitigation measures. This review
explores opportunities and challenges of integrating WGS data into QMRA models that
follow the Codex Alimentarius Guidelines for Risk Analysis of Foodborne AMR. We
describe how WGS offers an opportunity to enhance the next-generation of foodborne
AMR QMRA modeling. Instead of considering all hazard strains as equally likely to cause
disease, WGS data can improve hazard identification by focusing on those strains
of highest public health relevance. WGS results can be used to stratify hazards into
strains with similar genetic profiles that are expected to behave similarly, e.g., in terms
of growth, survival, virulence or response to antimicrobial treatment. The QMRA input
distributions can be tailored to each strain accordingly, making it possible to capture the
variability in the strains of interest while decreasing the uncertainty in the model. WGS
also allows for a more meaningful approach to explore genetic similarity among bacterial
populations found at successive stages of the food chain, improving the estimation of
the probability and magnitude of exposure to AMR hazards at point of consumption.
WGS therefore has the potential to substantially improve the utility of foodborne
AMR QMRA models. However, some degree of uncertainty remains in relation to
the thresholds of genetic similarity to be used, as well as the degree of correlation
between genotypic and phenotypic profiles. The latter could be improved using a
functional approach based on prediction of microbial behavior from a combination of
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‘omics’ techniques (e.g., transcriptomics, proteomics and metabolomics). We strongly
recommend that methodologies to incorporate WGS data in risk assessment be
included in any future revision of the Codex Alimentarius Guidelines for Risk Analysis
of Foodborne AMR.

Keywords: next-generation sequencing, risk analysis, genomic epidemiology, food safety, public health,
antimicrobial resistance

INTRODUCTION

Antimicrobial resistance (AMR) represents a major threat to
public health, with an estimated 700,000 deaths attributable
to AMR every year in the world, and a projected 10 million
deaths per year by 2050 in the absence of additional
control measures (O’Neill, 2014). AMR is believed to cost
approximately 55 billion USD each year in the United States,
and some argue this value is underestimated (Smith and
Coast, 2013). AMR has been identified as a key priority
of the United Nations, as reaffirmed at the General
Assembly held in September 2016 where international
organizations including the World Health Organization,
the Food and Agriculture Organization of the United
Nations, and the World Organisation for Animal Health
committed to fight AMR together and further collaborate
on the implementation of the Global Action Plan on AMR
(World Health Organization [WHO], 2015a).

Humans are exposed to antimicrobial-resistant bacteria
via food consumption, as well as through animal contact, the
environment (including water) and person-to-person contact
(Holmes et al., 2016). The presence of antimicrobial-resistant
bacteria in food can be due to the use of antimicrobials
during agricultural production, to the survival of an
antimicrobial-resistant bacteria strain in the food chain
(despite little or no antimicrobial use), to the addition of
technological bacteria (e.g., starter cultures, probiotics)
containing AMR genes (Christoph et al., 2018) or to cross-
contamination with antimicrobial-resistant bacteria during
food processing and handling (Verraes et al., 2013). The
European Food Safety Authority (EFSA) suggests that AMR
in food can be addressed either as a direct or an indirect
hazard (European Food Safety Authority [EFSA], 2008).
A direct hazard refers to the presence of an antimicrobial-
resistant pathogenic bacterium in or on food that can
colonize or infect people after food ingestion or handling.
An indirect hazard is defined as an antimicrobial-resistant
bacterium that may transfer resistance genes to a bacterium
pathogenic to humans, either directly, or via another
commensal bacterium. The AMR gene is the hazard of
interest in this case. A bacterium may present both a direct
and indirect hazard, e.g., when the AMR gene(s) is carried on
a potentially transferable element, such as Salmonella carrying
plasmid borne extended-spectrum beta-lactamase (ESBL)
resistance (European Food Safety Authority [EFSA], 2008).
The relative importance of exposure via food versus other
routes of transmission is difficult to assess, with major data
gaps preventing accurate source attribution of the human

burden of AMR (Pires et al., 2018). However, food is likely
to be a major route of exposure to antimicrobial-resistant
bacteria for common foodborne pathogens, e.g., Salmonella
or Campylobacter (Newell et al., 2010). AMR has been
recognized as a foodborne concern since the early 2000s
and consequently a number of national food safety authorities,
mainly from high-income countries, have implemented routine
surveillance of AMR in food (World Health Organization
[WHO], 2014). Until recently, AMR surveillance was based
on phenotypic methods for antimicrobial susceptibility testing
(AST), involving culture on selective or non-selective agar
plates, isolation of pure bacterial colonies and subsequent
use of disc diffusion, broth dilution, gradient test or other
similar methods to determine the inhibition zone diameter
or the minimum inhibitory concentration (MIC) for a panel
of antimicrobials; the zone diameters or MIC values were
subsequently assessed against clinical breakpoints to determine
if a bacterial isolate was susceptible or resistant to different
antimicrobials (Anjum, 2015).

With the decreasing costs and increasing rapidity
and reliability of sequencing technologies, the uptake of
next-generation sequencing and especially whole-genome
sequencing (WGS) by public health and food safety laboratories
has ramped up in recent years, and these new methods are
set to replace traditional phenotypic methods for routine
surveillance of AMR and other food safety hazards in the
near future (Taboada et al., 2017; Oniciuc et al., 2018). In
typical WGS protocols, following DNA extraction and shearing
into a pool of DNA fragments (i.e., a library) representing
the totality of the genome, the library is sequenced in a
set of massively parallel sequencing reactions and these are
analyzed in a sequencing instrument that can determine the
DNA sequence for each fragment in the library (Heather
and Chain, 2016). These fragments are later assembled
into a draft or complete genome that can be used for
further analysis, including gene prediction and annotation
(e.g., identification of genes in the genome), comparative
genomics (e.g., identification of genome variability, including
single nucleotide, allelic variants and differences in gene
content) and evolutionary analysis (e.g., generation of trees
to depict the evolution of an organism) (Ronholm et al.,
2016). A survey conducted by EFSA in 2016 showed that
17 out of 30 European countries already had capacity
to perform WGS of foodborne pathogens and 22% of
interviewed laboratories had ongoing routine activities
involving WGS (European Food Safety Authority [EFSA],
2018). In the United States, the National Antimicrobial
Resistance Monitoring System (NARMS) is performing routine
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WGS analysis of Salmonella and Campylobacter, in addition
to some sequencing of resistant strains of Escherichia coli
and Enterococcus collected from food-producing animals,
retail meats and humans (Food and Drug Administration,
2018). Similarly, Canada recently implemented routine
use of WGS for surveillance of Listeria monocytogenes,
Salmonella (since 2017) and E. coli (since 2018) collected
from agri-food samples and human clinical isolates
(Public Health Agency of Canada, 2018).

In addition to in silico speciation and sub-species level
differentiation of isolates (i.e., subtyping), as well as a
description of the molecular mechanisms underlying observed
resistance phenotypes, the use of WGS is expected to assist
AMR surveillance by providing a greater understanding of
the transmission of AMR bacteria and genes throughout
the food chain, and therefore support risk assessment of
foodborne AMR (Food and Drug Administration, 2018; Public
Health Agency of Canada, 2018). Quantitative microbial risk
assessment (QMRA) models are typically based on the Codex
Alimentarius principles for the conduct of microbiological
risk assessment and provide a transparent and science-based
approach to identify and assess a chain of events that affect
the frequency and amount of a microorganism to which
humans are exposed through the consumption of food and
to describe the magnitude and severity of the adverse health
effects from that exposure (Codex Alimentarius, 1999). Basic
steps include hazard identification, exposure assessment,
hazard characterization and risk characterization (Codex
Alimentarius, 1999). In 2011, Codex Alimentarius released
specific Guidelines for Risk Analysis of Foodborne AMR
(Codex Alimentarius, 2011). These Guidelines, as well as
other risk assessment approaches, have been applied to
a number of QMRA models of foodborne AMR in the
past (McEwen, 2012; Caffrey et al., 2018). All of these
models, as well as the Codex Alimentarius Guidelines,
were developed prior to the WGS era, and therefore did
not include or consider WGS data. Consequently, it is
unclear at this stage how WGS data can be integrated
into QMRA models of foodborne AMR, and how their
integration will impact the QMRA approach and resulting
risk estimates compared to using, for example, phenotypic
data. Several review papers have addressed the potential
use of ‘omics’ data (including genomics, metagenomics,
transcriptomics, proteomics and metabolomics) for next
generation QMRA (Brul et al., 2012; Bengtsson-Palme, 2017;
Den Besten et al., 2018; Haddad et al., 2018; Rantsiou et al.,
2018). They included a diversity of genomic techniques
and microbial hazards; however, none have explicitly
focussed on the use of WGS for QMRA of foodborne
AMR. In this literature review, we explore opportunities
and challenges of integrating WGS data into QMRA models
of foodborne AMR, following the framework proposed in
the Codex Alimentarius Guidelines (Codex Alimentarius,
2011). Throughout the text, readers are invited to refer to
Figure 1 that summarizes the key aspects presented in the
different sections of this review, as well as the connections
between sections.

HAZARD IDENTIFICATION

The purpose of hazard identification is to describe the
antimicrobial-resistant hazard of concern and evaluate and
present the evidence indicating that it is, in fact, a potential risk
(Codex Alimentarius, 2011). At this step, risk assessors review
literature and information from surveillance programs related
to the hazard of interest, typically an antimicrobial-resistant
microorganism and/or determinants (i.e., AMR genes) and
antimicrobial agents to which resistance is expressed (AMR
profile) in a given food commodity (Codex Alimentarius, 2011).

WGS and AMR Profile
WGS and AMR Genes
The use of WGS can refine the description of the AMR
profile of a hazard as traditionally provided by phenotypic
AST. Bioinformaticians have developed multiple tools to detect
the presence of AMR genes in an isolate by comparing
its sequence against known genes cataloged in a reference
database of known AMR determinants, such as ResFinder or
the Comprehensive Antibiotic Resistance Database (CARD).
This is typically done using homology-based algorithms such
as BLAST (Basic Local Alignment Search Tool) (Anjum, 2015;
McArthur and Tsang, 2017). Some prediction tools such as
ABRicate, ResFinder or the Search Engine for Antimicrobial
Resistance (SEAR) focus exclusively on the detection of acquired
AMR genes [i.e., genes acquired from other bacteria via
horizontal gene transfer or through the acquisition of mobile
genetic elements (MGEs)], while others such as the Antibiotic
Resistance Gene-ANNOTation (ARG-ANNOT), Antimicrobial
Resistance Identification By Assembly (ARIBA) or Resistance
Gene Identifier (RGI) also include resistance that occurred by
spontaneous mutation of the genes that encode antimicrobial
targets or drug transport systems (Hunt et al., 2017; McArthur
and Tsang, 2017). Provided the AMR reference gene database is
comprehensive and up-to-date, WGS can provide an exhaustive
list of AMR genes present in a given hazard, with no
restriction on the number of antimicrobial classes or agents
tested simultaneously (this number is typically restricted with
phenotypic AST techniques). Based on this detailed molecular
profile, the expected AMR phenotype, including the potential
for occurrence of multidrug resistance, can be predicted. Some
AMR reference gene databases such as CARD provide a list of
bacterial species where the AMR gene has been previously found
(Jia et al., 2016). Should the AMR gene(s) be selected as the hazard
of interest, this information can help risk assessors to define the
scope of bacterial species (including pathogenic or commensal
bacteria) to be considered as part of the QMRA.

WGS and AMR Genes Context
In general, AMR genes can be located either on bacterial
chromosomes or on MGEs, allowing AMR gene transmission via
clonal spread or horizontal transfer, respectively. MGEs include
factors which enable AMR genes to move within or between
DNA molecules within the same cell (i.e., insertion sequences,
transposons and gene cassettes/integrons), as well as factors
which enable AMR genes to be transferred between bacterial cells
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FIGURE 1 | Summary figure of the steps at which whole-genome sequencing (WGS) can contribute to improve quantitative microbial risk assessment (QMRA) of
foodborne antimicrobial resistance (AMR). White boxes represent steps of a farm-to-fork risk assessment as conventionally recommended by the Codex
Alimentarius Guidelines (Codex Alimentarius, 2011). Black boxes highlight areas where additional pieces of information may be provided by WGS data analysis. Solid
arrows: direct connections between elements of the QMRA. Dash arrows: additional connections to be considered in cases where AMR is addressed as an indirect
hazard (European Food Safety Authority [EFSA], 2008).

(i.e., plasmids and integrative conjugative elements) (Partridge
et al., 2018). Plasmids appear to substantially contribute to the
spread of AMR via food and food-producing animals, particularly
among Gram-negative bacteria (Madec and Haenni, 2018). The
determination of plasmid sequences has remained a challenge
due to the presence of repeated (e.g., insertion sequences) and
redundant sequences (e.g., when multiple plasmids are present)
which complicate the assembly procedure, especially when using
short-read sequencing techniques. The increasing use of long
read sequencing technologies has helped to accurately generate
plasmid structures, although the costs of these technologies limit
their uptake (Orlek et al., 2017). New tools, however, such
as the recently developed Recycler and MOB-suite, make it
possible to reconstruct and type plasmids with high sensitivity
and specificity, although their level of accuracy is still lower than
that provided by long read sequencing technologies (Rozov et al.,
2017; Robertson and Nash, 2018). The latter tool can also predict

the transferability of plasmids (Robertson and Nash, 2018). These
developments have facilitated confirmation of whether AMR
genes are located on plasmids or integrated into the chromosome
(i.e., the AMR genes context), which is a critical piece of
information for foodborne AMR risk assessment. If WGS analysis
reveals that two or more AMR genes are located on the same
genetic element, then co-selection for AMR (i.e., the selection of
multiple AMR genes when only one of these genes is selected,
for example via antimicrobial use) should be considered in the
QMRA model (Wales and Davies, 2015).

WGS and AMR as a Direct or Indirect Hazard
As part of the hazard identification, one of the key
challenges faced by risk assessors is to decide whether
the hazard of interest should be the antimicrobial-resistant
microorganism or the AMR gene, or in other words, whether
AMR should be considered as a direct or indirect hazard
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(European Food Safety Authority [EFSA], 2008). WGS can
provide information to support this decision. As an example,
using WGS of a collection of cephalosporin-resistant E. coli
from humans, chicken meat, pigs and poultry farms, De Been
et al. (2014) demonstrated that clonally unrelated human
and poultry isolates carried cephalosporin-resistant genes
encoded on genetically identical plasmids (De Been et al., 2014).
However, they failed to demonstrate recent clonal transmission
of cephalosporin-resistant E. coli strains from poultry to humans,
as had been suggested based on traditional, low-resolution
typing methods (De Been et al., 2014). Clearly, in this case, the
cephalosporin resistance gene should be considered as an indirect
hazard. Conversely, if clonal transmission is suspected to be the
main route of foodborne AMR transmission (after consideration
that clonality between isolates collected from animals and
humans could still be caused by other routes of transmission
besides food consumption), the direct hazard approach may
be preferred. Approaches based on AMR foodborne hazards
as direct and indirect are both relevant and possible, and the
final decision will ultimately depend on the combination of
food commodity/AMR hazard/antimicrobial agent and the
risk assessment question to be addressed (Pires et al., 2018).
A combination of both approaches could also be envisaged.

WGS and in silico Subtyping
Whole-genome sequencing can be used for subtyping of
foodborne hazards, and current in silico techniques make it
possible to do so at a higher speed, lower cost, higher resolution
and better robustness when compared to conventional subtyping
methods. For example, SISTR [Salmonella In Silico Typing
Resource (Yoshida et al., 2016)], SeqSero (Zhang et al., 2015),
and EnteroBase (Alikhan et al., 2018) can rapidly subtype draft
Salmonella genome sequences. Similar tools have been developed
for subtyping of other zoonotic hazards such as E. coli (e.g.,
SerotypeFinder, Joensen et al., 2014) or methicillin-resistant
Staphylococcus aureus (e.g., spaTyper, Bartels et al., 2014).
Independent of the AMR profile, knowledge of the subtype of
a foodborne hazard is critical for QMRA purposes, as it allows
linkages of new data to the huge amount of knowledge already
available on the basis of the subtype. Different subtypes (e.g.,
serotype or sequence type) often have different behaviors or
properties that may affect the final QMRA risk estimates, such
as different levels of virulence and variability in associated health
outcomes (Jones et al., 2008) or different abilities to survive and
grow on meat (Oscar, 2009). In silico subtyping is also required to
assess the degree of relatedness between isolates and understand
structures of bacterial populations found at different stages of
the food chain; this aspect is discussed further in the exposure
assessment section of this review.

WGS and Pathogenicity or Virulence
Profile
Whole-genome sequencing can be used to refine the description
of the profile of pathogenicity (i.e., ability to cause disease)
or virulence (i.e., severity of that disease) of a given hazard.
Prediction tools can be used to detect the presence of known

pathogenicity or virulence genes, such as those determining the
capacity of attachment, adhesion, invasion or replication of an
isolate. As an example, the Center for Genomic Epidemiology
(CGE) has developed web-based tools to identify acquired
virulence genes among several bacterial species (VirulenceFinder,
Joensen et al., 2014), as well as pathogenicity islands among
Salmonella spp. (SPIFinder, Roer et al., 2016). However, genes
providing higher pathogenicity or virulence are not always
known a priori. In this case, Genome Wide Association Studies
(GWAS), also known as Whole Genome Association Studies
(WGAS), make it possible to identify genetic markers or genetic
risk factors associated with increased pathogenicity or virulence.
Briefly, GWAS identify molecular markers such as genes, k-mers,
insertions/deletions or single base-pair changes (also called single
nucleotide polymorphisms or SNPs) in the DNA sequence of
an organism that are significantly associated with a phenotypic
trait of interest (Lees and Bentley, 2016; Aun et al., 2018).
GWAS present a number of challenges, not only in terms of
study design (e.g., identifying well-defined phenotypes, obtaining
representative samples and defining optimum sample size), but
also in terms of data analysis. It is beyond the scope of this review
to address the strengths and caveats of GWAS, but readers are
encouraged to consult existing literature for more details (see for
example Earle et al., 2016; Falush, 2016).

As an example, Buchanan et al. (2017) conducted a GWAS
using 166Campylobacter jejuni isolates representative of the most
prevalent subtypes observed in various surveillance projects in
Canada and identified 25 genes as putative diagnostic markers
for clinically related C. jejuni subtypes; these could form a basis
for rapidly screening strains that pose an increased risk to public
health (Buchanan et al., 2017). Using a similar GWAS approach,
Pielaat et al. (2015) identified 17 SNPs significantly associated
with increased virulence (using in vitro adherence to epithelial
cells as a proxy) among 38 Shiga toxin-producing E. coli (STEC)
O157 isolates of human and animal origin (Pielaat et al., 2015).
GWAS have also been applied to the identification of protein
families significantly associated with bacterial pathogenicity.
Cosentino et al. (2013) used a set of 513 organisms tagged as
human non-pathogens and 372 tagged as human pathogens of
any bacterial species (i.e., all available complete bacterial genomes
from the NCBI-National Center for Biotechnology Information-
Genome Project in 2010) to develop a model and a web-based
tool that can now be used to predict the pathogenicity of
novel species or subtypes toward human hosts (PathogenFinder,
Cosentino et al., 2013).

WGS and Microorganism Growth or
Survival Ability
Similarly, WGS can be used to better characterize the ability
of a microorganism to grow or survive within a host
or in a given environment along the food chain, when
challenged with various stress conditions (e.g., cold, heat,
acidity, high osmolality, desiccation or use of detergents
and disinfectants). Using methods akin to the prediction of
AMR and pathogenicity or virulence genes, bioinformatics
pipelines can be used to identify the presence of genes known
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to provide higher ability to grow or survive under stress
conditions. As an example, Mandal and Kwon (2017) recently
identified 61 genes associated with Salmonella enterica serovar
Typhimurium survival against desiccation stress; phenotypic
evaluation confirmed that three out of 12 single gene knockout
mutants had significantly reduced survival as compared to the
wild type during desiccation (Mandal and Kwon, 2017). In
the absence of known genes encoding for growth or survival
ability, GWAS can be used to identify genetic markers for
increased growth or survival ability. For example, GWAS
studies have been successfully used to identify genetic markers
of the ability of C. jejuni to form biofilms (Yahara et al.,
2017), the ability of multiple S. enterica serovars to survive
in vivo in cattle (Vohra et al., 2018) or the ability of
L. monocytogenes to grow at low temperatures (Hingston et al.,
2017; Fritsch et al., 2018a).

EXPOSURE ASSESSMENT

The objective of the exposure assessment step of a foodborne
AMR QMRA model is to arrive at an estimate of the probability
and magnitude of exposure to an antimicrobial-resistant
microorganism or determinant via consumption of a given food
commodity (Codex Alimentarius, 2011). It involves describing
the hazard sources and exposure pathways, as well as the
risk factors influencing the frequency and concentration of the
antimicrobial-resistant microorganism or determinant along the
farm-to-fork continuum (Codex Alimentarius, 2011). These tasks
can be significantly improved by taking advantage of the high
discriminatory power of WGS (i.e., its ability to distinguish
between two isolates of the same species and thereby suggest
or refute an epidemiological relationship between them) that
exceeds conventional phenotypic typing methods (Tassios and
Moran-Gilad, 2018). The degree of relatedness between isolates
can be assessed using comparative genomics approaches, e.g.,
SNP-based (where SNPs of aligned genomes are compared) and
gene-by-gene approaches (where alleles of 102 to 103 genes
are compared between genomes). The latter is an expansion
of the traditional multilocus sequence typing (MLST) approach
(typically based on allele comparison of seven house-keeping
genes) and includes whole-, core- and accessory-genome MLST
(wgMLST, cgMLST and agMLST) (Maiden et al., 2013).
The strengths and weaknesses of SNP-based vs. gene-by-gene
approaches have been discussed elsewhere (Schürch et al., 2018),
and it is unknown at this stage which approach should be
preferred for QMRA purposes. The optimal approach is likely to
depend on the hazard being studied (gene-by-gene approaches
may be superior for highly recombinogenic organisms while
SNP-based approaches may have more discriminatory power
to study highly clonal organisms), as well as other practical
considerations (e.g., ability to scale up or standardize analyses
for global sharing). Previous applications of SNP-based, wgMLST
and cgMLST to the same dataset of foodborne microbial isolates,
including S. enterica serovar Enteritidis (Pearce et al., 2018),
L. monocytogenes (Henri et al., 2017) and quinolone−resistant
and susceptible C. jejuni (Leekitcharoenphon et al., 2018) showed

high level of congruence. Another issue relates to the fact that
there is currently no consensus on thresholds of relatedness
to be used, i.e., the number of SNP or allele differences for
two isolates to be considered as significantly different (i.e.,
belonging to different clusters or lineages). These need to be
established on an organism-by-organism and case-by-case basis
(Schürch et al., 2018). It requires a good understanding of the
underlying population structure and diversity, as well as accurate
epidemiological data to be able to link isolates around common
sources or timeframes (European Food Safety Authority [EFSA],
2013; Sanaa et al., 2019). As two bacterial populations may
share a similar genetic profile due to evolutionary pressures that
may not be epidemiologically relevant in the desired context,
supporting WGS analyses with strong epidemiological data will
remain critical.

WGS and Sources of Foodborne AMR
The high discriminatory power offered by WGS analysis has the
potential to improve source attribution of foodborne AMR, i.e.,
the attribution of cases of foodborne disease to putative sources
of infection (Fegan and Jenson, 2018; Pires et al., 2018), including
countries and regions of origin. Using WGS of 502 C. jejuni
isolates from poultry in 12 European countries and a set of
536 previously published C. jejuni genomes retrieved from the
European Nucleotide Archive, Leekitcharoenphon et al. (2018)
were able to examine the origin of fluoroquinolone resistance
among C. jejuni. In other words, they explored whether the
emergence of fluoroquinolone-resistant C. jejuni was related to
the transmission among countries or to the selection through
fluoroquinolone use in individual countries (Leekitcharoenphon
et al., 2018). Gene-by-gene analysis of isolate relatedness showed
that poultry C. jejuni populations were clustered within four
groups of countries of origin, but no significant association was
observed with poultry trade patterns or antimicrobial use in
livestock (Leekitcharoenphon et al., 2018). Similarly, a SNP-based
phylogeny of 90 multidrug-resistant S. enterica genomes of
human and dairy cattle origin, collected in Washington (WA)
and New York (NY) in the United States, highlighted several
geographic location-specific clones (e.g., a WA specific S. enterica
serovar Dublin clade, which likely emerged recently from
this particular location), as well as broadly distributed clonal
groups with similar AMR profiles that likely emerged a long
time ago and successfully disseminated to wider populations
(Carroll et al., 2017).

Whole-genome sequencing can moreover inform on host
species and reservoirs of foodborne AMR. Using WGS of 113
cephalosporin-susceptible and resistant S. enterica serovar
Heidelberg isolates from human and poultry origin collected
under the Canadian Integrated Program for Antimicrobial
Resistance Surveillance (CIPARS), Edirmanasinghe et al. (2017)
showed that most human isolates clustered with retail chicken
isolates, while the observed degree of relatedness with retail
turkey isolates was minor, suggesting a chicken-origin of
human S. Heidelberg infections in Canada (Edirmanasinghe
et al., 2017). Such analysis would not have been possible
with conventional typing approaches [e.g., pulsed-field gel
electrophoresis (PFGE) or MLST] that have insufficient
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discriminatory power to distinguish microorganisms with
low genetic diversity such as S. Heidelberg. Similarly, Carroll
et al. (2017) performed a comparative genomics analysis of
livestock- and human-associated Salmonella from WA and
NY and showed overlap between the resistomes of bovine and
human-associated Salmonella isolates on numerous occasions,
particularly for S. enterica serovar Newport, suggesting a bovine
origin of S. Newport human infections (Carroll et al., 2017). In
comparison with traditional typing tools such as PFGE or MLST,
phylogenetic analyses based on WGS data make it possible
not only to demonstrate shared patterns of AMR in pathogens
from animals, meat and humans with high confidence, but
also to infer the direction of transmission (Muloi et al., 2018).
While traditional typing tools could already identify overlapping
subtypes, the significance of such overlaps was directly influenced
by the subtype frequency. WGS allows for splitting the bacterial
population into more subtypes (including more rare subtypes),
so any overlaps observed are unlikely to be spurious.

The major sources identified can be used as starting points
of QMRA models (traditionally focusing on a single source
only) or comparative exposure or risk assessments (that consider
exposure from multiple primary sources or multiple pathways
from a single animal source, see for example Pintar et al., 2017;
Chapman et al., 2018). The use of WGS for source attribution
is still in its infancy, and to our knowledge has not yet been
applied to source attribution of antimicrobial-resistant hazards.
Preliminary attempts to refine source attribution of human cases
of campylobacteriosis using wgMLST demonstrated the challenge
of identifying host-segregating genetic markers (Dearlove et al.,
2016; Thépault et al., 2017), although these may be present
in the accessory genome of Campylobacter (Sheppard et al.,
2013). These attempts may have partly been hampered by the
complexity of Campylobacter transmission in the food chain
(e.g., interactions between cattle and chicken reservoirs). WGS
was successfully used for source attribution of L. monocytogenes
in the European Union (Nielsen et al., 2017). Further work
is needed to explore other approaches and applications to
other pathogens of public health interest. The uptake of WGS
for source attribution also faces a non-scientific challenge;
increased resolution of WGS data may inadvertently identify
individual producers as sources of foodborne AMR. While such
an attribution may be appropriate (and indeed beneficial) in
investigations of foodborne outbreaks, a lack of corresponding
epidemiological evidence to support or refute such a connection
at the scale of source attribution may inappropriately place blame
on a non-epidemiologically linked producer. Concern regarding
liability may limit the number of samples submitted in voluntary
surveillance programs, decreasing their overall effectiveness.

WGS and Exposure Pathways of
Foodborne AMR
Once the sources of foodborne AMR have been identified, WGS
can be used to refine the description of the exposure pathways,
i.e., the pathways through which a hazard is transmitted from
source (e.g., farm) to point-of-exposure (e.g., consumption). This
can be done using comparative genomics of isolates collected

at successive points or stages of the farm-to-fork continuum
(Figure 1). Such an approach has already been proposed for
outbreak investigations. For example, the United States Food and
Drug Administration (FDA)’s Center for Food Safety and Applied
Nutrition (CFSAN) outbreak investigation framework considers:
(i) the genetic distances between isolates identified on the basis of
the number of SNPs; these are interpreted by taking into account
previous knowledge on the diversity and evolutionary forces of
the pathogen population of interest; (ii) the uncertainty around
genetic distances which is assessed using bootstrapping; (iii) the
topology of the SNP-based phylogenetic tree, with monophyletic
trees (i.e., those grouping isolates of interest to the exclusion of
all other isolates) supporting the hypothesis of a common source
and (iv) epidemiological and traceback data (Pightling et al.,
2018). We argue that a similar framework could be developed
for QMRA of foodborne AMR, with the objective of describing
the probability of a hazard being transmitted from one step of
the food chain to the next. A few adjustments to the framework
proposed by FDA CFSAN would be required, as described below.

First, sampling performed at the different stages of the food
chain has to be large enough and representative of the bacterial
populations present at these stages. FDA CFSAN WGS analyses
rely on the GenomeTrakr database, an open-source collection
of genomic and geographic data about foodborne pathogens
submitted by public health and university laboratories across the
United States (Allard et al., 2016). Although the largest and most
complete of its kind, FDA CFSAN recognizes that this database
is likely biased toward food isolates and environmental isolates
from facilities that yield positive results (just like any outbreak-
based database) (Pightling et al., 2018). Representative samples
can, however, be obtained from epidemiological surveillance
programs. For example, CIPARS is designed to provide a
representative sample of antimicrobial-resistant Campylobacter,
E. coli and Salmonella populations circulating on-farm, at abattoir
and at retail for major livestock species or their meat products
(Deckert et al., 2015). However, obtaining a representative sample
of antimicrobial-resistant and susceptible bacterial populations
found in humans is a challenge, owing to underreporting and
under-diagnosis, as well as bias toward more severe clinical cases
that have a higher chance of being investigated and reported to
health authorities (Haagsma et al., 2013).

Second, a quantitative outcome describing the probability
of a hazard to be transmitted from one step of the food
chain to the next is needed. Pightling et al. (2018) use
qualitative outcomes to assess whether each of their four
criteria supports, is neutral or does not support a match
between two or more genomes obtained by WGS (Pightling
et al., 2018); this would not be sufficient for QMRA purposes.
A quantitative surrogate for the probability of a hazard to be
transmitted from one step to the next could be the proportion
of genomes found at step (n+1) clustering with those found
at step n. The sensitivity of this probability estimate as a
function of the clustering threshold could also be explored. The
uncertainty around the probability estimate could be assessed
using bootstrapping as proposed by Pightling et al. (2018), and
included into a QMRA using stochastic modeling (e.g., Monte
Carlo simulation).
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In addition to the proportion of hazards being retained at
each step, new incursions of the hazard of interest along the
food chain are also relevant to QMRA modeling (Figure 1).
These typically arise from cross-contamination between or within
farms (e.g., because of poor biosecurity practices), during carcass
processing (e.g., contamination from the abattoir environment
or personnel) or during handling and preparation of the final
food product (e.g., poor kitchen hygiene practices) (Carrasco
et al., 2012). For example, comparative genomics of bacterial
populations found in the abattoir environment with those found
on carcasses in the abattoir could be used to inform the
probability of cross-contamination occurring from the abattoir
environment to the carcasses; this quantity is typically difficult
to inform using phenotypic data (Nauta et al., 2005). In light
of the large bacterial diversity present in such an environment,
a large sample size would, however, be critical for this type of
analysis. A proof of concept on practical use of WGS to define
the entry routes and spread patterns of L. monocytogenes in
a meat establishment has already been described (Nastasijevic
et al., 2017). Massive cross-contamination of broiler carcasses
with ESBL producing-Klebsiella pneumoniae and -E. coli during
scalding and defeathering was also demonstrated using WGS
phylogenetic analyses of isolates found on slaughterhouse
machinery and carcasses (Projahn et al., 2019).

Finally, the epidemiological data used to support the
interpretation of WGS comparative genomics findings should
be based on those available from surveillance programs (e.g.,
year, region, food commodity). Just like any other molecular
comparative analyses, direct interpretation of the observed
relationships may be hampered by the complexity of the
food chain, with food products being increasingly produced,
processed, transformed and consumed in different regions or
countries and within different timeframes (as influenced by the
product shelf life) (Aung and Chang, 2014).

As a simple, deterministic example, if WGS analyses of
surveillance data revealed that only half of direct hazards in retail
beef are genetically related to isolates collected in on-farm cattle,
then the probability of the hazard to be transmitted from the
farm to retail product would be 50%. This would have profound
implications of the evaluation of interventions in the exposure
assessment, as interventions modeled on-farm would only have
an impact on 50% of the population of the hazard that humans are
exposed to in retail beef, in this hypothetical example (assuming
that the other 50% of the hazard population sampled in retail
beef have a different origin). Therefore, in a purely linear model,
any intervention that reduces prevalence of the hazard by 90%
on-farm would only reduce overall exposure to humans from beef
consumption by 45%.

Exposure Assessment and Horizontal
Transfer of AMR
In those cases where risk assessors decide to focus on the AMR
gene(s) as the hazard of interest, and if AMR profiling via WGS
shows that the AMR gene(s) are located on MGEs (e.g., plasmids),
then horizontal transfer of AMR genes should preferably be
included in the exposure assessment step of a QMRA. This

will contribute to providing a comprehensive depiction of the
exposure pathways (Figure 1). Horizontal transfer of AMR genes
between bacteria can occur via three main mechanisms, namely
transformation (uptake of naked DNA), transduction (transfer
by bacteriophages) and conjugation (transfer by plasmids and
other conjugative elements) (Boerlin and Reid-Smith, 2008).
Conjugation, in particular, seems to play an important role in
the transmission and spread of foodborne AMR of public health
importance (Madec and Haenni, 2018). The majority of plasmid
conjugation events likely occur within the gastrointestinal tract
of live animals or humans, where bacteria are present in high
concentrations and in close proximity to each other, all within
optimal survival conditions (although some plasmid groups
do not transfer at body temperature). Plasmid conjugation in
biofilms (e.g., transfer of plasmids encoding extended-spectrum
cephalosporin resistance between E. coli and from E. coli to
environmental bacteria in the food-processing chain) has also
been described (Mo et al., 2017). Plasmid conjugation during
cooking is likely minimal; no plasmid conjugation was observed
from antimicrobial-resistant E. coli heated to 60◦C for 10 or more
minutes (Le Devendec et al., 2018). Following food ingestion,
horizontal transfer of MGEs from foodborne antimicrobial-
resistant bacteria to commensal or pathogenic bacteria in the
human gut can occur, facilitated by exposure to antimicrobials
(Broaders et al., 2013; Huddleston, 2014). For example, in an
in vivo study, an Enterococcus faecium isolate from chicken
origin transferred a gene coding for vancomycin-resistance
(vanA) to a vancomycin-susceptible E. faecium of human
origin in the intestines of three out of six human volunteers
(Lester et al., 2006).

Mathematical models describing the dynamics of
plasmid-mediated AMR within an animal gut (e.g.,
ceftiofur-resistant E. coli in the large intestine of cattle) that
include horizontal transfer of plasmids between bacteria in
the presence or absence of antimicrobial treatment have been
developed (Volkova et al., 2013), but their integration with
between-animal transmission models is needed before these can
be included into QMRA models. The lack of quantitative data
makes these approaches difficult to generalize to other food
commodity/AMR hazard/antimicrobial agent combinations.
More generally, for horizontal transfer of AMR genes to
be modeled in the exposure assessment step of a QMRA,
quantitative data are needed about the direction and frequency
of AMR gene transfer occurrence under various physiological
conditions, its dependence on the concentrations of the donor
and recipient bacteria, as well as the influence of concomitant
antimicrobial treatment. These data are currently not provided
by WGS analyses, but can be generated through in vivo or in vitro
experiments of horizontal transfer of AMR genes (Poppe et al.,
2005; Card et al., 2017; Mo et al., 2017).

Still, WGS can provide useful information to better
characterize horizontal transfer of AMR genes. WGS cannot only
identify whether AMR genes are located on the chromosome
or on MGEs (e.g., plasmids) which is a critical piece of
information, but also help to better characterize those plasmids.
For example, WGS can be used to identify the incompatibility
group or replicon type of a plasmid, which usually correlates
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with the dynamics and efficiency of horizontal transfer, as
well as the plasmid host-spectrum (Partridge et al., 2018).
WGS can also explore whether a plasmid has the molecular
machinery for conjugation to occur and therefore predict the
mobility profile of a plasmid. In other words, WGS can tell
us how likely plasmid-mediated AMR genes are transferred
horizontally. Bioinformatics tools such as MOB-suite facilitate
characterization of plasmid transfer by offering a set of tools to
perform plasmid reconstruction, typing and mobility assessment
(Robertson and Nash, 2018).

HAZARD CHARACTERIZATION

As part of the hazard characterization step of a foodborne AMR
QMRA, risk assessors aim to translate levels of exposure to
the hazard into a probability of one or more adverse health
outcomes in humans (Codex Alimentarius, 2011). Wherever
possible, this involves defining a dose–response relationship,
i.e., a mathematical relationship between the exposure and
probability of adverse outcomes. Adverse outcomes may include
an array of health effects or clinical outcomes, such as
infection or disease, as well as additional consequences due
to exposure to an antimicrobial-resistant pathogen, such as
treatment failure, increased severity or duration of disease and
death (Codex Alimentarius, 2011).

Adjustment of the Dose–Response
Relationship
For a foodborne hazard to cause an adverse outcome, bacteria
need to survive passage through the human gastrointestinal tract,
which presents multiple barriers (e.g., saliva, low pH and pepsin
in the stomach, commensal bacteria, enzymes and the innate
and adaptive immune systems in the intestine) before reaching
a suitable site for colonization, attachment and invasion that
will eventually lead to infection and subsequently to disease
(Rahman et al., 2016, 2018; Wijnands et al., 2017). Dose–response
relationships typically capture these steps together within a single
mathematical equation. They are largely based on human clinical
experiments (Teunis et al., 1996) or foodborne outbreak data
(Teunis et al., 2010) which do not enable modelers to distinguish
between the different in-host steps. These sources also aggregate
data at the species level, with no consideration to differences
between strains of a given hazard. However, using an in vitro
model of the human gastrointestinal tract, Wijnands et al. (2017)
showed that within- and between-strain survival of S. Heidelberg
and S. Typhimurium in the gastrointestinal tract and ability
to cause infection was highly variable (Wijnands et al., 2017).
WGS profiling of the survival ability of a hazard (as described
in the hazard identification step) could be used to refine the
prediction of the number of cells (i.e., dose) expected to survive
passage through the gastrointestinal tract and to contribute to
infection (Figure 1).

Once the dose is adjusted, the probability of infection
(or disease) could further be refined using WGS profiling
of the pathogenicity of the hazard, with highly pathogenic
strains requiring lower doses to cause infection or disease

(Figure 2). However, the issue of establishing a quantitative
relationship between the presence of pathogenicity markers
and the probability of infection (or disease), i.e., translating
information on hundreds or thousands of genetic markers (e.g.,
SNPs or differences in gene content) to dozens of biologically
relevant effects to a single measure of response (e.g., probability
of infection or disease) needs further exploration (Pielaat et al.,
2015; Haddad et al., 2018). Probability of infection (or disease) is
not linearly related with the number of pathogenicity markers,
but also depends on their biological function and levels of
expression. Depending on the scope of the QMRA, either a single
dose–response relationship (characterizing the survival and
pathogenicity profile of the strain of interest) or a combination of
several dose–response relationships (based on the distributions of
the survival and pathogenicity profiles of the strains of interest)
may be used (Chen et al., 2006, 2011; Fritsch et al., 2018b).

Whole-genome sequencing AMR profiling of a hazard can
also be used to adjust the dose–response relationship depending
on the occurrence of antimicrobial use in humans (i.e.,
consumers) prior to ingestion of a contaminated product. This
refers to the notion of ‘etiologic fraction’ for prior antimicrobial
use, defined by the Institute of Medicine as the proportion
of human cases that would not occur but for the resistance
of the infecting bacterial strain to the antimicrobial(s) being
administered to the patient prior to infection (Institute of
Medicine, 1989). Human use of antimicrobials prior to ingestion
of an antimicrobial-resistant hazard can increase the probability
of infection (or illness) by two means: (i) the selection of
hazard strains resistant to the antimicrobial being taken prior
to infection for an unrelated reason (selective effect) and (ii)
the reduction of competing commensal gastrointestinal flora
(competitive effect) (Barza and Travers, 2002). As an example,
this approach was used by Otto et al. (2014) to assess the excess
of human cases of ceftiofur-resistant S. Heidelberg in Canada
attributable to prior antimicrobial consumption in humans (Otto
et al., 2014). However, to our knowledge, no literature suggests
that the dose–response relationship of an antimicrobial-resistant
hazard would differ from a non-resistant hazard in the
absence of antimicrobial treatment (assuming they have similar
pathogenicity profiles). The adjustment of the dose–response
relationship would therefore only be needed in case of prior
antimicrobial use in the human patient, unless WGS reveals an
association between AMR and pathogenicity (Figure 2).

While WGS data can provide more accurate estimates
of the dose contributing to infection (after survival in the
gastrointestinal tract), and better characterize the expected
response (based on pathogenicity and AMR profiles), WGS
focuses on the characterization of individual isolates and
therefore cannot provide any quantitative estimates of the
dose being ingested initially (e.g., the dose in a food sample
at retail). Other genomic approaches such as metagenomics
(i.e., the study of the collective genome of microorganisms
from a sample), is likely to help in this regard. For example,
bioinformatic analytical pipelines, such as Resfinder, SEAR or
AMRplusplus can be used to quantify the abundance of AMR
genes in metagenomes of diverse origin, e.g., animal feces or farm
effluents (Rowe et al., 2015; Lakin et al., 2017; Munk et al., 2018).
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FIGURE 2 | Illustration of possible adjustments to the dose–response relationship of an antimicrobial-resistant Salmonella spp. strain based on information provided
by WGS profiling. Solid line represents the dose–response curve of a generic Salmonella spp. (FAO/WHO, 2002); dashed line: dose–response after theoretical
adjustment for high pathogenicity; dotted line: dose–response after theoretical adjustment for high pathogenicity and prior antimicrobial use in human patient.

However, they only provide relative abundance estimates within
samples, whereas absolute estimates are more informative for
QMRA modeling purposes. Additionally, the information on
host microorganism is lost, so it is unknown whether the
genes are carried by the hazard(s) of interest and therefore
contribute to risk or not (Cocolin et al., 2018). Alternatively,
real-time polymerase chain reaction (qPCR) has been used to
quantify the absolute amount of ESBL (blaTEM) gene copies
present in food, but there are currently no data to convert a
number of gene copies into a probability of infection or illness
(Singh et al., 2016).

Prediction of Health Outcomes
Not all cases of foodborne AMR disease are equal, and health
outcomes are known to differ substantially among bacterial
strains. For example, analysis of epidemiological data from
46,639 Salmonella infections between 1996 and 2006 in the
United States revealed significant differences among serovars
in terms of case-fatality rates, hospitalization rates and ability
to cause invasive disease (Jones et al., 2008). Health outcomes
also differ between antimicrobial-resistant and susceptible
bacteria. A recent systematic review and meta-analysis showed
that multidrug-resistant non-typhoidal Salmonella infections in
high-income countries were associated with excess bloodstream
infections and higher hospitalization and mortality rates when
compared with pan-susceptible isolates (Parisi et al., 2018).
More generally, infections with certain food commodity/AMR
hazard/antimicrobial agent combinations have been associated

with more severe clinical outcomes, longer duration of infections
and treatment failures, when compared to non-resistant hazards
(European Food Safety Authority [EFSA], 2008).

Whole-genome sequencing can help to define the array of
adverse health effects or clinical outcomes to be expected from
infection with the strains of interest in a foodborne AMR
QMRA (Haddad et al., 2018). As described earlier (see hazard
identification section), WGS virulence profiling can be used to
predict the severity of health outcomes to be expected upon
infection with a given strain (Figure 1). For example, clinical
outcomes associated with Campylobacter human infections
include a broad spectrum of symptoms ranging from mild,
moderate and severe diarrhea to Guillain-Barré syndrome and
even death (World Health Organization [WHO], 2015b). WGS
could be used to predict the distribution of these clinical
outcomes for a given set of strains under the scope of a QMRA,
and therefore refine the distributions typically obtained from
epidemiological data that combine data on multiple strains and
which have some methodological issues, e.g., underreporting and
selection bias (Majowicz et al., 2014).

Similarly, WGS AMR profiling could be used to predict the
AMR phenotypic profile of a foodborne hazard upon infection,
and therefore predict the range of AMR-associated health
outcomes to be expected with or without human antimicrobial
treatment (Figure 1). For example, in the case of third-generation
cephalosporin-resistant and fluoroquinolone-resistant E. coli
infections, WGS could help to predict the probability of increased
mortality, length of stay in hospital or intensive care unit
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admission associated with resistant E. coli infection when
compared to non-resistant E. coli (World Health Organization
[WHO], 2014). Once the array and distribution of health
outcomes are defined, they can be combined into indicators of
burden of illness, such as disability adjusted life years (DALYs),
that capture not only the number of cases in a given period of
time, but also their severity (e.g., disability weight, mortality) and
duration (Murray, 1994). These can be used to assess the extra
burden associated with AMR foodborne hazards compared with
susceptible ones.

RISK CHARACTERIZATION

Risk characterization integrates the findings from the hazard
identification, exposure assessment and hazard characterization
steps to estimate the public health risk associated with foodborne
AMR (Codex Alimentarius, 2011). Risk measures encompass
the severity and likelihood of human infections associated with
foodborne AMR, and may be expressed using multiple metrics,
such as per-meal risk (e.g., probability of illness per serving),
population or annual risk based on consumption (e.g., number
of cases per year), as well as burden of illness estimates (e.g.,
DALYs) (Figure 1) (Codex Alimentarius, 2011). A quantitative
description of the variability (i.e., heterogeneity due to quantities
that are distributed within the population) and uncertainty (i.e.,
model-specification error due to lack of knowledge or data)
around the risk estimates, as well as an explicit depiction of the
strengths and limitations of the QMRA model are warranted
at this stage. Sensitivity analysis should also be conducted to
identify those parameters having the largest influence on the
model outcomes. Important data gaps should be identified and
highlighted as future research needs. Additional outputs of risk
characterization may include scientific evaluation of possible risk
management options (Codex Alimentarius, 2011).

WGS and Variability in Risk Estimates
As discussed earlier in the hazard identification step, WGS
comes with new tools that make it possible to substantially
refine the profiling of a hazard of interest in a foodborne
AMR QMRA, switching from a taxonomic-based approach (i.e.,
focusing on specific organisms) to a cluster-based (i.e., focusing
on sequence types or population groups) or a strain-based
approach (i.e., focusing on particular genes or genetic markers)
(Brul et al., 2012; Den Besten et al., 2018). Instead of considering
all strains from a particular hazard as equally able to cause
disease, WGS provides information on the presence of genes or
genetic markers of interest that will allow risk assessors to (i)
narrow down the risk assessment by focusing on those strains
of highest public health relevance (e.g., those showing highest
virulence in humans) and/or (ii) stratify the risk assessment, i.e.,
grouping hazards into subsets with similar genetic profiles that
are expected to behave similarly, e.g., in terms of growth/survival
ability along the food chain, pathogenicity/virulence following
ingestion and response to antimicrobial treatment. Combinations
of genes or genetic markers of interest shall also be considered.
For example, AMR and virulence genes have been shown

to be carried by the same plasmids found in S. Heidelberg
of human and animal origin (Han et al., 2012). Expression
of risk characterization results should therefore be based on
combinations identified in the hazard identification stage,
elucidated from simultaneous WGS-based profiling for AMR,
growth/survival and pathogenicity/virulence. Using WGS, the
entire genetic variability observed in key traits of the strains of
interest can therefore be captured without including unnecessary
variability (i.e., excluding variability arising from strains not
relevant to the QMRA model). The distribution of QMRA model
parameters can be adjusted accordingly so that they better fit
with the subsets of hazards of interest, improving the overall
model accuracy. As an example, Fritsch et al. (2018b) identified
genetic subsets of L. monocytogenes isolates based on their
ability to grow at low temperature, as well as their level of
virulence, and were able to refine an existing QMRA model for
L. monocytogenes in smoked salmon initially based on phenotypic
data (Fritsch et al., 2018b).

WGS and Uncertainty in Risk Estimates
The identification of genes or genetic markers for certain
parameters of interest in foodborne AMR QMRA modeling
(e.g., AMR, growth/survival and pathogenicity/virulence) via
WGS makes it possible to predict the phenotypic behavior
of a hazard, and therefore to adjust the model parameters
accordingly. For example, predicting the hazard’s ability to grow
during processing, transport and storage will provide a more
accurate estimate of the number of cells ingested at the point
of consumption. Consequently, incorporation of WGS data into
QMRA models will help reduce the uncertainty in the final
risk estimates. Yet, there is some uncertainty in the degree
of correlation between genotypic and phenotypic profiles. The
detection of genes or genetic markers does not mean this gene
or genetic marker will be functional or expressed. Previous
literature has shown very high correlation (i.e., close to 100%)
between AMR WGS and phenotypic profiles among E. coli
(Stoesser et al., 2013; Shelburne et al., 2017), Staphylococcus
aureus (Gordon et al., 2014), Campylobacter spp. (Zhao et al.,
2016) and non-typhoidal S. enterica (Neuert et al., 2018). WGS
even showed high correlation with MIC values in non-typhoidal
Salmonella (Tyson et al., 2017). However, correlations between
AMR WGS and phenotypic profiles still need to be validated
on a larger scale and for other zoonotic hazards. Similarly,
correlations between WGS and phenotypic profiles in relation
to growth/survival ability as well as pathogenicity/virulence have
yet to be validated. Unlike AMR, which is easy to test for
phenotypically, tests for accurate prediction of pathogenicity
or virulence are lacking. The correlation between various
parameters thought to impact pathogenicity and virulence and
actual outcomes is tenuous for many pathogens. For example,
Pielaat et al. (2015) use in vitro adherence to epithelial cells as
a proxy for virulence in E. coli O157:H7, but recognize it is only
one aspect of the etiology of E. coli O157:H7 human infections
among many other aspects, such as the production of Shiga toxins
(Pielaat et al., 2015).

Another major source of uncertainty introduced with the
use of WGS data for QMRA modeling, and especially for
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exposure assessment, are the cut-off values used to describe
relatedness between isolates. As mentioned earlier, there
is currently no consensus on distance thresholds used to
define lineages of interest and these need to be empirically
determined on an organism-by-organism and case-by-case
basis (Schürch et al., 2018). As a general rule, more stringent
cut-off values should be used for organisms with lower genetic
diversity. For example, Public Health England uses three
thresholds of 0-, 5-, and 10-SNP differences for defining
an outbreak cluster of isolates under the UK surveillance
program for S. Enteritidis and S. Typhimurium, both being
highly clonal pathogens (Mook et al., 2018). These ‘empirical’
thresholds are based on observed SNP differences between
isolates known to be associated within outbreaks according to
historical epidemiological data, in the absence of any better
rule. For QMRA purposes, a range of thresholds capturing
the uncertainty around the degree of relatedness between
isolates can be used and integrated into a QMRA model using
a combination of scenario-based and stochastic approaches.
In the future, the use of WGS for outbreak investigation and
its increasing use in surveillance of foodborne pathogens will
likely improve our knowledge of the structure of bacterial
populations, and the collection of isolates from large and
representative samples of the global population into open-source
databases will provide a scientific basis to define appropriate
distance thresholds, i.e., combining good epidemiological
concordance (i.e., ability to group epidemiologically related
isolates) and discriminatory power (i.e., ability to distinguish
non-epidemiologically related isolates) (Van Belkum et al., 2007;
Hetman et al., 2017). The uncertainty around the degree of
relatedness between isolates, and therefore around risk estimates,
will decrease accordingly.

WGS and Risk Management Options of
Foodborne AMR
A number of risk management options can be considered
to mitigate the risk associated with the occurrence of AMR
in the food chain (Murphy et al., 2018). One of the most
promising options is reducing the use of antimicrobials
in food-producing animals (Tang et al., 2017). However,
quantifying the relatedness between antimicrobial use and
the occurrence of AMR using phenotypic data is a difficult
task, especially when using surveillance data that are often
aggregated at a low resolution level, typically following trends
in overall food-animal populations over time, with no details
on how antimicrobial use and antimicrobial-resistant bacterial
populations are distributed at the farm level. The importance
of this relatedness appears to be highly variable between
food commodity/AMR hazard/antimicrobial agent combinations
and is influenced by co-selection of AMR (i.e., when an
antimicrobial selects for resistance to another antimicrobial)
(Dorado-García et al., 2016).

As an example, CIPARS reported that changes in the frequency
of isolates resistant to ceftiofur (a third-generation cephalosporin
antimicrobial) among chicken S. Heidelberg isolates collected
at retail during 2003–2008 in Québec mirrored the trends

in ceftiofur use in hatcheries, with a significant decrease in
resistance (from 62 to 7%) following a voluntary withdrawal
of ceftiofur use, and an increase in resistance (from 7 to 20%)
after reintroduction of ceftiofur use (Dutil et al., 2010). These
observations were based on phenotypic data, and the degree of
relatedness between ceftiofur-resistant S. Heidelberg populations
over time was unknown. As S. Heidelberg has low genetic
diversity, traditional typing methods (e.g., PFGE) are unlikely
to provide additional information. Comparison of WGS profiles
of S. Heidelberg populations over time, however, would enable
the assessment of the effect of withdrawing ceftiofur use on
the prevalence of ceftiofur-resistant S. Heidelberg in broiler
chicken meat in Canada to be refined. For example, WGS
could help to describe whether a single bacterial population
underwent resurgence after reintroduction of ceftiofur use, or
whether the original ceftiofur-resistant S. Heidelberg population
died out and a second population took over after ceftiofur
use reintroduction.

CHALLENGES AND FUTURE
PERSPECTIVES

Bridging the Gap Between
Bioinformaticians and Risk Assessors
The integration of WGS data into QMRA modeling represents a
critical step toward the development of next generation QMRA
of foodborne AMR. Yet, there are a number of challenges that
need to be addressed before the transition can be effective. There
is still a lack of knowledge translation between bioinformaticians
and risk assessors, with bioinformaticians having a limited
understanding of the type of information required for QMRA
modeling, and risk assessors having poor comprehension of how
WGS data are analyzed, including what type of information
can be generated and any limitations on these analyses. Risk
assessors and epidemiologists need to be better trained in next
generation sequencing techniques and molecular epidemiology
(De Lamballerie, 2009; Arts and Weijenberg, 2013). Risk assessors
also have to be proactive and should be involved from the early
stages of development of WGS databases and bioinformatics
tools, so that they can make their needs more explicit and
influence the type and format of data being generated, rather
than simply acting as ‘end-users’ of WGS data. Input from both
bioinformaticians and risk assessors should also be considered
while designing surveillance programs and data collection
initiatives to ensure these are capturing the data needed to
perform the types of analyses described in this review.

Additionally, bioinformaticians should continue to work
toward making their WGS analytical tools and pipelines
readily available for use by non-bioinformaticians. There
are already a number of initiatives in this direction. As
an example, the SISTR platform1 combines several free
tools for rapidly performing simultaneous analyses of draft
Salmonella genome assemblies, including serovar prediction
and sequence-based typing analyses (e.g., cgMLST), as well

1https://lfz.corefacility.ca/sistr-app/

Frontiers in Microbiology | www.frontiersin.org 12 May 2019 | Volume 10 | Article 1107

https://lfz.corefacility.ca/sistr-app/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-01107 May 18, 2019 Time: 14:1 # 13

Collineau et al. Genomics and Risk Assessment of Antimicrobial Resistance

as metadata driven visualization to examine the phylogenetic,
geospatial and temporal distribution of genome-sequenced
isolates in comparison with a database comprising over 4,000
publicly available genomes (Yoshida et al., 2016). Similarly,
the Center for Genomic Epidemiology offers a number of free
tools for WGS genome assembly and rapid analyses within
a single online platform, including typing, phenotyping, and
phylogenetic tree construction2. GenomeGraphR presents
WGS and metadata in a user-friendly interface to “query a
variety of research questions such as, transmission sources
and dynamics, global reach, and persistence of genotypes
associated with contamination in the food supply and foodborne
illness across time or space” (Sanaa et al., 2019). Enterobase
(Alikhan et al., 2018) and PHYLOViZ (Ribeiro-Gonçalves
et al., 2016) are two other examples of publicly available
platforms facilitating WGS data analysis and visualization
by both bioinformatician and non-bioinformatician users.
The development of such tools requires an interdisciplinary
environment where bioinformaticians can work closely with
end-users (including risk assessors) to iteratively develop a
product that works well for its intended audience.

Harmonization, Standardization, and
Inter-Operability of WGS Techniques
The different procedures through which WGS data are
generated and analyzed have a strong influence on the results.
For example, the choice of different sequencing platforms
introduces systematic biases that have an impact on the
inferred phylogenies (Kaas et al., 2014). With foodborne
AMR pathogens easily traversing jurisdictions or countries, it
can be problematic when different laboratories use different
procedures and do not arrive at identical conclusions (Pightling
et al., 2018). Efforts toward harmonization and standardization
of WGS techniques are ongoing, for example under the
Global Microbial Identifier (Moran-Gilad et al., 2015) and the
PulseNet International initiatives (Nadon et al., 2017), but a
consensus on methods, quality measures and thresholds for
data generation and analysis of foodborne AMR pathogens has
yet to be established (Lüth et al., 2018). In the absence of
a current consensus, it is important to ensure all sequenced
genomes are made publicly available where possible, or available
privately across jurisdictions, as to allow researchers to repeat
analyses within their pipelines or under their parameters.
Standardization of epidemiological data (also referred to as
‘metadata’) accompanying WGS data is also critical to provide
requisite contextual information necessary to any microbial
risk assessment activity (Hill et al., 2017). The Genomic
Epidemiology Ontology (GenEpiO) Consortium seeks a global
standard for the metadata associated with WGS data, including
laboratory, clinical and epidemiological data fields (e.g., strain
names harmonized and compatible with previous classification
schemes), as well as existing food categories (Griffiths et al., 2017).
Data sharing and inter-operability (e.g., between laboratory
and epidemiological databases) should also be addressed as

2http://www.genomicepidemiology.org/

key priorities to ensure the efficient use of WGS data
(Pightling et al., 2018).

Toward Validation and Improvement of
WGS-Based Profiles Using Other Omics
Techniques
An increasing number of GWAS have been published in recent
years; yet a majority of the genetic markers identified are putative
markers, and only a few of them have been validated. Therefore,
our ability to predict the phenotypic behavior of foodborne AMR
hazards using WGS genetic markers still appears weak at this
stage. Substantial work is needed to validate the correlations
between phenotypic and WGS profiles before QMRA models can
be based on WGS data only. To move forward into this direction,
GWAS studies have great potential to benefit from the addition
of other omics tools including transcriptomics, proteomics and
metabolomics that would make it possible to assess whether
genes or genetic markers are actually expressed (Franz et al.,
2016). Cocolin et al. (2018) envisioned a framework by which
QMRA would move beyond taxonomic and genotypic hazard
identification to a more functional approach based on the study
of microbial behavior using a combination of omics (so called
‘multi-omics’) techniques (Cocolin et al., 2018).

Additionally, bacterial phenotypic profiles (e.g., growth and
survival characteristics) are influenced by the microbiota present
in food, food environments or gastrointestinal tracts of humans
and animals. Den Besten et al. (2018) strongly encouraged the use
of metagenomics to help characterize the microbiota (including
endogenous and pathogenic flora) of food and food processing
facilities, as well as their changes over time under conditions
associated with food processing, preservation and storage (Den
Besten et al., 2018). The idea would be to use metagenomics
to move toward the next generation of predictive microbiology
models (i.e., inferring a bacterial population’s size evolution based
on the initial contamination and the food environment) that
include predictions of the behavior of the ecosystem as a whole,
instead of focusing on a single hazard of interest. This would
lead to a substantial improvement in the accuracy of exposure
assessment models (Den Besten et al., 2018). Metagenomics could
also be used to describe how the hazard interacts with the rest of
the microbiome in the human gastrointestinal tract, accounting
for the presence of an indigenous microbiota that provide a
certain degree of colonization resistance, and the absence of
protective microbiota in case of dysbiosis (Coleman et al., 2018).
It represents an opportunity to move toward a new ‘health
triangle’ paradigm in dose–response modeling that would replace
the more conventional ‘disease triangle’ approach (focused on
host, pathogen and environment) (Coleman et al., 2018).

Yet, metagenomics approaches also come with new
challenges. While WGS rely on ‘clean’ genome sequence
analyses, metagenomics require ‘noisy’ sequencing efforts where
pathogenic bacteria only represent a minute amount of the
bacterial community in a sample, so enrichment or removal of
DNA from other sources are needed to improve data quality;
these procedures introduce significant bias in the interpretation
of metagenomics analyses (McArthur and Tsang, 2017;
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Cocolin et al., 2018). Additionally, while the presence of genes
can be detected via metagenomes annotation, current tools are
unable to identify which microorganisms the genes originated
from, which represents a major issue for QMRA hazard
identification (Cocolin et al., 2018).

QMRA of Emerging AMR Hazards
Foodborne bacteria are constantly evolving new mechanisms to
adapt and survive the lethal or biostatic effects of antimicrobials
(Sekyere and Asante, 2018). This is challenging for WGS-based
QMRA modeling. Gene prediction and annotation performed
in the hazard identification step relies on databases of known
resistance genes. Similarly, the study of the degree of relatedness
between isolates conducted as part of the exposure assessment
step requires comparison with a reference database of isolates
believed to be representative of the bacterial population at
a given point in time. In short, the information provided
by WGS analysis is only as good as the reference databases
that are used to generate them. Because of this issue, for
the purpose of risk assessment of emerging AMR hazards, it
will be critical to maintain a certain level of surveillance of
foodborne AMR hazards based on phenotypic AST. Observed
changes in phenotypic AMR profiles indeed suggest that
new AMR molecular mechanisms (e.g., new AMR genes)
may be developing. This is best illustrated with the recent
identification of the mcr-1 gene (and soon later the mcr-2,
mcr-3, mcr-4, and mcr-5 genes), which codes for plasmid-based
resistance to polymyxin in Gram-negative bacteria (polymyxin
is one of the few available drugs for treating infections
caused by carbapenem-resistant Enterobacteriaceae) (Sekyere
and Asante, 2018). A novel plasmid-based resistance mechanism
to polymyxin was suspected following the observation of a
major increase in phenotypic colistin resistance under a routine
surveillance project on AMR in commensal E. coli from food
animals in China (Liu et al., 2016). Whole plasmid sequencing
and further functional study of those isolates later revealed the
emergence of mcr-1 (Liu et al., 2016). The rapid analysis of
publicly available sequence databases showed that mcr-1 had
actually already spread to most continents (Skov and Monnet,
2016), and subsequent phylogenetic analyses demonstrated that
all mcr-1 elements in circulation descended from the same
initial mobilization of mcr-1 in the mid-2000s, followed by
a marked demographic expansion (Wang et al., 2018). This
example illustrates the capacity offered by WGS to query old
genomes for newly discovered genes and determine whether
those genes were present in historical samples. Surveillance
based on phenotypic AST only would not have the ability to
retrospectively assess the carriage of known AMR determinants.
However, WGS-based AMR profiling may introduce a delay in
the detection of AMR genes that can compromise the ability

to assess the risk associated with emerging AMR hazards. Real-
time update and curation of WGS reference databases, together
with maintenance of a certain level of AMR surveillance based
on phenotypic AST, will therefore be critical for AMR risk
assessment purposes.

CONCLUSION

The integration of WGS data into foodborne AMR QMRA
modeling offers the opportunity to move toward the
next-generation of AMR risk assessment. Instead of considering
all hazard strains as equally able to cause disease, WGS can
substantially improve the hazard identification by focusing
on those strains of highest public health relevance and/or
stratifying the hazards into subsets of similar genetic profiles
that are expected to behave similarly. The distribution of
QMRA model parameters, including growth/survival and
pathogenicity/virulence can be adjusted accordingly, making
it possible to capture the variability in the strains of interest
while decreasing the uncertainty in some model input
parameters. The high discriminatory power of WGS also
offers an opportunity to improve the exposure assessment
by analyzing the degree of relatedness between bacterial
populations and AMR profiles found at successive stages of
the food chain. Overall, WGS can contribute to substantial
improvements to the accuracy of QMRA models, and should
be considered in any future revision of the Codex Alimentarius
Guidelines for Risk Analysis of Foodborne AMR. WGS data,
however, also introduce new sources of uncertainty, especially
related to the thresholds of relatedness to be used and the
degree of correlation between genotypic and phenotypic
profiles. The latter could be improved using a functional
approach of microbial behavior based on a combination of
omics techniques.
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