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Treatment response assays are often summarized by sigmoidal functions comparing

cell survival at a single timepoint to applied drug concentration. This approach has

a limited biophysical basis, thereby reducing the biological insight gained from such

analysis. In particular, drug pharmacokinetic and pharmacodynamic (PK/PD) properties

are overlooked in developing treatment response assays, and the accompanying

summary statistics conflate these processes. Here, we utilize mathematical modeling to

decouple and quantify PK/PD pathways. We experimentally modulate specific pathways

with small molecule inhibitors and filter the results with mechanistic mathematical

models to obtain quantitative measures of those pathways. Specifically, we investigate

the response of cells to time-varying doxorubicin treatments, modulating doxorubicin

pharmacology with small molecules that inhibit doxorubicin efflux from cells and DNA

repair pathways. We highlight the practical utility of this approach through proposal of

the “equivalent dose metric.” This metric, derived from a mechanistic PK/PD model,

provides a biophysically-based measure of drug effect. We define equivalent dose as

the functional concentration of drug that is bound to the nucleus following therapy.

This metric can be used to quantify drivers of treatment response and potentially guide

dosing of combination therapies. We leverage the equivalent dose metric to quantify

the specific intracellular effects of these small molecule inhibitors using population-scale

measurements, and to compare treatment response in cell lines differing in expression of

drug efflux pumps. More generally, this approach can be leveraged to quantify the effects

of various pharmaceutical and biologic perturbations on treatment response.
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INTRODUCTION

The parameterization of in vitro treatment response data is
central to biomarker and drug discovery and the quantitative
study of cancer therapies. With recent exceptions (Hafner et al.,
2016; Harris et al., 2016), investigation of treatment response
in vitro has been limited to cell survival assays that assess cell
viability at a single, specified timepoint following treatment with
a temporally constant concentration of drug. A range of drug
concentrations are evaluated in these assays, and the results are
conventionally summarized by Hill function parameters, which
quantify cell survival with respect to applied drug concentration
(Fallahi-Sichani et al., 2013). While this approach has yielded
significant insights into cancer biology, it is fundamentally
limited by the coarseness of parameters used to summarize
treatment response. In particular, these parameters do not
explicitly characterize the dynamics of treatment and subsequent
response. Further, response metrics are reported relative to the
extracellular concentration of drug in the assay, overlooking drug
exposure times and variable cell line pharmacologic properties.
This not only impairs analysis of in vitro treatment response data,
but also presents a challenge in translating these therapies in vivo.

There are a host of biochemical processes that modulate a
tumor cell’s response to therapy. For example, the accumulation
of drug within cells can be altered by drug metabolism or

modification of surface proteins that regulate drug flux through
the membrane (Larsen and Skladanowski, 1998; Larsen et al.,
2000). Indeed, the multi-drug resistance protein 1 (MDR1) is

a well-studied mechanism of resistance to cytotoxic therapies
(Clarke et al., 2005). This ATP-dependent pump actively effluxes
drug from cells, decreases drug accumulation within cells, and

confers resistance to anthracyclines, taxanes, and several other
agents (Mechetner et al., 1998). Similarly, pharmacodynamic
response to therapies can be altered through modulation of
signaling pathways downstream of the therapeutic target. With
respect to DNA-damaging agents, changes in DNA repair
pathways, which are activated in response to treatment, can
alter sensitivity to those agents (Fink et al., 1998; Bouwman
and Jonkers, 2012). For example, DNA-dependent protein kinase
(DNA-PK) plays a major role in the repair of double strand DNA
breaks via non-homologous end joining (Smith and Jackson,
1999). Increased expression of DNA-PK has been shown to
confer resistance to doxorubicin, an anthracycline commonly
used clinically (Shen et al., 1998). Fundamentally, cell line-
specific pharmacokinetic and pharmacodynamic properties, such
as those described above, drive observed treatment responses.
Using conventional methods, these processes are conflated by
the parameters used to summarize in vitro dose response
data (Prentice, 1976; Fallahi-Sichani et al., 2013). The resulting
parameters are imprecise measures of drug efficacy, which limits
the biological insights to be gained from the data.

More precise technologies are required to advance systems
approaches to studying cellular response to therapy (Anderson
and Quaranta, 2008). We posit that a mechanistic, mathematical
modeling framework is essential to maximize the knowledge
gained through treatment response studies (Yankeelov et al.,
2013, 2015). In this paradigm, biologically-motivedmathematical

models are constructed to describe observed behaviors of the
system under investigation. The model is then fit to experimental
data, yielding a set of parameter values that provide mechanistic
insight into observed data. There exist several models in the
literature that explicitly incorporate drug pharmacokinetics (PK)
and pharmacodynamics (PD) to describe treatment response.
In vitro, transit compartment models have been used to describe
the temporal relationship between drug application and effects
(Lobo and Balthasar, 2002). More biologically-motivated PK/PD
models have been employed to study specific pharmacokinetic
and pharmacodynamic parameters (Lankelma et al., 2003, 2013).
PK/PDmodels have also been developed to investigate treatment
response in vivo (Simeoni et al., 2004; Sanga et al., 2006;
Wang et al., 2015). Recently, we proposed and validated a
coupled PK/PDmodel of doxorubicin treatment response in vitro
(McKenna et al., 2017). The model incorporates measured
doxorubicin pharmacokinetics and pharmacodynamics and
predicts response to a specified treatment timecourse on a
cell line-specific basis. The model behaves consistently across
a wide spectrum of treatment protocols and cell lines, thereby
demonstrating that the response dynamics of cancer cell lines
to doxorubicin is predictable within this framework. Specifically,
the PK model-estimated concentration of doxorubicin bound
to the cell nucleus is predictive of cell line pharmacodynamic
rates. We further noted a mismatch of drug uptake and response
among the investigated cell lines, suggesting that each cell line
has an intrinsic sensitivity to stress induced by doxorubicin.
By explicitly modeling both drug uptake and subsequent effect,
these processes can be independently quantified to study each
component of treatment response (McKenna et al., 2017).

It is the goal of the present effort to demonstrate the
utility of a mechanistic, mathematical modeling framework
in quantifying treatment response and PK/PD pathways. We
leverage mathematical models to filter experimental data to yield
quantitative measures of specific cellular processes. Specifically,
we experimentally perturb doxorubicin pharmacokinetics and
pharmacodynamics with chemical inhibitors of each process. We
modulate pharmacokinetics in anMDR1 over-expressing cell line
and modulate pharmacodynamics via DNA-PK in a BRCA1-
mutated cell line. These data are analyzed with the proposed
PK/PD model to yield quantitative measures of these pathways.
We further illustrate the utility of our approach by proposing
the equivalent dose metric, which we derived from the PK
model. The equivalent dose is analogous to that in radiation
therapy, which is used to compare radiation fractionation
schedules (Fowler, 1992). In the context of chemotherapy,
we define equivalent dose as a functional measure of drug
exposure. We specify that for a given equivalent dose, treatment
response dynamics are similar. As this approach accounts for
variable pharmacologic properties, we posit that it allows for
more precise comparisons among cell lines relative to metrics
based on extracellular drug concentration. We demonstrate this
experimentally through comparison of treatment response in
cell lines differing only in MDR1 expression. The modeling-
based framework proposed in this work can be leveraged to
more precisely quantify the effects of various pharmaceutical and
biologic perturbations on treatment response.
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MATERIALS AND METHODS

Mathematical Model of Doxorubicin
Treatment Response
Doxorubicin is an anthracycline that remains standard-of-care
therapy for several cancers (Tacar et al., 2013). Ultimately,
doxorubicin induces a host of cellular stress responses which
either inhibit further DNA synthesis allowing for cellular
recovery, or initiate a cascade leading to cell death (Gewirtz,
1999). At high doxorubicin concentrations, extensive DNA
damage often results in cell death via apoptosis. Low to moderate
concentrations of doxorubicin induce cell senescence and cell
death via mitotic catastrophe (Chang et al., 1999; Eom et al.,
2005). Whereas, apoptosis is immediate (on the order of hours
to days), mitotic catastrophe is a relatively protracted process (on
the order of several days).

We previously developed and validated a parsimonious
treatment response model to describe doxorubicin
pharmacokinetics and pharmacodynamics (McKenna et al.,
2017). Briefly, a three-compartment model was employed to
describe the uptake and binding of doxorubicin in cancer
cells. This process is modeled via mass conservation through
Equations (1–3):

dCE (t)

dt
= kFE

vI

vE
CF (t) − kEFCE (t) (1)

dCF (t)

dt
= kEF

vE

vI
CE (t) − kFECF (t) − kFBCF (t) (2)

dCB (t)

dt
= kFBCF (t) (3)

where CE (t), CF (t), and CB (t) are the concentrations of
doxorubicin in the extracellular, free, and bound compartments,
respectively, at time t. The free compartment represents drug
that has diffused into the cell, while the bound compartment
represents drug that has bound to DNA. The kij parameters
are rate constants that describe the movement of doxorubicin
between the ith and jth compartments; for example, kFE describes
the rate of drug transfer from the free, intracellular compartment
to the extracellular compartment. Similar definitions apply to
kEF and kFB. The volumes of the extracellular and intracellular
compartments are denoted by vI and vE, respectively (see
Table 1 for a full list of model parameter definitions). We note
that in this model, several intracellular processes, including
doxorubicin metabolism and dissociation from DNA, are not
explicitly considered. In previous work (McKenna et al., 2017),
we evaluated the performance of several candidate models
in describing our experimental data (described in section
Doxorubicin Uptake Imaging and Image Processing) with the
Akaike information criterion. Of the proposed models, we found
that Equations (1–3) best balanced accuracy and the number of
model parameters.

A logistic growth model, Equation (4), modified by either of
two empirical time-dependent response functions, Equations (5,
6), reflecting distinct mechanisms of cell death, was proposed
to describe population level response to doxorubicin therapy

as follows:

dNTC (t)

dt
=

(

kp − kd (t,D)
)

NTC (t)

(

1−
NTC (t)

θ (D)

)

(4)

kd (t,D) =

{

0 t < 0
kd,a (D) t ≥ 0

(5)

kd (t,D) =

{

0 t < 0

kd,b (D) r (D) te1−r(D)t t ≥ 0
(6)

where kp and kd are the proliferation and dose-specific death
rates, respectively, D is the delivered dose [defined to be the
bound concentration of drug, CB, calculated with Equations
(1–3)], r is a dose-specific constant describing the rate at
which treatment induces an effect, θ is the dose-specific
carrying capacity describing the maximum number of cells that
can be observed in the experimental system, and NTC(t) is
the number of cells at time t. Logistic growth models have
traditionally been used to describe growth of a variety of
biological species whose total size is limited (Gerlee, 2013; Jarrett
et al., 2018). This equation accurately describes our experimental
system (described in section Doxorubicin Treatment Response
Imaging), in which cell population is limited by the surface area
of the experimental platform. Prior to treatment (i.e., t < 0), cells
are modeled to have a constant proliferation rate, kp. Following
treatment at t = 0, Equation (5) assumes an immediate induction
of a stable, post-treatment death rate (kd,a). Equation (6) allows
for a smooth induction of drug effect following treatment to
a maximum death rate of kd,b, while ultimately allowing for
recovery of the cell population. The dynamics of this induction
and decay is governed by r. A weighted averaging approach
is used to incorporate both Equations (5, 6) in the treatment
response model. This model was designed to describe cell death
via apoptosis Equation (5) and mitotic catastrophe Equation (6)
and fit experimental data well. Further details on the model can
be found in McKenna et al. (2017).

TABLE 1 | Model parameter definitions.

Model

Parameter

Units Definition

kEF h−1 Rate of drug influx into cell

kFE h−1 Rate of drug efflux from cell

kFB h−1 Mixed rate of drug binding and DNA repair

CE nM Extracellular doxorubicin concentration

CI nM Intracellular, extranuclear doxorubicin concentration

CB nM Concentration of doxorubicin bound to the nucleus

Deq nM Equivalent dose

NTC Count Number of cells

kp h−1 Proliferation rate of cells

θ Count Carrying capacity of experimental system

kd,a h−1 Death rate assumed in Equation (5)

kd,b h−1 Death rate assumed in Equation (6)

r h−1 Rate of induction and decay of death rate in Equation (6)

Complete listing of model parameter definitions.
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FIGURE 1 | Overview of equivalent dose metric. The response to therapy is

determined by the applied drug concentration and cell-specific pharmacologic

properties. Traditionally, therapeutic response is summarized relative to the

applied extracellular concentration of drug. We propose the equivalent dose

metric, Deq, to summarize the contributions of various pharmacologic

properties in shaping treatment response. We define equivalent dose as a

measure of the functional drug concentration that enters the cell. The

equivalent dose is calculated through a mechanistic biophysical model that

considers several sources of variability in shaping treatment response. The

metric consolidates variable drug uptake (quantified with kEF ), efflux (quantified

with kFE ), and binding (quantified with kFB) into a single descriptor of

treatment. The equivalent dose summarizes pharmacologic properties to

provide biological insight into treatment response and allows for more precise

comparison of treatment response among cell lines.

Equivalent Dose
We define equivalent dose (Deq) as a functional measure
of therapy, a summary statistic connecting the amount of
drug delivered with the biological effect of that drug. In the
context of doxorubicin therapy, we define equivalent dose as
the functional concentration of drug that is bound to the
nucleus following therapy. To calculate Deq for a specified
treatment condition (i.e., extracellular drug concentration
timecourse), Equations (1–3) are populated by cell-line- and
treatment-specific kEF , kFE, and kFB parameters derived from
experimental data (described below). The model is then
simulated using the experimentally-defined treatment condition.
Deq is the maximum concentration of bound drug (CB)
as predicted by the simulation. We hypothesize that the
equivalent dose metric can account for variable cell line
pharmacologic properties through its explicit consideration of
kEF , kFE, and kFB rates, and it can be leveraged to quantify
the effect of agents that modulate those properties. Notably,
in proposing the equivalent dose, we lump pharmacodynamic
effects into the kFB term. Specifically, kFB is a mixed measure
of doxorubicin binding and DNA repair and describes the
functional net binding rate. The equivalent dose is illustrated
in Figure 1.

Cell Lines
The MDA-MB-468 and SUM-149PT cell lines were obtained
through American Type Culture Collection (ATCC, http://
www.atcc.org) and maintained in culture according to ATCC
recommendations. Cell lines were passaged no more than 30
times before being discarded. To facilitate automated image
analysis for identifying and quantifying individual nuclei in time-
lapsed microscopy experiments (described below), each cell line
was modified to express a histone H2B conjugated to monomeric
red fluorescent protein (H2BmRFP; Addgene Plasmid 18982) as
previously described (Quaranta et al., 2009; Tyson et al., 2012).

To specifically modulate doxorubicin pharmacokinetics,
the H2BmRFP-expressing MDA-MB-468 cell line (MDA-
MB-468H2B) was transduced to express a green fluorescent
protein (GFP)-tagged MDR1 protein (ABCB1 gene, Origene
Technologies, Rockville, MD). Following transduction, the cell
line was cultured in 100 nM doxorubicin for 2 weeks to select a
doxorubicin-resistant phenotype (MDA-MB-468MDR1). These
cells were serially imaged to ensure that all surviving cells stably
expressed GFP.

The SUM-149PT cell line possesses a BRCA1 2288delT
mutation (Elstrodt et al., 2006). BRCA1 is involved in
maintaining genome stability through its role in repairing
double strand DNA-breaks via homologous recombination
(Gudmundsdottir and Ashworth, 2006). The BRCA1 mutation
causes an increased reliance on alternate DNA damage repair
pathways, such as non-homologous end joining (Farmer et al.,
2005). The DNA damage repair pathway mediated by DNA-
PK was targeted with a small molecule inhibitor to specifically
modulate doxorubicin pharmacodynamics in the SUM-149PT
cell line.

Chemicals
Doxorubicin was purchased from Sigma Aldrich (St. Louis, MO)
and dissolved to a 1mM stock concentration in sterile saline for
subsequent experiments. Tariquidar (TQR) is a third-generation
MDR1 inhibitor that non-competitively inhibits MDR1 function
(Mistry et al., 2001). TQR is leveraged to modulate doxorubicin
pharmacokinetics in the MDA-MB-468MDR1 cell line. NU7441
is a DNA-PK inhibitor that has been investigated as a means
to improve treatment response to DNA-damaging agents (Zhao
et al., 2006; Ciszewski et al., 2014). NU7441 is used to modulate
doxorubicin pharmacodynamics in the SUM-149PT cell line.
TQR and NU7441 were both purchased from Selleckchem
(Boston, MA). Each was dissolved to a 1mM stock concentration
in DMSO. We subsequently refer to these therapies (TQR and
NU7441) as sensitizers. All solutions were stored in 250 µL
aliquots at -80◦C.

Doxorubicin Uptake Imaging and Image
Processing
Time resolved fluorescent microscopy was employed to
characterize the uptake of doxorubicin by each cell line (MDA-
MB-468H2B, MDA-MB-468MDR1, and SUM-149PT) using a
modification of the previously-published drug uptake assay
(McKenna et al., 2017). The method leverages the intrinsic
fluorescence of doxorubicin to quantify the movement of
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doxorubicin from the extracellular space into cells. Briefly,
each cell line was introduced into 96-well microtiter plates at
∼10,000 cells per well. Each well was imaged at 20–25min
intervals via fluorescent microscopy with a 20× objective in
2×2 image montages on a BD Pathway 855 Bioimager (BD
Biosciences, San Jose, CA). Imaging began 1 h prior to and
continued for approximately 24 h following application of
1µM of doxorubicin. After 8 h, doxorubicin was removed via
media replacement. This timeframe allowed for an extended
observation of drug uptake without inducing morphological
changes and cell death that would limit the effect of the
measurement. To measure the effect of TQR and NU7441
on drug uptake kinetics in the MDA-MB-468MDR1 and the
SUM-149PT cell lines, respectively, each sensitizer was applied
over a range of concentrations (250–2 nM for TQR and 2
µM−16 nM for NU7441 both via a 2-fold dilution series) 1 h
prior to doxorubicin application. At least three replicates of each
treatment condition were collected.

The collected images were subsequently post-processed to
correct for uneven background illumination and to isolate the
contribution of each fluorophore in the experiment. First, the
illumination function for each image was estimated (Jones et al.,
2006). The image is defined:

I = L
(

C + b
)

where I is the image, L is the illumination function, C is signal
from cells, and b is the background. The signal from cells was
removed from each image through use of a median disc filter
with a radius of 50, isolating b. To estimate L, the background-
only images in each well were averaged over all timepoints. A
smooth surface was fit to this averaged image, and the surface
was normalized to a maximum value of 1. Each image in the
time series was divided by this surface (L) to correct for uneven
illumination. Following illumination correction, a threshold-
based approach was used to segment each cell.

To account for the various fluorophores in the experiment
(H2BRFP, MDR1GFP, and doxorubicin), a linear unmixing
approach was employed to isolate the signal from each
fluorophore to more precisely quantify doxorubicin
accumulation (Zimmermann, 2005). The approach leverages
spectral imaging data collected at multiple excitation and
emission wavelengths to isolate the signal from each fluorophore.
This method can also be used for background subtraction by
modeling the background (here, the signal from cell culture
media) as an additional fluorophore. For these experiments, we
define four fluorophores of interest: MDR1GFP, doxorubicin,
H2BRFP, and background. The observed images are modeled as a
linear combination of the signals from each of these fluorophores:

[

SH2B SMDR SDox Sbackground
]

T4×n =
[

I1 I2 ... In
]

where SH2B is the signal from the H2BRFP, SMDR is the signal
from the GFP-taggedMDR1, SDox is the signal from doxorubicin,
and Sbackground is the background signal from cell culture media.
T is the transformation matrix that estimates the contribution
from each fluorophore in creating each image I. In this work, five

TABLE 2 | Filter settings.

Image Excitation (nm) Dichroic (nm) Emission (nm)

I1 470/40 515, longpass 515, longpass

I2 470/40 515, longpass 570, longpass

I3 470/40 515, longpass 575/25

I4 470/40 515, longpass 540/50

I5 548/20 595, longpass 645/75

Fluorescence imaging filter sets used to collect pharmacokinetics data.

images (n = 5) were collected at each timepoint. The excitation,
dichroic, and emission filters for each image are listed in Table 2.

To construct T, images of each fluorophore were collected
from control samples. Specifically, control images of GFP,
H2BRFP-positive cells, doxorubicin, and background were
collected. For each fluorophore, the image with the highest
intensity is assumed to be the true image; i.e., the corresponding
entry in T is set to 1. The relative intensity of the other
four images with respect to the true image are then estimated.
This normalized spectrum is deposited into the row of T
corresponding to the current fluorophore. T is estimated
at each timepoint to compensate for any temporal changes
in fluorophore intensity.

With an estimate of T and a spectral image set for
each well at each timepoint, the underlying signals (i.e.,
SH2B, SMDR, SDox, Sbackground) can be estimated using QR
decomposition [implemented in MATLAB (Mathworks, Natick,
MA)]. This can be done on a per-pixel basis as shown in
Supplementary Figure 1. However, as we are only interested
in the intracellular and extracellular doxorubicin signals,
the average value from each image in the intracellular
and extracellular (Ii,I , Ii,E) space was calculated using a
cell segmentation (as detailed above). Each signal can then
be recovered:

[

SH2B,I SMDR,I SDox,I Sbackground,I
SH2B,E SMDR,E SDox,E Sbackground,E

]

T4×n =

[

I1,I . . . I5,I
I1,E · · · I5,E

]

where SDox,I and SDox,E are the signals from doxorubicin in
the intracellular and extracellular spaces, respectively. Similar
definitions apply for the other signals S.

Finally, SDox is converted into doxorubicin concentration. We
assume that doxorubicin signal is linearly proportional to its
concentration, [Dox] (McKenna et al., 2017):

SDox = a [Dox]+ b

To calibrate this model, images are collected on a series of
wells containing a range of known doxorubicin concentrations.
Estimates of a and b were obtained by fitting the doxorubicin
signal equation to these control data. The image processing
pipeline is illustrated in Supplementary Figure 1.

Doxorubicin Treatment Response Imaging
Using the previously-published dose-response assay, each cell
line was treated with a range of doxorubicin concentrations
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(5,000–10 nM via a 2-fold dilution series) for 24 h as
monotherapy. Additionally, the sensitizing effects of TQR
and NU7441 in the MDA-MB-468MDR1 and the SUM-149PT
cell lines, respectively, were investigated by applying those
therapies over a range of concentrations 1 h prior to application
of doxorubicin. TQR concentrations in a 2-fold dilution series
from 250 to 2 nM were used for the MDA-MB-468MDR1 cell
line, and NU7441 concentrations in a 2-fold dilution series from
2µM to 15 nM were used for the SUM-149PT cell line. These
combination studies were each performed at three doxorubicin
concentrations. All drug (doxorubicin and sensitizer) was
removed from each well via media replacement at 24 h. These
cells were imaged daily via fluorescent microscopy for at least
15 days following treatment. For these studies, fluorescence
microscopy images were collected using a Synentec Cellavista
High End platform (SynenTec Bio Services, Münster, Germany)
with a 20× objective and tiling of 25 images. To generate images,
the H2BmRFP fluorophores were excited with 529 nm light for
650ms, and emissions were collected at 585 nm. Nuclei were
segmented and counted in ImageJ (http://imagej.nih.gov/ij/)
using a previously-described, threshold-based method (Frick
et al., 2015) to quantify cell population. Six replicates of each
treatment condition were collected. Media was refreshed every
3 days for the duration of each experiment to ensure sufficient
growth conditions for surviving cells. Data were manually
truncated when cell populations reached carrying capacity. At
this point, signals from neighboring nuclei overlap, and the cell
counting algorithm becomes unreliable.

Model Fits
The three-compartment model described in Equations (1–3)
was fit to the uptake data under each treatment condition
(doxorubicin monotherapy and doxorubicin combination with
sensitizer) for each cell line using a non-linear least squares
optimization implemented in MATLAB. Of note, each cell
line is assumed to have a single set of compartment model
parameters (kEF , kFE, and kFB) for each sensitizer concentration;
i.e., a parameter set for doxorubicin monotherapy and a set
for each sensitizer concentration. The mean errors of the
best-fit model across all timepoints and treatment conditions
with respective standard deviations are reported. Similarly, the
pharmacodynamic model described by Equations (4–6) was fit
to the dose response data from all treatment conditions (i.e.,
doxorubicin monotherapy and doxorubicin combination with
sensitizer) for each cell line. Each treatment condition in each
cell line was fit independently, yielding cell line- and treatment
condition-specific parameter values. This was also accomplished
through a non-linear least squares optimization implemented in
MATLAB, and we report the mean percent errors of the best-fit
models across all timepoints. For additional details on the model
fitting procedure see McKenna et al. (McKenna et al., 2017).

Measurement of Pharmacologic Properties
With Equivalent Dose
We assume, by definition, that each unique treatment response
timecourse corresponds to a specific equivalent dose. As the
equivalent dose is perfectly known for doxorubicin monotherapy

[i.e., the equivalent dose is simply CB, which can be directly
calculated with kFE, kEF , and kFB values measured from drug
uptake studies], the equivalent dose for co-treatment conditions
can be estimated by comparing treatment response dynamics
from co-treatment conditions to those from doxorubicin
monotherapy treatments. With appropriate experimental design
to isolate each equivalent dose parameter (i.e., kFE, kEF , and
kFB), this approach can quantify the effect of each sensitizing
agent on their PK/PD pathway. Specifically, by assuming the
effect of each sensitizing therapy is limited to a single equivalent
dose parameter, the effect of TQR on kEF and the effect of
NU7441 on kFB can bemeasured. As response under all treatment
conditions (i.e., doxorubicin monotherapy and co-treatment
with a sensitizer) can by summarized by the parameters in
Equations (4-6) (i.e., p= [kd,a, kd,b, r]), we use model parameters
to compare treatment response timecourses.

The response parameters (p) from doxorubicin monotherapy
experiments are first interpolated with respect to equivalent
dose via a local linear approach. This yields a continuous
set of parameters (pest) across all possible equivalent doses in
the range from no treatment to maximal doxorubicin dose.
The fit parameter values (pfit) for each of the m co-treatment
conditions are then matched to the interpolated parameters
from doxorubicin-only treatment conditions (pest) to estimate
the equivalent dose (Dest) for each co-treatment condition.
Specifically, Dest is the set of equivalent doses that correspond
to the best matches between pfit and pest in the L2 norm

sense (i.e., min
∥

∥pest − pfit
∥

∥

2
). This process is illustrated in

Supplementary Figure 2. The following constrained objective
function, G (kx), can then be used to estimate kx (the equivalent
dose parameter under investigation; e.g., kEF and kFB) for each of
the n sensitizer concentrations:

G
(

kx
)

= min
kx

m
∑

i=1

(

Dest,i − Di

(

kx
))2

such that kx,q+1 − kx,q ≥ 0 ∀ q = [1, ..., n] (7)

where the Di is the equivalent dose calculated for each co-
treatment condition as described below, and Dest,i is the
estimated equivalent dose for the ith co-treatment condition.
Specifically, in calculating Difor the NU7441 experiments, we
fix kEF and kFE values and optimize kFB values corresponding to
each sensitizer concentration in the co-treatment conditions. The
constraints in the objective function ensure that kFB increases
monotonically with sensitizer concentration. Similarly, for the
TQR experiments, we fix kEF and kFB and optimize kFE for each
sensitizer concentration. This objective function was minimized
via a constrained optimization routine implemented in
MATLAB. The non-parametric interpolation and optimization
procedures were utilized as we did not assume any functional
relationships between model parameters and equivalent dose.
While this fitting procedure could have been made more robust
by proposing such functional relationships, we implemented this
non-parametric approach to allow for greater generalizability.
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Comparison of Cell Lines With Equivalent
Dose
As the MDA-MB-468MDR1 line was engineered from the
MDA-MB-468H2B line, we hypothesize that the response of
these cell lines to doxorubicin therapy is not significantly
different when compared via equivalent dose. Specifically, the
mechanism of action of MDR1 is to increase drug efflux, which
effectively reduces the equivalent dose in the MDA-MB-468MDR1

line for a given treatment timecourse. Indeed, the proposed
equivalent dose metric was developed to account for the differing
pharmacokinetic properties between these cell lines to more
precisely compare their respective responses to therapy. To test
this hypothesis, survival of the parental MDA-MB-468H2B cell
line is compared to that of the MDA-MB-468MDR1 cell line. This
comparison is made utilizing a conventional treatment response
assay in which survival is assessed 72 h following treatment.
Specifically, each cell line was treated with a range of doxorubicin
concentrations (5,000–10 nM via a 2-fold dilution series) for 24 h
as monotherapy, and survival was assessed via cell counting.
Survival data for each cell line was fit with a pair of Hill
functions. The first of these Hill functions assumed the dose to be
the applied doxorubicin concentration. The second utilized the
equivalent dose (Deq) calculated with cell-line specific kEF , kFE,
and kFB values. We report the EC50 (drug concentration at half-
maximal effect) for each cell line as measured via extracellular
doxorubicin concentration and equivalent dose.

RESULTS

Treatment Response in MDA-MB-468MDR1

Cell Line
The measured intracellular doxorubicin concentration
timecourses for the MDA-MB-468MDR1 cell line under
doxorubicin monotherapy and combination therapy with
TQR are shown in Figure 2A. Intracellular doxorubicin
increases with TQR concentration. The average intracellular
concentration at the end of each experiment, estimated with
the last 10 timepoints, is significantly different among the
treatment groups (one-way ANOVA, p < 1e-5). Equations (1–3)
are fit to these data, and the best-fit models are overlaid on the
timecourses. The mean error of the best-fit pharmacokinetic
models was 45.6 (±47.4) nM across all timepoints and treatment
conditions, and the corresponding model parameters are shown
in Figures 2B–D. Increasing TQR concentrations decrease
doxorubicin efflux in the MDA-MB-468MDR1 cell line in a
dose-dependent manner. For example, the efflux rate (kFE) is
decreased from 0.216 (±0.028) h−1 to 0.046 (±0.008) h−1 as
TQR increases from 2 to 250 nM (the bounds here and below
correspond to the 95% confidence interval of the parameter
estimates). kEF values varied with TQR concentration, all falling
within [1.63, 3.46]× 10−6 h−1.

Treatment response timecourses for the MDA-MB-468MDR1

cell line under doxorubicin combination therapy with TQR
are shown in Figures 2E–G. Equations (4–6) are fit to these
data, and the best-fit models are overlaid on the observed cell
counts. Model parameters are shown in Figures 2H–J. For a
fixed concentration of doxorubicin, increasing concentrations of

TQR incrementally sensitize cells to doxorubicin. For example,
at a fixed dose of 156 nM doxorubicin, increasing the TQR
concentration from 0 to 250 nM increased the death rate (kd,a)
from−0.16 (±0.23)× 10−2 h−1 to 2.21 (±0.1)× 10−2 h−1. TQR
monotherapy did not affect the growth of these cells as shown
in Supplementary Figure 3. Treatment response timecourses of
the MDA-MB-468MDR1 line to doxorubicin monotherapy are
shown in Figure 3A. These data are fit with Equations (4–
6), and the best-fit models are overlaid on the observed cell
counts. The mean percent error of the best-fit model across all
timepoints and treatment conditions is 10.3%. Prior to treatment,
the MDA-MB-468MDR1 line demonstrated a proliferation rate
(kp) of 2.12 (±0.03) × 10−2 h−1. Treatment response varied
smoothly with doxorubicin concentration, and this response is
quantified by the parameters in Figures 3B–D. Notably, high
variance in parameter estimates is observed as values of r
approach 0.05 h−1 and values of kd,b approach 0 h−1. There
exists intrinsic uncertainty at this limit as the rapid dynamics (r)
coupled with small kd,b effects cannot be resolved by the current
data. This uncertainty in r for small kd,b does not affect model
predictions as demonstrated by a sensitivity analysis in previous
work (McKenna et al., 2017).

By leveraging the proposed mechanistic model and equivalent
dose statistic, kFE values for each TQR concentration can be
estimated using the measured treatment response data and
the optimization routine outlined in section Measurement of
Pharmacologic Properties With Equivalent Dose. To make
these measurements, the equivalent dose for each doxorubicin
monotherapy condition was first calculated with the PK model
parameters measured in the doxorubicin uptake studies.
Specifically, kFE, kEF, and kFB were measured to be 0.313
h−1, 3.08 × 10−6 h−1 and 0.0212 h−1, respectively. The
equivalent dose statistic was then estimated for each co-
treatment condition. To perform this estimation, treatment
response parameters from co-treatment conditions were
matched to those from doxorubicin monotherapy conditions
(Figures 4A–C). As the equivalent doses for all monotherapy
conditions are perfectly known (i.e., CB = Deq for doxorubicin
monotherapy), the equivalent dose for each co-treatment
condition can be estimated with the matching process illustrated
in Supplementary Figure 2. Briefly, parameter values are
estimated across a range of equivalent doses utilizing parameters
from the doxorubicin monotherapy experiments. The equivalent
dose for each treatment condition can then be estimated
by matching measured parameter values to those estimates.
To demonstrate the efficacy of the parameter matching
in comparing treatment response timecourses, a subset of
responses from doxorubicin monotherapy and co-treatment
conditions are color-coded to their estimated equivalent dose
(Figures 4D–F). Note similar dynamics for similarly-colored
data, indicating the efficacy of the parameter matching in
comparing treatment response timecourses. With estimates
of equivalent dose for all co-treatment conditions, the kFE
value for each TQR concentration was estimated with the
optimization routine summarized by Equation (7). As we
hypothesized that the effect of TQR is limited to kFE (Figure 4G),
kEF and kFB values were fixed to the values reported above
in the optimization routine. The optimized kFE values for all
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FIGURE 2 | Doxorubicin and TQR combination studies in the MDA-MB-468MDR1 cell line. Timecourses of the mean intracellular concentration of doxorubicin with

corresponding standard deviations are shown for each treatment condition in (A). Doxorubicin accumulation increases along with TQR concentrations. Equations

(1–3) were fit to the data, and the best-fit models are overlaid on the data (smooth lines) in a. Model parameter fits corresponding to the best-fit models are shown in

(B–D). Similar kEF and kFB vales are observed across all TQR concentrations. There is a trend of decreasing kFE values with increasing TQR concentrations

(Continued)

Frontiers in Physiology | www.frontiersin.org 8 May 2019 | Volume 10 | Article 616

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McKenna et al. Equivalent Dose for Chemotherapy

FIGURE 2 | (C), consistent with MDR1 inhibition by TQR. Cell counts of MDA-MB-468MDR1 following combination treatment with TQR and doxorubicin are show in

panels (E-G). In each plot, a fixed concentration of doxorubicin is applied with variable TQR concentrations. These counts are fit with Equations (4–6) as described in

section Model Fits, and the best-fit model is overlaid on the cell counts [smooth lines in panels (E–G)]. Error bars represent the 95% CI from six experimental replicates

for each treatment condition. Model parameters with corresponding 95% CI are shown in (H–J) as a function of TQR concentration. For each doxorubicin

concentration, the death rate (kd,a and kd,b) increased with TQR concentration (H,I).

FIGURE 3 | Treatment response in MDA-MB-468MDR1 (left column) and SUM-149PT (right column) cell lines under doxorubicin monotherapy. The top row [panels

(A,E)] shows cell counts over time from treatment response studies for each cell line. For these studies, cells were treated with a fixed concentration of doxorubicin for

24 h. These counts are fit to Equations (4–6) as described in section Model Fits, and the best-fit model is overlaid on the cell counts [smooth lines in (A,E)]. Error bars

represent the 95% CI from six experimental replicates for each treatment condition. Model parameters with corresponding 95% CI are shown in the bottom three rows

as a function of doxorubicin concentration. Panels (B–D) show fits from the MDA-MB-468MDR1 experiments, and panels (F–H) show fits from the SUM-149PT

experiments. For each doxorubicin concentration for each cell line, the death rate (kd,a and kd,b) increased with increasing doxorubicin concentrations.

TQR concentrations are shown in Figure 4H. Decreasing kFE
values were observed with increasing TQR concentrations,
matching the measurements from the uptake studies
in Figure 2.

The equivalent dose can summarize all treatment conditions
in the MDA-MB-468MDR1 cell line and is predictive of response.
Further, this statistic can be leveraged to quantify the effect
of TQR.
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FIGURE 4 | Leveraging equivalent dose to estimate the effect of TQR in the MDA-MB-468MDR1 cell line. The equivalent dose for each doxorubicin monotherapy

condition was first calculated with the PK model parameters measured in the doxorubicin uptake studies. The equivalent dose statistic was then estimated for each

co-treatment condition by matching treatment response parameters from co-treatment conditions to those from doxorubicin monotherapy conditions. Parameter

values from all doxorubicin monotherapy and co-treatment conditions are plotted as a function of equivalent dose (A-C). A subset of responses from doxorubicin

monotherapy and co-treatment conditions are color-coded to their estimated equivalent dose (D–F). Similar dynamics are observed with similarly-colored data,

demonstrating the efficacy of the parameter matching in comparing treatment response timecourses. As TQR impairs the function of the MDR1 pump, we

hypothesized the effect of TQR is limited to the kFE parameter (G). With estimates of equivalent dose for all treatment conditions, the kFE value for each TQR

concentration was estimated with the optimization routine summarized by Equation (7) (H). These values, calculated with treatment response data, agree well with

direct measurements of kFE reported in Figure 2. We note the large confidence intervals are a result of the optimization approach, in which the value (1/kFE )

was optimized.

Treatment Response in SUM-149PT Cell
Line
The measured intracellular doxorubicin concentration
timecourses for the SUM-149PT cell line under doxorubicin
monotherapy and combination therapy with NU7441 are shown
in Figure 5A. NU7441 treatment did not affect intracellular
doxorubicin accumulation following treatment. The average
intracellular doxorubicin concentration at the end of each
experiment, estimated with the last 10 timepoints, did not
demonstrate significant differences at the p = 0.05 level (one-
way ANOVA). Equations (1–3) are fit to the uptake data,
and the best-fit model is overlaid on the timecourses. The
corresponding model parameters are shown in Figures 5B–D.
The mean error of the best-fit pharmacokinetic model was 77.9
(±71.4) nM across all treatment conditions and timepoints.
Further, similar values of kFE, kEF , and kFB are observed

across all NU7441 concentrations (Figures 5B–D). Given
its effect on DNA-PK, NU7441 is not expected to affect
intracellular doxorubicin accumulation.

Treatment response timecourses for the SUM-149PT cell
line under doxorubicin co-treatment with NU7441 are shown
in Figures 5E–G. Equations (4–6) are fit to these data, and
the best-fit models are overlaid on the observed cell counts.
Model parameters are shown in Figures 5H–J. For a fixed
concentration of doxorubicin, increasing concentrations of
NU7441 incrementally sensitized cells to doxorubicin. For
example, with a fixed dose of 156 nM doxorubicin, NU7441
concentrations increased the death rate (kd,a) from 0.25
(±0.16) × 10−2 h−1 to 2.00 (±0.06) × 10−2 h−1. NU7441
monotherapy did not affect the growth of these cells as shown
in Supplementary Figure 3. Treatment response timecourses of
the SUM-149PT line to doxorubicin monotherapy are shown in
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FIGURE 5 | Doxorubicin and NU7441 combination studies in the SUM-149PT cell line. Timecourses of the mean intracellular concentration of doxorubicin with

corresponding standard deviations are shown for each treatment condition in a. No significant difference in doxorubicin accumulation was observed as a function of

NU7441 concentration. Equations (1–3) were fit to the data, and the best-fit models are overlaid on the data (smooth lines) in (A). Model parameter fits corresponding

to the best-fit models are shown in (B–D). For each model parameter, similar vales were observed across all NU7441 concentrations, consistent with the similar

intracellular doxorubicin timecourses in (A). Counts of SUM-149PT cells following combination treatment with NU7441 and doxorubicin are show in panels (E–G). In

each plot, a fixed concentration of doxorubicin is applied with variable NU7441 concentrations. These counts are fit with Equations (4–6) as described in section

Model Fits, and the best-fit models are overlaid on the cell counts [smooth lines in panels (E–G)]. Error bars represent the 95% CI from six experimental replicates for

each treatment condition. Model parameters with corresponding 95% CI are shown in panels (H–J) as a function of NU7441 concentration. For each doxorubicin

concentration, the death rate (kd,a) increased with NU7441 concentration (H). The parameters shown in panels (I,J) are unable to be resolved with the current data as

discussed in section Model Fits.

Figure 3E. These data are fit with Equations (4–6), and the best-
fit models are overlaid on the observed cell counts. The mean
percent error of the best-fit model across all treatment conditions
is 11.9%. Prior to treatment, the SUM-149PT line demonstrated
a proliferation rate (kp) of 2.58 (±0.03) × 10−2 h−1. Treatment

response varied smoothly with doxorubicin concentration, and
this response is quantified by the parameters in Figures 3F–H.

By leveraging the proposed mechanistic model and equivalent
dose statistic, kFB values for each NU7441 concentration can
be estimated using the measured treatment response data

Frontiers in Physiology | www.frontiersin.org 11 May 2019 | Volume 10 | Article 616

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


McKenna et al. Equivalent Dose for Chemotherapy

FIGURE 6 | Leveraging equivalent dose to estimate the effect of NU7441 in the SUM-149PT cell line. The equivalent dose for each doxorubicin monotherapy

condition was first calculated with the PK model parameters measured in the doxorubicin uptake studies. The equivalent dose statistic was then estimated for each

co-treatment condition by matching treatment response parameters from co-treatment conditions to those from doxorubicin monotherapy conditions. Parameter

values from all doxorubicin monotherapy and co-treatment conditions are plotted as a function of equivalent dose (A-C). A subset of responses from doxorubicin

monotherapy and co-treatment conditions are color-coded to their estimated equivalent dose (D–F). Similar dynamics are observed with for similarly-colored data,

demonstrating the efficacy of the parameter matching in comparing treatment response. As NU7441 impairs the function DNA-PK, we hypothesized the effect of

NU7441 is limited to the kFB parameter (G). With estimates of equivalent dose for all treatment conditions, the kFB value for each NU7441 concentration was

estimated with the optimization routine summarized by Equation (7). Increasing values of kFB are observed with increasing NU7441 concentrations, indicating an

increase in functional drug bound (H). These values cannot be directly observed with the uptake study, demonstrating the utility of the equivalent dose in estimating

parameters that cannot be directly measured with current techniques.

and the optimization routine summarized by Equation (7).
To make these measurements, the equivalent dose for each
doxorubicin monotherapy condition was first calculated with
the PK model parameters measured in the doxorubicin uptake
studies. Specifically, kEF , kFE, and kFB were measured to be 4.00×
10−6 h−1 and 0.165 h−1, and 0.236 h−1, respectively. These were
calculated by fitting the SUM-149PT uptake studies assuming
constant parameters for all NU7441 concentrations. The
equivalent dose statistic was then estimated for each co-treatment
condition. To perform this estimation, treatment response
parameters from co-treatment conditions were matched to those
from doxorubicin monotherapy conditions (Figures 6A–C). As
the equivalent doses for all monotherapy conditions are perfectly
known, the equivalent dose for each co-treatment condition
can be estimated with this matching process. To demonstrate

the efficacy of the parameter matching in comparing treatment
response timecourses, a subset of responses from doxorubicin
monotherapy and co-treatment conditions are color-coded to
their estimated equivalent dose (Figures 6D–F). Note similar
dynamics for similarly-colored data.With estimates of equivalent
dose for all co-treatment conditions, the kFB value for each
NU7441 concentration was estimated with the optimization
routine summarized by Equation (7). As we hypothesized
that the effect of NU7441 is limited to kFB(Figure 6G), kFE
and kEF values were fixed to the values reported above in
the optimization routine. The optimized kFB values for all
NU7441 concentrations are shown in Figure 6H. Increasing kFB
values were observed with increasing NU7441 concentrations,
indicating the functional increase in drug with NU7441,
mediated through its effect on DNA-PK. We note that the DNA
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FIGURE 7 | Comparison of MDA-MB-468H2B and MDA-MB-468MDR1 cell lines using equivalent dose. The intracellular doxorubicin concentration with 95% CI for

each cell line is shown in (A). The MDA-MB-468H2B line demonstrates increased intracellular accumulation of doxorubicin relative to the MDA-MB-468MDR1 line.

Equations (1–3) are fit to the doxorubicin uptake data, and the best-fit models are overlaid on the data in a (smooth line). The corresponding parameters with 95% CI

are shown in (B–D). The MDA-MB-468H2B data are shown in red, and the MDA-MB-468MDR1 data are shown in blue. Notably, the efflux of drug from the

MDA-MB-468MDR1 (kFE ) line is significantly greater than the corresponding rate in the MDA-MB-468H2B line (p < 0.05). Treatment response is traditionally

summarized by cell survival and plotted against applied drug concentration. The cell count relative to control for each cell line is shown as a function of extracellular

doxorubicin concentration and equivalent dose in (E,F), respectively. While a significant difference is observed when comparing these cell lines via EC50calculated

with the extracellular doxorubicin concentration, no significant difference is observed when comparing the EC50 statistic derived from the equivalent dose. The

equivalent dose can account for the differing pharmacokinetic properties to reveal similar doxorubicin pharmacodynamics in these cell lines.

repair pathway affected by NU7441 is not directly measured in
the uptake studies. Recall from section Equivalent Dose that kFB
is a mixed measure of doxorubicin binding and DNA repair
and describes the functional net binding rate. Thus, these values
cannot be directly compared to the values extracted from the
uptake study.

The equivalent dose can summarize all treatment conditions
in the SUM-149PT cell line and is predictive of response. Further,
this statistic can be leveraged to quantify the specific effect of
NU7441 with observed treatment response data.

Comparison of MDA-MB-468MDR1

and MDA-MB-468H2B
The measured intracellular doxorubicin concentration
timecourses with accompanying best-fit models for the
MDA-MB-468H2B and MDA-MB-468MDR1 cell lines are shown
in Figure 7. Decreased doxorubicin accumulation was observed
in the MDA-MB-468MDR1 cell line relative to its parental line,
MDA-MB-468H2B. Notably, drug efflux was significantly elevated
in the MDA-MB-468MDR1 line relative to its parental line with
kFE values of 1.01 (±0.08) × 10−1 h−1 and 0.52 (±0.04) × 10−1

h−1, respectively (p < 0.05). The mean errors of the best-fit

pharmacokinetic models across all timepoints were 44.7 and
58.7 nM for the MDA-MB-468H2B and the MDA-MD-468MDR1

lines, respectively.
The survival of each cell line 72 h following treatment

is compared as a function of extracellular doxorubicin
concentration and equivalent dose in Figures 7E,F. The EC50

as measured with the extracellular doxorubicin concentration
for the MDA-MB-468H2B and the MDA-MB-468MDR1 are
101.6 (±28.9) and 350.6 (±109) nM, respectively. These
measures indicate that there is a statistically significant
difference between these cell lines (p < 0.05, t-test). The
EC50 as measured with the equivalent dose for the MDA-MB-
468H2B and the MDA-MB-468MDR1 lines are 53.3 (±15.1)
and 93.7 (±29.2) nM, respectively. These values are not
different at p = 0.05 (t-test), indicating the similarity of
these lines. Indeed, the only difference between cell lines is
the overexpression of the MDR1 efflux pump. The intrinsic
sensitivity of these cell lines to treatment should remain
similar, and the equivalent dose reflects this similarity.
The response of the MDA-MB-468H2B and MDA-MB-
468MDR1 cell lines are not significantly different as measured
by Deq.
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DISCUSSION

We have proposed and demonstrated the utility of a
mathematical modeling framework to quantify pharmacologic
properties. We further proposed a new metric, the equivalent
dose (Deq), which provides a biochemically-based measure of
treatment effect. With the data presented here, we show that
a mechanistic mathematical model of treatment response can
succinctly summarize a range of treatments to allow for more
precise comparison of treatment response among cell lines.
Further, we have shown how this model provides quantitative
biological insight into the biochemical drivers of treatment
response. We demonstrate that a mathematical modeling
framework allows for quantification of pharmacologic processes
through population-scale measurements.

Treatment response is driven by cell-line specific
pharmacologic properties. Conventional summary statistics
of treatment response data often conflate these pharmacologic
properties, limiting their utility. To more effectively advance the
study of treatment response, methods that explicitly consider
this variability are needed to more precisely quantify biological
drivers of treatment response. While previous treatment
response assays provide insight in the relative sensitivity of a
cell line to therapy (Fallahi-Sichani et al., 2013), the proposed
approach quantifies specific drivers of treatment sensitivity.
Through the approach proposed in this work, we demonstrate
how intracellular pharmacologic properties can be quantified
using limited data from population-level observations of
treatment response.

This work is limited by its use of doxorubicin, which is
intrinsically fluorescent, thereby allowing for the uptake model
to be fit with experimental data. However, this approach

need not be limited to fluorescent drugs. With appropriate
experimental design, the approach summarized by Equation (7)

can be leveraged to quantify any of the rates proposed in the

model. Indeed, the optimized values of doxorubicin efflux in
the MDA-MB-468MDR1 line in Figure 4 are similar to those

values measured by the uptake assay in Figure 2. Further, the

effect of NU7441 in altering pharmacokinetics was quantified
using only the treatment response data, as this effect cannot be
directly measured in the uptake assay. Importantly, this work
demonstrates that all treatment conditions collapse onto a single,
smooth trajectory through parameter space as a function of
equivalent dose, and this property can be leveraged to provide
quantitative insight into the biological drivers of treatment
response. While cell lines could not be compared without precise
estimates of all model parameters, this approach can nevertheless
be used to quantify therapeutic perturbations within a given
cell line. It is straightforward to extend the proposed modeling
approach as a means to more precisely quantify the effects of
other parameters in the experimental microenvironment (e.g.,
how does pH or a specific nutrient concentration affect treatment
response?). In this way, these variables can be mapped onto
a unified treatment response framework to more efficiently
advance precision medicine approaches. More generally, the
approach outlined in this work demonstrates how mathematical
modeling can be used as a “filter” to derive more specific
measures from experimental data to advance systems biology.

Therapies that target PK/PD pathways offer the potential to
sensitize cells to cytotoxic therapies, increasing the efficacy of
therapy and allowing for lower doses of such therapeutics. The
approach proposed in this work provides a means to quantify
the respective contributions of PK/PD pathways, providing
mechanistic insight into treatment response. This approach
differs from current methods used to assess drug synergism
and antagonism (Chou, 2006; Jones et al., 2014; Foucquier and
Guedj, 2015; Chen and Lahav, 2016; Lederer et al., 2018). These
methods have great utility in discovering and quantifying drug
interactions; however, they cannot be leveraged to understand
the mechanisms underlying the identified synergy/antagonism.
While other methods have leveraged mechanistic data to
identify synergy (Al-Lazikani et al., 2012; Gao et al., 2017;
Yin et al., 2018), the proposed equivalent dose framework
provides quantitative mechanistic insight into intracellular drug
effects and allows for predictions of treatment response under a
variety of treatment conditions. We posit that this mechanistic
approach could facilitate clinical translation of combination
therapies. Notably, therapeutic approaches intended to sensitize
tumors to doxorubicin have demonstrated great preclinical
activity; however, their efficacy has been limited in clinical trials.
Specifically, negative results have been seen with TQR due to
excess toxicities and inactivity (Pusztai et al., 2005; Fox and Bates,
2007). Similarly, DNA-PK inhibitors such as NU7441 have yet to
demonstrate an effect clinically despite their preclinical promise
(Zhao et al., 2006; Helleday et al., 2008; Davidson et al., 2013).
We posit that the proposed modeling framework can be used to
identify more effective strategies for dosing and assessing these
therapeutics. In particular, the proposed modeling approach can
provide precise guidance on the necessary dose adjustments to
achieve a desired effect in the context of combination therapy.
As we have demonstrated, a target equivalent dose can be
achieved in a variety of ways. For example, the extracellular
drug concentration timecourse can be tuned to reach a specified
equivalent dose. Alternatively, the same equivalent dose can
be achieved by altering cell line pharmacologic properties
through sensitizers with concomitant changes in the extracellular
doxorubicin timecourse. While realizing this goal in vivo will
require a more complete model of treatment response (i.e., one
that incorporates plasma pharmacokinetics and organ system
toxicities), we have demonstrated the proposed model to be
robust to various doxorubicin treatments and is general to
sensitizing agents.

While the results of this study are promising, several
limitations exist in the current approach. The first order
pharmacokinetics model assumes static kinetic rates throughout
the experiment, and the pharmacokinetic rates were investigated
at only a single concentration. These rates are calculated as an
average over all observed cells, not accounting for intercellular
heterogeneity. Further, these kinetics may saturate as a function
of doxorubicin concentration. This method remains to be
validated in additional cell lines with other pharmacologic targets
to address its generalizability. Additional properties of in vitro
assays not explicitly considered in the current model have been
shown to confound observed effects. For example, local cell
densities have been found to affect treatment response (Greene
et al., 2016). Finally, this model is deterministic and does
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not consider either population heterogeneity or cell evolution.
Despite these limiting assumptions, we note the accuracy of the
equivalent dose in summarizing population-level response to a
range of doxorubicin treatment conditions.

In this work, we have demonstrated how mathematical
modeling can be leveraged to quantify PK/PD pathways and
more precisely compare treatment response among cell lines.
It is the ultimate goal of precision cancer therapy to deliver
the optimal therapy on the optimal schedule for the individual
patient (McKenna et al., 2018). A necessary step toward this
goal is to establish a robust functional relationship between
applied treatment and subsequent response. The present study
demonstrates the utility of the modeling framework and
provides additional evidence that the response to therapy is
predictable. In summary, analysis of treatment response data
with mechanistic models can effectively quantify the effects
of various biological and pharmaceutical perturbations on
treatment response.
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