
MINI REVIEW
published: 22 May 2019

doi: 10.3389/fimmu.2019.01118

Frontiers in Immunology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 1118

Edited by:

Philip Calder,

University of Southampton,

United Kingdom

Reviewed by:

Catherine Thornton,

Swansea University, United Kingdom

Manuela Del Cornò,

Istituto Superiore di Sanità (ISS), Italy

*Correspondence:

Linette E. M. Willemsen

l.e.m.willemsen@uu.nl

Specialty section:

This article was submitted to

Nutritional Immunology,

a section of the journal

Frontiers in Immunology

Received: 06 March 2019

Accepted: 02 May 2019

Published: 22 May 2019

Citation:

Hoppenbrouwers T, Cvejić
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N-3 long chain polyunsaturated fatty acids (LCPUFAs) are considered to possess

protective properties for human health by impacting on immunological reactions. An

“inflammation-suppressive” effect appears to be the common denominator of the

beneficial effects of most of these dietary components which may protect against the

development of chronic immune disorders such as (food) allergy. LCPUFAs, especially

n-3 LCPUFAs, have been shown to interact with both the sensitization as well as the

effector phase in food allergy in pre-clinical models. In this review, we explore the

anti-allergic properties of LCPUFAs by providing an overview of clinical, in vivo and in

vitro studies. Furthermore, we discuss the susceptibility of LCPUFAs to lipid oxidation

and possible strategies to support the efficacy of LCPUFAs in reducing the allergy risk by

using additional components with anti-oxidative and anti-inflammatory capacities such

as the flavonoid quercetin. Finally, we propose new strategies to prevent (food) allergy

using combinations of LCPUFAs and additional nutrients in diets or supplements, and

postulate to investigate the use of LCPUFAs in allergic symptom relief.
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INTRODUCTION

Allergic reactions, particularly as a result of food allergy, can be life-threatening. The frequency of
reported allergies and the severity of allergies in the Western world has increased significantly, and
is forecasted to affect e.g., 50% of the EU’s population by 2025 (1). Food allergy is one of the first
allergies to arise early in life and has an overall worldwide increasing prevalence of 5–10%, highly
dependent on the country (2, 3). The majority of these allergies are triggered by milk, eggs, peanuts,
other nuts, wheat, soy, and (shell)fish. Of these, reactions to milk, eggs, and peanuts are the most
prevalent in children, while peanuts and (shell)fish are the major triggers of allergic reactions in
teenagers and adults (4).

The majority of food allergy is known as a type I allergy, indicating that it is mediated by
a relatively acute response in which immunoglobulin E (IgE) is the pivotal antibody involved.
However, also in the absence of allergen specific IgE, acute allergic responses may occur upon
ingestion of the culprit food allergens. The immunological mechanisms behind food allergy have
been extensively explained previously (5). Briefly, food allergy can be subdivided into two phases:
allergic sensitization and the allergic effector response.
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Allergic Sensitization
Allergenic proteins in foods, are taken up by antigen-presenting
cells (APCs), and of these, dendritic cells (DCs) are mainly
involved in the presentation of antigens to naive T-cells. This
normally results in tolerance toward harmless food proteins.
However, Th2 polarized immunity and mixed Th2 and Th1
driven allergen specific immune responses occur in the acute and
chronic phase in allergy, respectively. In order to activate T-cells,
two signals are needed: the binding of the T-cell receptor (TCR)
specifically recognizing the allergenic epitopes presented via
MHCII by DCs, and interaction of the co-stimulatory molecules
CD28, CTLA-1/4 and LFA-1, and CD134 on the T-cell with,
respectively, B-7 (CD80/CD86) and ICAM-1 and OX40L on the
DC (6). Differentiation into CD4+ T-cells, or T-helper (Th) cells
Th1, Th2, and Treg is regulated by many different factors, e.g.,
cytokines and/or chemokines such as IL-12 and IFNγ (Th1), IL-
4, CCL17, and CCL22 (Th2) and IL-10 (Treg) and co-stimulatory
molecules such as LFA-1/ICAM-1 (Th1) and CD134 and OX40L
(Th2) (7). In allergy, OX40L expression byDCs has been reported
to be the most important Th2 driving factor (8). Th2 cell
delivered IL-4 plays a key role in development of type 1 allergy
by driving IgE secretion via induction of allergen specific IgE
isotype switching in B-cells and antibody production by plasma
cells, resulting in allergic sensitization (9, 10). Beyond binding to
the FcεRI of allergic effector cells such as mast cells and basophils,
IgE can also bind to this receptor on DCs, further stimulating
the immune response. Finally, Th1 cell derived mediators (IFNγ)
downregulate Th2 cell proliferation and Treg cells are able to
downregulate the proliferation and activation of both Th1 and
Th2 cells.

Allergic Effector Response
Upon a second encounter with the allergen, crosslinking of
the IgE bound FcεR1 receptor by the allergen results in
mast cell and basophil activation and degranulation and the
induction of the allergic effector response.Mast cells releasemany
different components such as histamine, proteases, heparin,
leukotrienes, prostaglandins, cytokines, and chemokines, which
are all involved in the generation of the allergic symptoms
by causing redness, swelling, and vasodilation. Sometimes
this may even lead to an anaphylactic highly acute reaction
within minutes.

Dietary and Environmental Determinants of
Food Allergy Risk
The development of the gastro-intestinal and systemic immune
system is in part driven by the intestinal microbiome.
Microbiome disturbances have been reported to be associated
with different types of allergies (11). Changes in (children’s)
microbiome are claimed to be important in the increase in food
allergy cases although it is not completely evident what is cause
or consequence (12). Such microbiome changes can be caused
by, among others, an increased intake of fat and processed
food, reduced intake of dietary fibers, fruits and vegetables,
and the use of antibiotics during pregnancy and/or in early life
(12–14). Currently no standard treatment is available for food
allergy, therefore, the need for prevention and resolving allergy

is becoming of major concern. One of the factors that may
contribute to the risk of developing food allergy is the quantity
and quality of fat used in current diets. The typical Western
diet is rich in n-6 polyunsaturated fatty acids (PUFAs) and poor
in n-3 PUFAs. The ideal balance of n-3:n-6 PUFAs has been
established to be between 1:3 and 1:5. However, in the current
Western diet, the balance has been shifted to 1:10 to 1:30, which
is dramatically out of balance at the expense of the n-3 PUFAs.
This shift can affect both the microbiome (15) and the immune
system (16) of unborn children when the mother consumes
food rich in n-6 PUFA. It has been recognized that nutrition
plays an important role in the development, maintenance, and
appropriate functioning of the immune system, and consequently
it may also contribute to the prevention and management of
for example food allergies. Food constituents, such as long-
chain polyunsaturated fatty acids (LCPUFAs) may be able to
influence the allergic sensitization and/or effector response
through multiple biological pathways. In this review we will
explore the current knowledge on the use of LCPUFAs in the
prevention of food allergy, and aim to provide insights to
improve future outcomes.

LONG-CHAIN POLYUNSATURATED
FATTY ACIDS

PUFAs are a group of acids that contain more than one double
bond in their molecular structure. The most important PUFA
groups are omega-3 (n-3) and omega-6 (n-6), depending on
the placement of the first double bond, which is either at
the third or the sixth carbon of the methyl end (Figure 1).
In the n-3 group, essential α-linolenic acid (ALA, 18:3n-3)
is enzymatically converted into stearidonic acid (SDA), and
elongated into long-chain eicosapentaenoic acid (EPA, 20:5n-
3), which is converted into docosapentaenoic acid (DPA, 22:5n-
3) and then docosahexaenoic acid (DHA, 22:6n-3). In the n-6
group, essential linoleic acid (LA, 18:2n-6) is converted into long-
chain arachidonic acid (AA, 20:4n-6) (Figure 1). However, the
conversion rate to LCPUFA is limited, and n-3 PUFA compete
with n-6 PUFA for conversion since the same elongation and
desaturation enzymes are used. The n-3 LCPUFA can be obtained
from fatty fish, such as salmon, tuna, mackerel, herring and
sardines, and fish oil. More sustainable sources such as vegetable
oil, nuts, and seeds contain n-3 PUFA ALA, while algae oil is rich
in n-3 LCPUFAs DHA and EPA.

As the result of dietary changes over the last decades, the
balance between n-3 and n-6 PUFAs has been disturbed in favor
of n-6. N-6 PUFAs, present in vegetable oils, such as sunflower,
soybean, and corn oil, are increasingly consumed, while the
intake of n-3 LCPUFA, at least in westernized countries, is
generally low. Since n-6 LCPUFA AA is associated with pro-
inflammatory and n-3 LCPUFAs EPA and DHA with anti-
inflammatory activities, the mentioned imbalance is possibly
contributing to the rise of non-communicable diseases, including
allergies. Usually recommended consumption of two portions of
fatty fish per week corresponds to 200mg DHA per day (17). Due
to efficient digestion and absorption, approximately more than
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FIGURE 1 | Schematic overview of the chemical structures of the n-3 and n-6 PUFAs discussed here.

95% of ingested fatty acids become biologically available and get
incorporated in the phospholipid bilayer of cell membranes (18).

IMMUNOMODULATION BY PUFAS IN
FOOD ALLERGY

PUFAs have attracted attention for prevention of food allergy
for many years, mainly because they are able to target nearly
every cell type within both the allergic sensitization and effector
phase (Figure 2). Upon ingestion, PUFAs are incorporated into
the cell membrane, thereby influencing cell properties such as
membrane fluidity and the inflammatory response (19). In in
vitro experiments, PUFAs are usually added in concentrations
ranging from 2 to 100µM (20–23) to study the effect on mast
cells, DCs, T-cells, or a combination of the latter two. Despite this
variation, most studies report similar results.

During the sensitization phase, PUFAs are able to intervene in
pathways of DCs, T-cells, and IgE production by B-cells as shown
in pre-clinical models. In mouse myeloid DCs activated with LPS
in vitro, DHA has been shown to inhibit MHC-II expression,
activation of CD86 through TLR4, expression of co-stimulatory
molecules (CD40, CD80, and CD86) and inflammatory cytokine
production (IL-6 and IL-12p70), therefore also inhibiting T-cell
activation (24). This has also been shown in vitro using human
DCs (25). Furthermore, in vivo, fish oils rich in the n-3 LCPUFAs
DHA and EPA have been found to modulate the function of T-
cells by suppressing signal transduction through the TCR and
CD28, thereby reducing activation by DCs and proliferation of
CD4+ T-cells (26). Proliferation of CD4+ T-cells has also been
described to be reduced directly by incorporation of EPA, DHA

and AA in the membrane in both ex vivo and in vitro studies (27,
28). Downregulation of DC-T-cell activation results in a decrease
in secretion of pro-inflammatory cytokines TNF-α and IL-12 and
an increase in IL-10 production and expression (22, 25, 29). N-3
LCPUFAs DHA and EPA have been described to also modulate
inflammation by binding to several receptors, such as GPR120
and nuclear receptor PPARα/γ (30). Furthermore, DHA and, to
a lesser extent, EPA, have been reported to prevent and reduce
cow’s milk and peanut allergy in mice (31) by reducing IgE, IgG1,
and IgG2a levels and the generation of Treg, while lowering both
Th2 and Th1 activation (32). In contrast, a 10% soybean diet, rich
in-6 PUFAs, has been reported to enhance the allergic reaction
to cow’s milk by enhancing Th2 cell polarization and the allergic
effector response (33). This could be reduced by increasing the
amount of n-3 LCPUFAs in the diet, indicating that the ratio
of n-3:n-6 PUFAs in the diet is important in immune system
modulation (31). Therefore, unraveling the differential effects of
n-3 vs. n-6 LCPUFAs or mixtures on immune cells may reveal
new avenues for more specific nutritional interventions.

In the effector phase, PUFAs (n-3 alone or in varying ratios
to n-6) have been shown to reduce histamine and leukotriene B4
levels when supplemented to mast cells (MCs) (34, 35). However,
n-6 PUFA AA has been shown to activate intracellular ROS
production, increase MC degranulation mediated by IgE, and
TNF-α and PGD2 release (36, 37). AA is an eicosanoid precursor
and can be converted via the cyclooxygenase pathway into
prostaglandin H2 (PGH2). Both PGD2 and PGE2 are synthesized
from PGH2, which are important in allergic symptoms by
increasing vascular permeability and in maintaining allergy
through the activation of Th2 cells. PGD2 is a prostaglandin,
which is a subclass of eicosanoids, mainly secreted by MCs
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FIGURE 2 | The effect of PUFAs on food allergy. The color of the arrows and text indicate if the evidence is obtained from clinical, in vivo or in vitro data. The +

or—indicates if the observed effect is an inhibitory or stimulatory response of a certain cell type. Note that clinical and in vivo arrows indicate the observed end stage

effects only, this may not be a reflection of the direct effect of PUFAs on the target cells. Therefore, the components could actually target a cell group earlier in the

pathway.

and one of the key molecules in the induction of food
allergy symptoms (38). On the other hand, n-3 PUFAs
DHA and EPA inhibit MC degranulation, and IL-4 and IL-
13 secretion and PGD2 release by MCs (37). DHA, which
like EPA, is known to compete with AA for membrane
incorporation, has been shown to be negatively correlated
to the AA metabolite PGE2 levels in human serum (39),
supporting the findings that n-3 LCPUFA DHA is potentially
effective in decreasing food allergy risk and symptoms in the
effector phase.

Clinical trials exploring the effect of n-3 LCPUFAs during
pregnancy and/or lactation on allergic outcomes (e.g., food
allergy, asthma, atopy, and wheezing) are contradicting.
Supplementation of fish oil starting early during pregnancy and
continuing during breastfeeding was shown to reduce allergic
sensitization for food proteins in the offspring (40). Lower
Th2 associated cytokine levels of IL-13 were measured in the
plasma of these children (41). Formula supplemented with AA
and DHA was also shown to prevent allergy development in
young children compared to non-supplemented formula milk
(42). From epidemiological studies it is known that allergy is
associated with low n-3 LCPUFAs, especially EPA and DHA, and
high n-6 LCPUFAs in plasma or serum (43, 44), indicating a
protective effect of n-3 LCPUFAs and the importance of aiming
for an optimal balance of n-3 over n-6 LCPUFA (1:3–1:5) for
immune development in neonates. However, follow up studies,
often using the age group 1–5 years, report no lasting effects on
sensitization prevention when n-3 LCPUFAs were supplemented
during gestation (45–47). By contrast, in another study 2 years
after supplementation, lower IgE levels in children whose
mothers received n-3 LCPUFAs were still detected (48). In an
extensive Cochrane review on the supplementation of fatty fish

or n-3 PUFAs during pregnancy combining the results of eight
different trials, including 3,366 woman and 3,175 children, it was
concluded that the evidence for effective food sensitization and
allergy prevention however is limited (49). Although a reduction
in IgE-mediated allergy was observed in children between 12 and
36 months old, and reduced sensitization to egg was reported,
no significant differences have been found in sensitization to
cow’s milk, wheat and peanut proteins. Of note, most trials
(5/8) supplemented the woman with n-3 LCPUFAs prenatally
only (45, 50–53), two only shortly after delivery (54, 55), whilst
only one trial supplemented both pre- and post-natal (40). The
latter study however showed the biggest effect on prevention
of sensitization and allergic outcome in the first year of life.
Hence, the timing of intervention during gestation, continuation
during lactation, the dose of n-3 LCPUFA oils supplemented,
the achieved levels of n-3 LCPUFA membrane incorporation
and genetic pre-disposition may be determinants for possible
allergy protective capacities of n-3 LCPUFA in neonates.
Continuation of n-3 LCPUFA supplementation during early life
maybe implicated to enforce possible beneficial effects on allergic
sensitization and atopic risk during infancy (56). A summary of
all LCPUFA effects in clinical, in/ex vivo and in vitro described in
this review are summarized in Table 1.

COMBINING LCPUFAS TO PREVENT
LIPID PEROXIDATION

When using n-3 LCPUFAs as supplements aiming to reduce
the risk of allergic sensitization in order to lower the chance of
food allergy development, their high susceptibility to oxidative
degradation should be carefully dealt with. Several strategies can
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TABLE 1 | A summary of all PUFA related experiments and clinical trials described in this review.

Type of cells Species Type of

experiment

Type of PUFA PUFA effects References

SENSITISATION PHASE

DCs Mouse in vitro DHA Inhibition of MHC-II and co-stimulatory molecule (CD40,

CD80, CD86) expression, CD86 activation and

inflammatory cytokine production

(24)

DCs Human in vitro EPA, DHA Inhibition of co-stimulatory molecules, reduction of

inflammatory cytokine production, reduced T-cell

proliferation

(25)

DCs and

T-cells

Mouse ex vivo EPA/DHA rich oil PUFA exposed T-cells show reduced response to DCs (26)

T-cells Mouse ex vivo DHA Reduced T-cell proliferation (27)

T-cells Human in vitro AA, EPA Reduced T-cell proliferation (28)

T-cells Mouse ex vivo EPA/DHA rich oil Reduced T-cell response, increased anti-inflammatory

cytokine production

(29)

Treg cells Mouse in vivo DHA rich oil Reduced allergic response and antigen-specific IgE

levels and increased Treg cells

(31, 32)

Th2 cells Mouse in vivo N-6 rich oil Enhanced allergic response, enhanced Th2 polarization (33)

EFFECTOR PHASE

MCs Guinea Pig in vivo n-3/n-6 High n-3/n-6 ratio reduced MC response, histamine and

leukotriene B4 production

(34)

MCs Mouse in vitro ALA, EPA, DHA Reduction of leukotriene B4, C4, and 5-HETE (35)

MCs Rat in vitro AA, EPA AA enhanced TNFα production, AA and EPA enhanced

ROS production

(36)

MCs Human in vitro AA, EPA, DHA AA enhanced IgE mediated degranulation, PGD2, and

TNFα production, DHA inhibited PGD2, DHA, and EPA

inhibited ROS, IL-4, and IL-13 production more than AA

(37)

CLINICAL OUTCOMES

Clinical trial

DBPCRT

Fish oil during

pregnancy/breastfeeding vs.

olive or soybean oil control

Reduced allergic sensitization and allergy risk, lower

IL-13 plasma levels

(40, 41, 51)

Clinical trial

DBPCRT

AA/DHA formula vs. plain formula Reduced allergy risk (42)

Clinical study

Observational

EPA, DHA Lower levels in allergic children, negatively correlated

with serum IgE levels

(43, 44)

Clinical trial

DBPCRT

Fish oil during pregnancy or

breastfeeding

No lasting effect on sensitization or allergy risk at age 1-5

years

(45–47)

Clinical trial

DBPCRT

Fish oil during

pregnancy/breastfeeding vs.

soybean oil control

Lower IgE levels after 2 years, reduced allergic severity (48)

Clinical trial

DBPCRT

Salmon (2 times/week) during

pregnancy vs. normal diet

Lower pro-inflammatory cytokine levels in cord blood, no

effect on allergy risk

(52)

Clinical trial

DBPCRT

Fish oil during breastfeeding vs.

olive/soybean oil control

Higher serum IFNy, no difference in food allergy

development

(54, 55)

In all clinical trials the mother received fish oil during pregnancy and/or breastfeeding and effects were measured in the children. DBPCRT, double blind placebo controlled randomized trial.

be used to reduce lipid peroxidation of LCPUFAs. For example,
Raederstorff et al. (57) stated that the intake of PUFAs should
be directly linked to the vitamin E requirement. Vitamin E
is a fat-soluble vitamin that has a principal role in defense
against oxidant-induced membrane injury and it may have anti-
inflammatory capacities as well (58). As vitamin E resides in the
membrane phospholipid bilayer in cells, as do PUFAs (59), it
facilitates membrane stabilization and protection against lipid
peroxidation by scavenging peroxyl fatty acid radicals that will
then be transferred to liquid phase anti-oxidants like vitamin C.

Therefore, based on the amount of PUFAs in an average Western
diet, the authors recommend a dose of vitamin E between 12 and
20 mg/day (57).

Another possible group that can help to reduce lipid
peroxidation are flavonoids. Flavonoids also have anti-
inflammatory effects beyond their anti-oxidant activity and
can inhibit enzymes involved in the production of eicosanoids.
Therefore, flavonoids have been proposed to be useful in allergy
prevention (60–63). By interaction with ROS (superoxide O2,
hydroxyl radical •OH and H2O2) and RNS (Reactive Nitrogen
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Species), flavonoids can terminate the chain reaction in lipid
peroxidation caused by free radical formation before cell
viability is seriously affected and they are able to modulate
inflammatory processes (64, 65). Importantly, ROS have been
shown to enhance the differentiation to Th2 cells by stimulating
the production of IL-4 through the activation of STAT6 and
GATA3 in a mouse model (66). The most studied flavonoid
might be quercetin and its metabolites have been shown to
be localized in the phospholipid bilayer (67, 68). Quercetin
can be found in red wine, apples, green tea and onion and
contains both anti-inflammatory and anti-oxidative properties
(69). It has been reported to inhibit leukotriene B4 levels in
MCs (70), reduce the gene expression of pro-inflammatory
cytokines (TNF-α, IL-1β, IL-6, and IL-8) (71) and suppress
inflammation in IgE-mediated intestinal epithelial cell (Caco-2)
and rat basophil (RBL-2H3) activation models (72). Flavonoids
have also been shown to inhibit allergic effector cells such as MCs
known to contribute to allergic symptoms (73). For example,
inhalation of quercetin has been shown to lower MC numbers
and allergy associated cytokine levels such as IL-4, in a mouse
model for allergic inflammatory lung disease (74). Therefore, it
may be considered to combine LCPUFAs supplementation for
food allergy prevention with flavonoids like quercetin, for its
anti-oxidant as well as anti-inflammatory properties which may
contribute to the effects of n-3 LCPUFA in allergy prevention.
In this regard, PUFA-flavonoid hybrids or conjugates or mixed
flavonoid-fish oil supplements are at the moment explored by
several groups albeit not yet as a purpose to reduce allergy
risk (75–77).

FUTURE PERSPECTIVES: PREVENTION
AND TREATMENT OF FOOD ALLERGY

Currently, in literature there are many discrepancies between
studies regarding timing and dose of the n-3 LCPUFA
supplementation, as well as the described outcomes. Therefore,
as mentioned previously, one strategy to more extensively study
allergy prevention could be a constant supplementation of n-
3 LCPUFAs to children, both during and after pregnancy (by
breast feeding or formula), which will maintain adequate n-3
LCPUFA levels. Another, perhaps more interesting strategy for
food allergy prevention may be to supplement pregnant women
and their offspring with a combination of LCPUFAs, proper
levels of vitamin E and flavonoids as additional component
with anti-oxidant and anti-inflammatory properties. A balanced
intake of LCPUFAs, vitamins, and flavonoids could be achieved

by a simple change in diet. Mediterranean food is an example
of food containing multiple bioactive dietary components and
frequently proposed to be beneficial for human health, as it
contains fatty fish and nuts (rich in n-3 PUFAs), olive oil (rich
in oleic acids and anti-oxidants), fruits (rich in vitamins and
flavonoids), and wine (rich in flavonoids) (78). Several studies
have shown a positive correlation between the Mediterranean
diet, consisting mainly of fish, fruits, vegetables, legumes, nuts,
and cereals, during pregnancy and a reduction of allergic asthma
and rhinitis (79–81). Another popular source of flavonoids and

micronutrients is cocoa from the cacao tree. In vivo, it has
been shown to have immunomodulatory properties, including
suppression of IgE, TNF-α, and IL-10 levels (82, 83). Finally, a
popular food supplement in the early 1900s was cod liver oil
which is still being used mostly in Northern Europe countries
and North America. It contains both vitamin A and D and
is a sustainable source of n-3 LCPUFAs. Even though the
use of cod liver oil could still be beneficial, as shown in a
study on rheumatoid arthritis (84), others suggest that, because
vitamin A and D are nowadays supplemented in our food, the
intake could actually be harmful and positively correlated to
asthma (85).

A striking observation when exploring the possibilities of
LCPUFAs in food allergy is that while n-3 LCPUFAs are able
to target both the sensitization and effector phase, all clinical
trials and most in vivo studies focus only on prevention of
sensitization and food allergy. Hence, studying the effects of n-
3 LCPUFA supplementation either or not with additive selected
nutrients having anti-oxidant and anti-inflammatory properties
not only in the prevention but also for allergic symptom relief
may be considered. Therefore, more studies should be conducted
exploring the conditions by which n-3 LCPUFAs and other
nutrients are able to reduce the risk to develop food allergy and
possibly the severity of allergic symptoms.
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