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Abstract
Background: Increasing prevalence of obesity requires the investigation of respective comor-
bidities, including tumor diseases like colorectal, renal, post-menopausal breast, prostate 
cancer, and leukemia. To date, molecular mechanisms of the malignant transformation of 
these peripheral tissues induced by obesity remain unclear. Adipose tissue secretes factors 
with hormone-like functions, the adipokines, and is therefore categorized as an endocrine 
organ. Current research demonstrates the ability of adipose tissue to alter DNA methylation 
and gene expression in peripheral tissues, probably affecting microRNA (miR) expression. 
Methods: Literature was analyzed for adipokine-regulated miRs. Many of these adipokine 
upregulated or downregulated miRs exert either oncogenic or anti-tumoral potential. Re-
sults: The three selected and analyzed adipokines, adiponectin, leptin, and resistin, induce 
more strongly oncogenic miRs and simultaneously reduce anti-tumoral miRs than vice versa. 
This effect is not only true for the pure number of regulated miRs, it is also the case by con-
sideration of the abundance of the respective miR expression based on actual data sets de-
rived from next-generation sequencing. Conclusion: The link of obesity and cancer is ana-
lyzed under the aspect of adipokine-regulated miRs. At the same time the impact of miR 
abundance is considered as a regulatory variable. This context offers new strategies for tumor 
therapy and diagnostics. © 2019 The Author(s)
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Introduction

The increase of obesity (body mass index, BMI ≥30) and overweight (BMI ≥25) in the 
world population justifies the analysis of associated health issues [1]. The pure weight of the 
fat mass per se damages joints and increases the risk for an artificial hip and knee joint implan-
tation [2, 3]. Obesity-associated lack of exercise and systemic metabolic dysfunctions promote 
inter alia type 2 diabetes, fatty liver disease, atherosclerosis, and cardiovascular disorders, 
and also contribute to a significantly reduced life expectancy [4, 5]. 

Interestingly, adipose tissue not only responds to hormonal signals, it also expresses and 
secretes factors with hormone-like functions, so-called adipokines, and is therefore catego-
rized as an endocrine organ [6]. Meanwhile, a connection between obesity and certain tumor 
diseases, including colorectal cancer, renal cancer, post-menopausal breast cancer, esoph-
ageal adenocarcinoma, thyroid cancer, endometrial cancer, leukemia, and prostate cancer is 
demonstrated in numerous cohort studies [7–9]. Furthermore, with an increase of BMI of 5, 
a 10% increase in cancer mortality has been detected in both genders [10, 11]. 

Various immune cell functions are influenced by obesity. In particular, some of the ap- 
proximately 600 proteins secreted by adipose tissues [9] exert anti-inflammatory or pro-
inflammatory potential. Especially adiponectin, which is the most abundant adipokine 
secreted by adipocytes [7], exerts anti-inflammatory action by interfering with the functions 
of macrophages, T lymphocytes, and NK cells [12–15]. Furthermore, the well-characterized 
adipokine leptin also exerts immunomodulatory functions on NK cells [16]. 

The detailed molecular mechanisms, which contribute to the immunomodulatory 
potential of adipose tissue, is the subject of ongoing research. It is a fact that adipose tissue is 
able to regulate the gene expression in other peripheral tissues of the organism. The gene 
expression per se can be regulated at different points – pretranscriptional and posttranscrip-
tional, for example by altering the DNA methylation as a potential pretranscriptional regu-
latory control variable. Indeed, the gene expression patterns differ in human monozygotic 
twins with different BMIs [17]. Research has verified that obesity is associated with wide-
spread changes in DNA methylation as a consequence of adiposity and not as a cause of it [18]. 
This important study could at least identify 187 gene loci, which were statistically significant 
and could be replicated differentially methylated at CpG sites. These gene loci belong to genes 
mostly involved in lipid and lipoprotein metabolism, substrate transport, and inflammatory 
pathways [18]. 

Many of these obesity-regulated genes contain intronic sequences harboring microRNA 
(miR) genes. Therefore, obesity also affects post-transcriptional gene regulation involving an 
altered miR transcriptome. MiRs are small, non-coding RNA molecules of about 21 nt in 
length. The miR genes are usually located within introns of coding genes or as separated 
genes. In both cases, the miR genes are transcribed by RNA polymerase II and the resulting 
primary miR transcripts are further processed into mature miRs [19–22]. The sequence-
specific binding of an miR to a target mRNA is determined by its “seed” region. miR binding 
to target mRNAs predominantly occurs at the 3′-untranslated region leading to translational 
inhibition and to mRNA decay [23]. Concerning the target specificity of miRs, it is noteworthy 
that one miR can regulate many different mRNAs [24]. Depending on the functions of these 
miR-regulated genes, several miRs can exert oncogenic or anti-tumoral potential [19]. 

This review analyzes and summarizes available PubMed database-listed literature of 
adipokine-regulated miRs and their functions regarding the association between obesity and 
tumor diseases. Focus was placed on the three well-characterized adipokines directly 
expressed by adipocytes: adiponectin, leptin, and resistin. The summarized adipokine-regu-
lated miRs include human and murine datasets. 
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Adipokines and Their Impact on miR Expression

The adipose tissue interacts with the entire organism by secretion of hormone-like adipo-
kines. Indeed, multiple factors are released or secreted by adipose tissue consisting of adipo-
cytes, infiltrating immune cells, fibroblasts, endothelial cells, and others [25]. In 2004, Fain et 
al. [26] analyzed and compared the secretion of adipokines between isolated adipocytes and 
corresponding visceral adipose tissue. Many factors, including IL-6 and TNF-α, were expressed 
much higher by the adipose tissue than by adipocytes themselves. Other factors, like adipo-
nectin and leptin, were almost equally expressed, reflecting that adiponectin and leptin are 
directly expressed by adipocytes. Furthermore, the adipokine resistin is also reported to be 
directly secreted by adipocytes [27]. 

These adipokines exert an impact on the gene expression in other peripheral tissues 
causing inter alia an altered miR expression pattern. Furthermore, many of these adipokine-
regulated miRs have been characterized for their relevance on tumor biological functions, 
including proliferation, invasion, apoptosis inducibility, and angiogenesis. Subsequently, 
some of these adipokine-regulated miRs can be characterized as oncogenic or anti-tumoral 
miRs. 

Nevertheless, next to the pure number of different adipokine-regulated miRs, also the 
abundance of each adipokine-regulated miR per se is an important variable, since it is known 
that cellular concentrations of miRs are critical for their regulatory potential [28]. For 
example, a duplication of the expression of a very high abundant miR upon adipokine stimu-
lation could affect the translation of its target mRNAs in a stronger manner than the dupli-
cation of the expression of a very low abundant miR in regard to the absolute number of target 
mRNA molecules. 

Meanwhile next-generation sequencing (NGS) is the state-of-the-art technology for miR 
analysis [29] and absolute NGS reads of miRs correlate with qPCR-based quantifications of 
these miRs. The absolute counts determined by NGS can be normalized into reads per million 
(rpm) using the formula: rpm = reads (miR)/(reads [all mapped reads] × 106) [30, 31]. Thus, 
in this review the rpm value of each adipokine-regulated miR was collected from the free 
online data base www.mirbase.org [32, 33]. For a better estimation of possible biological 
impacts of adipokine-regulated miRs with oncogenic or anti-tumoral functions, the respective 
rpms for adiponectin, leptin, and resistin stimulation were calculated and compared. At this 
point the human miR expression data and the human homologous miR expression data in the 
case of published murine miRs were applied and combined. The investigated three adipo-
kines will be discussed separately and the respective regulated miRs, so far reported, are 
summarized.

The Role of Adiponectin 

The gene of adiponectin is located on the long arm of chromosome 3 (3q27) and the 
protein has a molecular weight of about 30 kDa. In cells and in plasma, adiponectin protein 
forms homomultimers, trimers (LMW; approx. 67 kDa), hexamers (MMW; approx. 136 kDa), 
and high-molecular-weight (HMW; > 300 kDa) multimers [34]. Adiponectin is also the most 
abundant adipokine within the human body [7]. The different adiponectin multimers exert 
different biological functions by binding to various adiponectin receptors. The adiponectin 
trimer binds to the adiponectin receptor 1 (AdipoR1), the adiponectin hexamer binds to the 
adiponectin receptor 2 (AdipoR2) and the adiponectin hexamers as well as the high-molecular-
weight multimers, but not the adiponectin trimers that act as ligands for T-cadherin (CDH13) 
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[35, 36]. Interestingly, these different adiponectin multimers do not interconvert during 
circulation [37].

The biological functions of adiponectin are pleiotropic and range from its role in energy 
homeostasis from anti-inflammatory and anti-apoptotic to pro-angiogenic activities [38–40]. 
Adiponectin reduces the phagocytotic activity of macrophages and inhibits the proliferation 
of myelomonocytic progenitor cells [12]. In primary human monocytes, in monocyte-derived 
macrophages, and in dendritic cells, adiponectin induces the secretion of the anti-inflam-
matory cytokines IL-10 and IL-1RA [41]. In addition, adiponectin extends its anti-inflam-
matory potential also by suppression of the IL-2-mediated activation of NK cells and T cells 
[15, 42].

Meanwhile, many pro-inflammatory adipokines have been described in the literature. 
However, only a few of the adipokines exert anti-inflammatory potential; among these are 
adiponectin, adipolin, and omentin [43]. Due to the fact that obesity is described as chronic 
low-grade inflammation, such anti-inflammatory adipokines are usually downregulated in 
obesity [43, 44]. This critical point will be discussed in more detail below. 

Differential Adiponectin Expression in Hyperplasia and Hypertrophy as Two 
Different Patterns of Adipose Tissue

Two different patterns of obese tissue emerge regarding the cellular characteristics. A 
hyperplastic pattern with increased adipocyte cell number and a hypertrophic one with 
increased cell size and unchanged number of adipocytes [45]. The occurrence of hyperplasia 
or hypertrophy is independent of sex and body weight [46], but strongly relates to the total 
adipocyte number in adults [46]. Interestingly, in most studies investigating adiponectin 
expression and obesity this aspect is not considered. 

The secretion of total adiponectin is higher in subcutaneous adipose tissue when com- 
pared to visceral adipose tissue. Indeed, adipocyte size is larger in subcutaneous adipose 
tissue. Additionally, adipocyte size is negatively correlated to adiponectin expression and 
secretion [47]. These important results could explain why adiponectin serum levels decrease 
with increasing BMI in certain individuals, while every adipocyte per se expresses adipo-
nectin. This observed contradictory effect of decreased adiponectin levels with increased BMI 
is of course not statistically significant in all published studies, because this effect is obviously 
linked to the pattern of adipose tissue (hyperplasia or hypertrophy) as an individual parameter 
for each tested patient. That parameter is not considered in almost all studies, potentially 
leading to such contradictory results. 

Furthermore, a significant sex difference in adiponectin expression is also reported. 
Women exert a higher percentage of body fat and higher adiponectin levels when compared 
to men of the same BMI [48]. Black women have significantly lower adiponectin levels than 
white subjects and show no clear decreasing trend with increasing severity of obesity [49]. 
Therefore, this review also focusses on adiponectin and its impact on miR expression in the 
dependency of obesity.

Adiponectin Strongly Increases Tumoral miRs and Downregulates Anti-Tumoral 
miRs 

All so far identified adiponectin-regulated miRs are summarized and divided into miRs 
that are either induced or reduced in their expression upon adiponectin stimulation in Ta- 
ble 1. In the case of available information about tumor biology-relevant parameters, including 
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proliferation, invasion, apoptosis inducibility, and angiogenesis, these adiponectin-regulated 
miRs were either grouped as oncogenic or as anti-tumoral. In Table 2 the adiponectin-induced 
miRs and in Table 3 the adiponectin downregulated miRs are listed and characterized. So far, 
6 miRs have been described as induced and 3 miRs are reported to be reduced upon adipo-
nectin stimulation. To estimate whether adiponectin stimulation alters the miR expression 
pattern into an oncogenic or anti-tumoral fashion, the adiponectin-regulated miRs were 
divided into “induced oncogenic miRs and reduced anti-tumoral miRs” as a first group, and 
into “reduced oncogenic miRs and induced anti-tumoral miRs” as a second group. 

As previously discussed, the abundance of each miR is an important regulatory variable. 
Therefore, the rpm values reported at the free online database www.mirbase.org [32, 33] for 
each oncogenic and anti-tumoral miR are listed in Table 4, and a respective total amount for 
both adiponectin-regulated miR groups was calculated (Table 4; Fig. 1).

Interestingly, adiponectin stimulation is shifting the miR transcriptome towards an onco-
genic direction. The absolute number of induced oncogenic miRs and reduced anti-tumoral 
miRs is about 4 times higher than the absolute number of reduced oncogenic miRs and 
induced anti-tumoral miRs (Table 4; Fig. 1).

Table 1. Summary of adipokine-regulated miRs

Adipokine miR induced Originating tissue Ref. miR reduced Originating tissue Ref.

Adiponectin miR-883b-5p Murine adipose tissue 50 miR-27b Human chondrosarcoma cells 51
miR-1934 Murine adipose tissue 50 miR-532-5p Murine adipose tissue 50
miR-133a Neonatal rat ventricular 

myocytes
52 miR-1983 Murine adipose tissue 50

miR-378 Human adipocytes 53
miR-155 Murine RAW 264.7 cells 54
miR-21 Murine RAW 264.7 cells 55

Leptin miR-21 Human mature adipocytes, 
transgenic mice

56, 57 miR-27b Human chondrosarcoma cells 58

miR-4443 Human colon cancer cells 59 miR-93 Human osteoblasts 60
miR‑199a‑3p Human adipocytes 61 miR-1908 Human adipocytes 62
miR-378 Human adipocytes, human 

adipocytes
53, 63 miR-143 Human adipocytes 64

miR-335 Human adipocytes 65 miR-221 Human subcutaneous abdominal 
adipose tissue biopsies

66

miR-182 Human ovary carcinoma cell 
lines (SKOV3 and A2780)

67 miR-26b Human adipocytes 68

miR-96 Human ovary carcinoma cell 
lines (SKOV3 and A2780)

67 miR-489 Murine skeletal muscle 69

miR-31 Murine skeletal muscle 69 miR-103 Murine skeletal muscle 69
miR-223 Murine skeletal muscle 69 miR-101b Murine skeletal muscle 69
miR-491 Murine skeletal muscle 69 miR-let 7g Murine skeletal muscle 69
miR-142 Murine skeletal muscle 69 miR-155 Murine skeletal muscle 69
miR-685 Murine skeletal muscle 69

Resistin miR-21 Human mature adipocytes 56 miR-1908 Human adipocytes 62
miR-335 Human adipocytes 65 miR-143 Human adipocytes 64
miR-34a Human liver cell line (Hep G2) 70 miR-26b Human adipocytes 68
miR-696 Murine muscle cell line (C2C12) 71 miR-206 Human endothelial progenitor 

cells
72

miR-145 Human liver cell line (Hep G2) 73 miR-519d Human chondrosarcoma cells 74
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The Role of Leptin

The adipocyte-derived leptin protein has a molecular weight of 16 kDa and is encoded on 
the long arm of chromosome 7 (7q32.1). Leptin is secreted into the bloodstream and involved 
in the regulation of the energy and physiological body weight homeostasis [75]. Leptin 
secretion is higher in subcutaneous fat cells which are also of bigger size than visceral fat cells, 
and its amount is correlated to the size and number of adipocytes [76]. Thus, leptin expression 
correlates to obesity. Leptin-deficient mice (ob/ob mice) or mice lacking the functional leptin 
receptor (db/db mice) suffer morbid obesity and type 2 diabetes [77, 78]. These ob/ob mice 
are sensitive to a leptin treatment, responding by fat mass reduction and regaining normal 
body weights. Furthermore, leptin treatment also lowers food intake and increases metabolic 
rates in lean mice [79].

The leptin receptor (LEPR) mRNA underlays alternative splicing, which leads to the 
generation of six LEPR isoforms (LEPRa, b, c, d, e, and f). All of these isoforms are able to bind 
leptin as ligand. Nevertheless, these different splicing variants differ in the intracellular 
domain affecting appropriate downstream signaling. Actually, the isoform LEPRb is the only 
isoform mediating functional leptin downstream signaling [80]. The functions of the other 
LEPR isoforms are still under investigation. 

LEPRe encodes for a soluble protein due to the missing transmembrane domain. Fur- 
thermore, LEPRe is analogical to secreted leptin circulating in the bloodstream [81]. Espe-
cially in this case, it is indicated that the downstream signaling-incompetent leptin receptors 
compete for leptin binding as a kind of negative regulator [82].

Leptin stimulation is reported to act in a pro-inflammatory way by the induction of 
certain cytokines, like TNFα, IL-1, and IL-6 [83, 84]. Nevertheless, there also exist studies 
reporting impaired NK cell functions and proliferation upon long-term leptin stimulation 
[16].

Table 2. Induced miRs upon adiponectin, leptin, or resistin stimulation and their tumor biological impact

miR Induced by 
adipokine

Proliferation Invasion Apoptosis 
inducibility

Angiogenesis Ongogenic or anti-tumoral 
potential

miR-133a Adiponectin Down Down Up n.d. Anti-tumoral
miR-142 Leptin Down Down Up Up Anti-tumoral
miR-145 Resistin Down Down Up Down Anti-tumoral
miR-223 Leptin Down Down Up Down Anti-tumoral
miR-34a Resistin Down Down Up Down Anti-tumoral
miR-378 Adiponectin, leptin Down Down Up Down Anti-tumoral
miR-491 Leptin Down Down Up Up Anti-tumoral
miR-155 Adiponectin Up Up Down Up Oncogenic
miR-182 Leptin Up Up Down Up Oncogenic
miR-21 Adiponectin, leptin, 

resistin
Up Up Down Up Oncogenic

miR-31 Leptin Up Up Down Up Oncogenic
miR-96 Leptin Up Up Down n.d. Oncogenic
miR-1934 Adiponectin n.d. n.d. n.d. n.d. n.d.
miR-685 Leptin n.d. n.d. n.d. n.d. n.d.
miR-696 Resistin Up n.d. n.d. n.d. n.d.
miR-883b-5p Adiponectin n.d. n.d. n.d. n.d. n.d.
miR-199a-3p Leptin Controversially discussed
miR-4443 Leptin Controversially discussed
miR-335 Leptin, resistin Controversially discussed
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Leptin Increases Tumoral miRs and Downregulates Anti-Tumoral miRs

Twelve miRs have been reported to be upregulated, and 11 miRs have been reported to 
be downregulated upon leptin stimulation (Table 1). The characterization of these leptin-
regulated miRs in regard to their impact on tumor biology leads to 4 induced oncogenic miRs 
and 5 reduced anti-tumoral miRs. On the other hand, 4 anti-tumoral miRs were induced and 
2 oncogenic miRs were reduced (Table 2, 3). By addressing the respective abundance of these 
regulated miRs, the group of “induced oncogenic miRs and reduced anti-tumoral miRs” was 
about two times higher than the group of “reduced oncogenic miRs and induced anti-tumoral 
miRs” upon leptin stimulation (Table 4; Fig. 1). 

Resistin

The resistin gene is located at the short arm of chromosome 19 (19p13). Human resistin 
is a 10-kDa cysteine-rich polypeptide. Resistin is synthesized as a 108-amino acid (aa) 
precursor containing an 18-aa signal sequence and a 90-aa mature region. It is predominantly 
secreted by adipocytes, whereby the resistin expression is higher in murine adipocytes as 
compared to human ones for so far unknown reasons [85–87]. The secreted resistin circu-
lates either as homotrimers, homohexamers, or even as higher molecular weight oligomers 
[88–90]. In addition to that, Lee et al. [91] reported that the applied purified recombinant 
resistin protein forms a multimeric quaternary structure at 55 kDa. Adenylyl cyclase-asso-
ciated protein 1 (CAP1) has been identified as a receptor for human resistin. 

In humans, conflicting results regarding the resistin secretion and obesity are reported, 
which might be contributed to by the fact that the respective studies did not distinguish 
between hyperplasia or hypertrophy of adipose tissue as two different mechanisms for 
increasing fat mass in obese humans. This point is not a factor in studies investigating obesity 
only in a single monogenetic mouse strain. 

Furthermore, human resistin stimulates the secretion of pro-inflammatory cytokines 
and chemokines, including TNF-α and IL-12 [92, 93]. Resistin is also involved in mediating 
insulin resistance and type 2 diabetes mellitus in obese humans [94].

Table 3. Reduced miRs upon adiponectin, leptin, or resistin stimulation and their tumor biological impact

miR Reduced by 
adipokine

Proliferation Invasion Apoptosis 
inducibility

Angiogenesis Ongogenic or anti-tumoral 
potential

miR-143 Leptin, resistin Down Down Up Down Anti-tumoral
miR-206 Resistin Down Down Up Down Anti-tumoral
miR-26b Leptin, resistin Down Down Up Down Anti-tumoral
miR-27b Adiponectin, leptin Down Down Up Up Anti-tumoral
miR-489 Leptin Down Down Up Down Anti-tumoral
miR-519d Resistin Down Down Up Down Anti-tumoral
miR-532-5p Adiponectin Down Down Up n.d. Anti-tumoral
miR-let 7g Leptin Down n.d. Up n.d. Anti-tumoral
miR-155 Leptin Up Up Down Up Oncogenic
miR-221 Leptin Up Up Down Up Oncogenic
miR-101b Leptin n.d. n.d. n.d. n.d. n.d.
miR-1983 Adiponectin n.d. n.d. n.d. n.d. n.d.
miR-103 Leptin Controversially discussed
miR-93 Leptin Controversially discussed
miR-1908 Leptin, resistin Controversially discussed
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Fig.  1. Impact of adipokines on 
tumor-associated miRs. The re-
sults presented in Table 4 are vi-
sualized as a bar diagram. Under 
consideration of the expression 
level in rpm, the group of “in-
duced oncogenic miR and re-
duced anti-tumoral miR” contains 
much more dysregulated tumor-
relevant miRs than the group of 
“reduced oncogenic miR and in-
duced anti-tumoral miR.” This ef-
fect was observed for adiponec-
tin, leptin, and resistin.

Table 4. Consideration of the expression levels of “induced oncogenic miRs and reduced anti-tumoral miRs” 
compared to “reduced oncogenic miRs and induced anti-tumoral miRs” upon stimulation with adiponectin, 
leptin, or resistin

Adipokine Induced oncogenic miR and 
reduced anti-tumoral miR, rpm

Reduced oncogenic miR and 
induced anti-tumoral miR, rpm

Adiponectin 2.56e+04 (miR-21),
2.94e+03 (miR-155),
1.02e+04 (miR-27b),
2.28e+03 (miR-532) = 41,020

7.03e+03 (miR-378),
2.05e+03 (miR-133a) = 9,080

Leptin 2.56e+04 (miR-21),
1.58e+03 (miR-182),
685 (miR-96),
3.89e+03 (miR-31), 
1.02e+04 (miR-27b),
2.47e+04 (miR-143),
5.2e+03 (miR-26b),
72.4 (miR-489),
9e+03 (let 7g) = 80,927.4

8.06e+03 (miR-221),
2.94e+03 (miR-155),
7.03e+03 (miR-378),
5.81e+03 (miR-223),
60.6 (miR-491),
1.3e+04 (miR-142) = 36,900.6 

Resistin 2.56e+04 (miR-21),
2.47e+04 (miR-143),
5.2e+03 (miR-26b),
1.86e+03 (miR-206),
199 (miR-519d) = 57,559

1.13e+03 (miR-34a),
2.39e+04 (miR-145) = 25,030

Adiponectin, leptin, resistin 
(every miR just 1-fold)

= 98,406.4 = 63,980.6

Instead of the murine miRs, the human homologous miR expression data were applied.
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Resistin Also Induces Tumoral miRs and Reduces Anti-Tumoral miRs

Until now, 10 different miRs have been reported to be affected in their expression level 
upon resistin stimulation. Among them, 5 miRs are upregulated and 5 miRs are downregu-
lated (Table 1). One of these regulated miRs exerts oncogenic functions, whereas 6 exert anti-
tumoral functions. The other miRs were either not yet investigated or controversially 
discussed in the literature. Interestingly, resistin induces the oncogenic miRs and reduces 
four anti-tumoral miRs (Table 2, 3). 

Opposing that, only two anti-tumoral miRs are induced and no oncogenic miRs are 
decreased by resistin. The resistin-regulated group of “induced oncogenic miRs and reduced 
anti-tumoral miRs” is two times higher expressed than the group of “induced anti-tumoral 
miRs and reduced oncogenic miRs” (Table 4; Fig. 1). 

Conclusion

Obesity is linked to certain tumor diseases, including colorectal cancer, renal cancer, 
post-menopausal breast cancer, leukemia, and prostate cancer [7, 8]. However, the connection 
between adipose tissue and malignant transformation in peripheral tissues is still under 
investigation. The authors hypothesized in this review that in addition to already known 
carcinogenic factors like mutations, pathogens, external stimuli, etc., also hormone-like 
factors secreted by the adipose tissue itself are a putative factor involved in that malignant 
transformation by disrupting the balance of anti-tumoral and oncogenic miRs. This hypothesis 
is summarized in Figure 2. 

In various studies the expression of adiponectin, leptin, and resistin was analyzed for a 
potential correlation to the risk of development and/or grading and staging of certain tumor 

Fig. 2. Schematic summary of the 
hypothesized molecular link be-
tween obesity and certain tumor 
diseases. In dependency of the  
individual composition of adi- 
pose tissue (hyperplasia or hy-
pertrophy) obese individuals ex-
ert an altered secretion of the adi-
pokines adiponectin, leptin, and 
resistin when compared to nor-
mal-weight individuals. As a con
sequence, the expression of tumor- 
associated miRs in peripheral tis-
sues is out of balance with in-
duced oncogenic miRs and re-
duced anti-tumoral miRs, proba-
bly enhancing the prevalence of 
malignant transformation.
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diseases. Unfortunately, the results of these numerous studies are partially controversial 
(Table 5). Nevertheless, in the case of post-menopausal breast cancer, different investigators 
could demonstrate that increased leptin and resistin levels were statistically significantly 
associated with enhanced tumor risk. 

Adiposity influences gene expression, for example by altering the DNA methylation 
pattern [18], an important mechanism, which affects inter alia also the miR transcriptome. 
One of the adipokine-regulated miRs that was induced upon stimulation of adiponectin, 
leptin, and resistin is miR-21. Interestingly, miR-21 was rapidly characterized as oncogenic 
by murine knock-in experiments [95]. Indeed, miR-21 negatively regulates certain tumor 
suppressors, including PTEN [96], and therefore acts as an anti-apoptotic and pro-survival 
factor [97]. The gene is located on the long arm of chromosome 17. 

miRs act dose dependently. In fact, the miR-21-mediated oncogenic effects occur espe-
cially at high levels of miR-21 expression. In tumor diseases high levels of miR-21 are also 
correlated to poor survival and to a worse prognosis [98]. Studies are currently investigating 
the applicability of different miR-21 inhibitors as anti-cancer drugs [99]. Interestingly, the 
connection of obesity and miR-21 also works vice versa, whereby long-term inhibition of 
miR-21 leads to a reduction of obesity [100]. Additionally, the circumstance in which adipo-
nectin induces the oncogenic miR-21 should be highlighted and considered, while investi-
gating its eligibility as a cardioprotective therapeutic.

However, the analyzed adipokines adiponectin, leptin, and resistin not only induce sev- 
eral oncogenic miRs, they also downregulate several anti-tumoral miRs, including miR-27b. 
Indeed, miR-27b has been characterized as a suppressor for several genes associated with 
cancer, including PPARγ [101]. Furthermore, miR-27b synergizes with anticancer drugs by 
p53 activation [102]. 

The adipokine-induced oncogenic miRs (miR-21, miR-31, miR-96, miR-182, and miR-155) 
were further analyzed for their expression profiles in obesity-linked tumor diseases, like 
esophageal adenocarcinoma, renal carcinoma, and colon cancer. While the expressions of 
miR-21, miR-96, and miR-155 are reported to be increased in these tumor diseases in 
comparison to adjacent normal tissues, the information about miR-31 and miR-182 is either 
not yet available or contradictory in different tumor entities. BMI-related expression levels 
of such oncogenic miRs should be considered in further expression studies investigating the 
suitability of these oncogenic miRs as predictive biomarkers in several tumor diseases. 

Actual research focuses on the development of miR-based therapeutics for the treatment 
of diseases including HCV infections, metabolic diseases, atherosclerosis, and tumor diseases. 

Table 5. Summary of adiponectin, leptin, and resistin expression analyses in selected obesity-linked tumor diseases

Tumor disease Adiponectin Leptin Resistin

Colorectal cancer Controversial Controversial Controversial 

Renal cancer Controversial No effect No effect 

Post-menopausal 
breast cancer

Increased adiponectin levels 
associated with lowered tumor 
risk 

Increased leptin levels are 
statistically significantly associated 
with enhanced tumor risk 

Increased resistin levels are 
statistically significantly 
associated with enhanced 
tumor risk 

Prostate cancer Statistically significant decreased 
adiponectin levels in tumor 
patients

Controversial No effect
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Mimics of the anti-tumoral miR-34a are being tested in phase I studies to reduce the expression 
of oncogenes in liver cancer. In contrast to that, the blockade of the oncogenic miR-21 and 
miR-221 by use of anti-miR constructs is being tested in preclinical trials [103]. Besides these 
direct approaches, indirect approaches affecting miR expression should also be discussed, for 
instance the block of circulating oncogenic adipokines.

This analysis is limited due to the small number of available studies investigating the 
effects of the adipokines on the miR transcriptome. Often just single miRs were analyzed 
instead of a complete miR transcriptome screening upon adipokine stimulation. In addition, 
it was also necessary to include murine studies. However, from such murine miRs the re- 
spective human homologues were representatively observed, which is also rather an estimate. 
Therefore, the calculated data need to be nuanced and only demonstrate the potential of these 
three adipokines to induce or reduce oncogenic/anti-tumoral miRs in peripheral tissues.

Indeed, the reported serum levels of these three adipokines differ between humans and 
mice. Human fasting leptin serum concentration is about 6.9 ± 0.3 ng/mL in males (n = 333) 
and 15.2 ± 1.3 ng/mL in females (n = 63) [104], while in healthy C57BL/6 mice the serum 
leptin concentration is about 0.1 ng/mL [105]. In the case of human fasting resistin serum 
levels the overall median is 8.93 ng/mL in males and 10.42 ng/mL in females [106], while in 
healthy C57BL/6 mice the serum resistin concentration is about 19 ng/mL [105]. Furthermore, 
the mean cohort human adiponectin level is 9.41 + 5.30 μg/mL (range 3.1–45.8) [107], while 
in healthy C57BL/6 mice the adiponectin serum concentration is about 44 ng/mL [105]. 
However, one cannot necessarily assume that the pure abundance of the three investigated 
adipokines determines their regulatory impact to affect miR expression in certain peripheral 
tissues. Also, many other factors need to be considered, like the expression of respective 
receptors on target cells, methylation status of miR genes harboring promotors in the target 
cells, or the expression of the miR-processing factors in the peripheral target cells, and even 
many more factors.

Nevertheless, direct studies with animal models should investigate the connection of 
adipokines and peripheral malignant transformation upon dysregulated miR expression 
patterns in dependence of obesity. Also, clinical studies in humans should verify the results 
of the published in vitro studies of the adipokine-regulated miRs under consideration of 
hyperplasia and hypertrophy as two types of adipose tissue with different endocrinological 
impact. The link between obesity and cancer is discussed upon the aspect of adipokine-regu-
lated miRs, offering new strategies for tumor therapy and diagnostics.
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