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Editorial on the Research Topic

The DNA Replication Machinery as Therapeutic Targets

Chromosomal DNA replication is a process conserved through all domains of life. For accurate and
efficient duplication of the genetic information, DNA replication components must work together
in a highly regulated and coordinated fashion. Due to a central role in cell proliferation, the DNA
replication machinery is an attractive therapeutic target for treating bacterial and viral infections,
autoimmune disorders, and cancer. This eBook, entitled “The DNA Replication Machinery as
Therapeutic Targets” explores how DNA replication factors serve as targets for new generations
of therapies.

In all organisms, the chromosomal replication process starts at a specific chromosomal region
called an origin of replication, at which origin-binding proteins (OBP) bind and locally unwind the
duplex DNA. Additional proteins interact with the OBP-DNA complex and are responsible for the
assembly of the DNA helicase around the DNA. Once assembled, the helicase unwinds the duplex
in an ATP-dependent manner and forms the initial replication bubble. The exposed short regions
of single-stranded DNA (ssDNA) at the replication bubble are coated with ssDNA-binding protein
(SSB). DNA primase, DNA polymerases, and the rest of the replication machinery are recruited
to the SSB-ssDNA complex to initiate bidirectional DNA synthesis. Due to the antiparallel nature
of duplex DNA, and the unidirectionality of DNA polymerases, one strand of the chromosome
is synthesized continuously (leading strand) while the other is copied discontinuously (lagging
strand) as a series of Okazaki fragments (O’Donnell et al., 2013; Kelman and Kelman, 2014; Kunkel
and Burgers, 2017). Although these processes are fundamentally conserved in the three domains:
archaea, bacteria and eukarya; as well as viruses and bacteriophages, the proteins, and complexes
involved differ (Makarova and Koonin, 2013).

Because the replication machinery is composed of a variety of core proteins and regulatory
factors, disruption of any of the proteins involved will inhibit the replication process and/or its
efficiency, and lead to replication stress. Replication stress is induced by endogenous factors such
as dNTP depletion, DNA secondary structures or crosslinks, or by exogenous chemotherapies that
damage DNA, such as cisplatin (Kitao et al., 2018). In human cells, replication stress occurs when
DNA polymerases uncouples from the replisome and lags behind helicase unwinding (Zeman
and Cimprich, 2014). As a result, long stretches of ssDNA are exposed at the replication fork.
Replication protein A (RPA, the eukaryotic SSB) binds to the extended stretches of ssDNA,
depleting free RPA in the cell and causing replication fork collapse (which may lead to DNA
breakage and cell death). Therefore, inducing replication stress by disrupting the replication
machinery or its regulation are an attractive strategies for drug design (O’Connor, 2015;
Forment and O’Connor, 2018).
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Each chapter in this eBook highlights a different therapeutic
strategy to effectively target DNA replication. One approach to
halt replication is to inhibit DNA polymerases via binding of
small molecules to the active site. The three replicative DNA
polymerases responsible for the duplication of chromosomal
DNA in eukarya, DNA polymerases α, δ and ε (Pol α, Pol
δ, and Pol ε), all belong to family B DNA polymerases. In
order to develop nucleotide analogs as drugs, one needs to
understand how DNA polymerases incorporate natural and
modified nucleotides into DNA. The contribution by Daimon
et al. adds to our understanding of the structure and function
relationships of family B polymerases by solving the structure
of two members of this family from Aeropyrum pernix (Daimon
et al.). The incorporation of various classes of modified
nucleotides and nucleotide terminators by another family B DNA
polymerase from archaea is described by a review contributed
by Gardner et al. These archaeal polymerases share sequence
similarity with the eukaryotic enzymes and thus can serve as
good model systems for the more complex eukaryotic replication
(Makarova et al., 2014).

In addition, the use of nucleotide analogs to treat
human autoimmune disorders and cancer is summarized
in a contribution by Berdis. Young explores mitochondrial
replication and how incorporation of certain nucleoside chain
terminator inhibitors by Pol γ (the mitochondrial-specific
polymerase) can lead to unintended toxicity by shutting down
mitochondrial genome replication (Young). In addition, certain
classes of compounds target Pol γ in cancer cells to inhibit
mitochondrial replication with the potential to induce tumor cell
death (Young).

Despite a central role in copying the chromosome, the
inherent processivity of DNA polymerases is low, and only
a few nucleotides are incorporated at a time. However, in
the replication complex, high processivity DNA synthesis is
conferred by a ring-shaped protein, referred to as the DNA
polymerase sliding clamp, that encircles DNA and tethers the
polymerase catalytic unit to the DNA for processive DNA
synthesis (Indiani and O’Donnell, 2006). The sliding clamps
cannot assemble themselves around the DNA and require an
additional clamp loader complex that assembles the clamp
around duplex DNA in an ATP-dependent manner. In addition
to interacting with the polymerase, the sliding clamps of bacteria
and eukarya also interact with dozens of other proteins involved
in DNA replication, repair, and cell cycle progression (Vivona
and Kelman, 2003). Therefore, inhibitors of the bacterial and
eukaryal sliding clamps are being developed as anti-cancer
and anti-bacterial drugs (Georgescu et al., 2008). The current
knowledge on the development of sliding clamps inhibitors and
their possible use as therapeutic agents is summarized in a review
contribution by Altieri and Kelman.

Another key enzyme for cellular replication is the DNA
helicase, the enzyme responsible for unwinding double-stranded
DNA ahead of the replisome (Sakakibara et al., 2009). The
contribution by Datta and Brosh describes the current state of
the art in designing helicase inhibitors as anti-cancer drugs,
and the issues surrounding the use of helicase inhibitors (Datta
and Brosh). In eukarya, the replicative helicase is a complex

of three components, the heterohexameric minichromosome
maintenance (MCM), the tetrameric GINS complex and the
Cdc45 protein. These form the CMG (Cdc45, MCM, GINS)
complex (Onesti and MacNeill, 2013; O’Donnell and Li, 2018).
Due to the essential role of CMG in chromosome replication,
it is a prime target for anti-cancer drugs. The current efforts
in the development of CMG inhibitors as anti-cancer drugs
are summarized in a contribution by Seo and Kang. Instead of
directly inhibiting an enzyme activity (such as DNA polymerase),
another strategy is to deplete activity by downregulating gene
expression or deregulating protein activity via the ubiquitination
pathway (Jang et al.).

In addition, while some drugs are effective on their own,
in other cases multiple replication factors can be targeted
simultaneously to disrupt multiple pathways and lead to
more efficient and effective treatment strategies. Mycobacterium
tuberculosis is a pathogenic bacterium that is the etiological agent
of tuberculosis (TB), which kills more than a million people
a year (Bañuls et al., 2015). Reiche and coauthors summarize
the current state of the development of drugs against the M.
tuberculosis replication machinery, including drugs targeting the
polymerase (Pol III), the sliding clamp, clamp loader, and other
replication proteins (Reiche et al.). In addition, Reiche et al.
demonstrate the increased effectiveness of a combination M.
tuberculosis antibiotic strategy that depletes dNTP pools while
inhibiting DNA polymerase activity (Reiche et al.). Another
example of a combination strategy is the inhibition of DNA
polymerase synthesis with nucleotide inhibitors in combination
with DNA damaging agents to create DNA lesion that stall
synthesis (Berdis).

REMAINING CHALLENGES AND FUTURE

OPPORTUNITIES

Despite effective inhibitors of DNA replication proteins, eventual
resistance to these inhibitors leads to tumor recurrence and
remains a challenge for long-term therapeutic efficacy. Therefore,
it will be important to continue to study molecular mechanisms
of tumor resistance to DNA replication inhibitors. For example,
DNA polymerase mutants that effectively remove nucleotide
chain terminators can lead to drug resistance, as can upregulation
of lesion bypass DNA polymerases (Berdis).

We anticipate that knowledge of DNA replication protein
expression, regulation, and biochemical properties will continue
to address these challenges and accelerate the development of
novel strategies for effective treatment. To reach potential as
therapeutic targets, more high-resolution structural information
is needed for all replisome proteins and complexes to understand
important replisome active site architectures and protein
interactions. High resolution replisome structures will enable
models for docking small molecules to inhibit enzyme activities
and disrupt essential replisome interactions.

Finally, new molecular tools will accelerate identification of
new DNA replication drugs targets. CRISPR-Cas9 genome
engineering tools have revolutionized many scientific
disciplines and offer a powerful method to alter genes by
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either modifying gene sequence or introducing insertions
or deletions to knock out gene function (Doudna and
Charpentier, 2014). Genome-wide CRISPR-Cas9 screens
aim to disrupt all or a subset of genes in an organism to
identify important genes in a pathway (Sánchez-Rivera and
Jacks, 2015; Peters et al., 2016). CRISPR-Cas9 genome-wide
screens can be adapted to identify novel factors that confer
either resistance or sensitivity to DNA replication inhibitors.

Knowledge of these factors may inform future therapeutic
strategies to design new drug classes or enhance the efficacy of
current therapies.
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