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Aim: Bile salt export pump (BSEP) have been confirmed to play an important role for
bile acid canalicular export in the treatment of cholestasis. In this study, we investigated
the stimulatory effect of emodin on BSEP signaling pathway in cholestasis.

Methods: Cell and animal experiments were given different concentrations of emodin.
The BSEP upstream molecule farnesoid X receptor was down-regulated by small
interfering RNA (siRNA) technology or guggulsterones and up-regulated by lentivirus
or GW4064. Real-time PCR and Western blotting was employed to detect the mRNA
and protein levels of BSEP in LO2 cell, rat primary hepatocytes and liver tissue.
Immunohistochemistry (IHC) was used to examine the expression of BSEP in liver
tissues. Rat liver function and pathological changes of liver tissue were performed by
biochemical test and hematoxylin and eosin (HE) staining.

Results: Emodin could increase the mRNA and protein expression of BSEP and FXR.
When down-regulating farnesoid X receptor expression with the siRNA or inhibitor
guggulsterones, and up-regulating farnesoid X receptor expression with the lentivirus
or agonist GW4064, emodin could increase the mRNA level of BSEP and FXR and the
protein level of BSEP, FXR1, and FXR2. Emodin also had a notable effect on rat primary
hepatocytes experiment, rat pathological manifestation, BSEP, FXR1, and FXR2 positive
staining in liver tissues and the test of liver function.

Conclusion: Emodin has a protective effect and a rescue activity on cholestasis
via stimulating FXR/BSEP pathways in promoting the canalicular export of
accumulated bile.
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INTRODUCTION

Intrahepatic cholestasis is characterized by disorders of bile
formation, bile acid (BA) detoxification and its transport
obstacles that are caused by the impairment of hepatocytes and
cholangiocytes (Ding et al., 2008). As a common liver disease,
cholestasis seriously affects the quality of life of patients, and if the
disease cannot be effectively controlled, those patients will face
liver fibrosis and biliary cirrhosis, and can ultimately die of liver
failure (Fischler and Lamireau, 2014).

The cause of cholestasis is the bile secretion disorders of
hepatocyte or bile duct epithelial cells and bile flow blockage
by bile flow formation and excretion barriers, further leading
to the retention of BA and other toxic substances, eventually
causing liver cell damage and cholestatic liver disease (Wagner
et al., 2009). The common incident parts involve the hepatocyte
and intrahepatic bile duct system, and the mechanism is closely
associated with the bile components, secretion, detoxification,
and transportation (Hirschfield and Heathcote, 2009).

At present, the amount of cholestasis treatment drugs is
limited, due to a lack of evidence for evidence-based medicine
and clinical curative effect. Although ursodeoxycholic acid
(UDCA) and S-adenosylmethionine are now supported by more
and more evidence, and the clinical studies have confirmed
that the two kinds of drugs in the treatment of cholestatic
liver disease, such as primary biliary cirrhosis (PBC), primary
sclerosing cholangitis and intrahepatic cholestasis of pregnancy,
are effective, the drugs are not only expensive but also work
slowly (Mato and Lu, 2007; Corpechot et al., 2008). Cholestasis
as the main clinical manifestation of hepatitis syndrome is
difficult to get rapid control of, and the efficacy is not cheap.
On the other hand, although there has been evidence of certain
clinical efficacy for glucocorticoid (such as dexamethasone,
abbreviation for “DXM”) and other immunosuppressive agents,
the obvious side effects of immunosuppression such as weight
gain, hyperglycemia, osteoporosis, cataracts, and increased
risk of opportunistic infections limit its clinical application
(Purohit and Cappell, 2015). Therefore, it is urgent to develop
new drugs with quick action and fewer side effects to treat
cholestatic hepatitis.

Emodin (6-methyl-1,3,8-trihydroxyanthraquinone) is
extracted from the traditional Chinese herb rhubarb as its
main active ingredient. The molecular formula is C15H10O5
(Zhao et al., 2009). It has been confirmed that emodin has liver
protection (Lee et al., 2012), anti-inflammation (Ding et al.,
2008; Zhu et al., 2016), anti-virus (Ho et al., 2007), immune
regulation (Kuo et al., 2001), promotion of gastrointestinal
motility (Zhang et al., 2005), antioxidant (Li et al., 2013)
and many other pharmacological effects. In the treatment of
cholestatic hepatitis, emodin could alleviate the role of liver
injury in cholestatic hepatitis caused by concanavalin A and
alpha-naphthylisothiocyanate (ANIT) (Ding et al., 2008; Xue
et al., 2015). More importantly, our previous work revealed that
emodin could alleviate intrahepatic cholestasis by promoting the
expression of liver farnesoid X receptor (FXR), small heterodimer
partner (SHP), uridine diphosphate glucuronosyltransferase 2
family polypeptide B4 (UGT2B4), and bile salt export pump

(BSEP), which are related to the synthesis, detoxification, and
transportation process of Bas (Ding et al., 2016).

We have demonstrated that emodin played a protective role
in intrahepatic cholestasis by promoting FXR signal pathways
(Ding et al., 2016). However, the BSEP is the key regulator of
BA canalicular export, and the molecular mechanism and target
gene on alleviating intrahepatic cholestasis by emodin is still
unknown. Therefore, the objective of this research was to confirm
whether emodin could alleviate cholestasis via the BSEP signaling
pathway. Therefore, this research used the LO2 cell line and
ANIT-induced rat model to find how emodin interfered with the
BSEP signaling pathway to alleviate intrahepatic cholestasis.

MATERIALS AND METHODS

Reagents
Emodin (purity > 95%) was purchased from R&D (3811,
Minneapolis, MN, United States). Cell Counting Kit-8 (CCK-
8) was obtained from Dojindo (CK04, Mashikimachi, Japan).
Dimethyl sulfoxide (DMSO) was purchased from Sigma-Aldrich
China (D2650, Shanghai, China). ANIT were obtained from
Alfa Aesar (STBD6070V, United States). Fetal bovine serum
(FBS) was offered by Zhejiang Tianhang Biotechnology Co.,
Ltd. (141215, Hangzhou, China). RPMI-1640 medium were
obtained from Gibco (8116524, Grand Island, NY, United States).
DMEM/F-12 medium were purchased from HyClone (SH30023,
Logan, United States). Phosphate-buffered saline (PBS), Trypsin
0.25% with EDTA and D-Hanks was purchased from Genom
Biotechnology Co., Ltd. (GNM20012/GNM25200/GNM14170,
Hangzhou, China). BCA Protein Assay Kit were bought from
Beyotime (021317170407, Shanghai, China). Guggulsterone
(purity ≥ 98%) and GW4064 (purity ≥ 95%) were obtained
from Cayman Chemicals (71800-5/S2782, Ann Arbor, MI,
United States). Rabbit anti-human FXR1 and FXR2 antibodies
were, respectively, obtained from and Cell Signaling Technology
(12295S/7098S, Danvers, MA, United States). Rabbit anti-human
BSEP antibody and Cytokeratin 18 antibody was obtained from
Abcam (ab140616/ab181597, Cambridge, MA, United States).
Horseradish peroxidase (HRP)-labeled goat anti-rabbit IgG was
obtained from Boster Immunoleader (BA1054, Wuhan, China).
RNAiso Plus, PrimeScriptTM RT reagent Kit and SYBR Premix Ex
Taq kit were purchased from TaKaRa (SD1410/RR036A/RR420A,
Dalian, China). RIPA Lysis and Extraction Buffer, PMSF and
electrochemiluminescence (ECL) kit were bought from Beyotime
(AR0102-10/AR1182/EK1001, Shanghai, China). UDCA capsule
was obtained from Dr. Falk Pharma GmbH (Freiburg, Germany).
DXM was bought from Xinxiang Changle Pharmaceutical
Company Ltd. (Xinxiang, China).

Cell Culture
The normal human hepatocyte line LO2 was purchased from
the Type Culture Collection of the Chinese Academy of
Sciences, Shanghai, China. The human hepatocyte LO2 cell
was maintained in an incubator at 37◦C, 5% CO2 and
saturated humidity in 1640 medium supplemented with 10% FBS
(Guo et al., 2015a).
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Cytotoxic Effect of Emodin and Cell
Morphology Observation
The cytotoxic effect of emodin was evaluated by the CCK-8 assay.
Cell morphology was observed after treatment with emodin for
24 h and the procedure followed the previously published steps
(Guo et al., 2015b; Wang et al., 2017).

Cellular Model Establishment and
Intervention
Groups were divided into a control group and UDCA (0.1
µg/ml), DXM (0.785 ng/µl) and emodin (0.02 µg/ml, 0.04
µg/ml and 0.08 µg/ml) groups. With cells passage in 6-,
12-, or 96-well plates for 24 h and culturing to 70% density,
the supernatants were removed and guggulsterone (1 µM) or
GW4064 (1 µM) was added to the wells, excluding the control
group. The cell-culture medium was replaced 24 h later, and
the guggulsterone/GW4064 was diluted in 1640 medium. After
24 h, the cells were harvested for quantitative real-time PCR and
Western blotting.

Small Interfering (si) RNA Transfection in
LO2 Cells
The FXR siRNA (sense 5′-CAAGTGACCTCGACAACAA-3′)
for human was synthesized by RiboBio Co., Ltd. (Guangzhou,
China). LO2 cells were seeded onto 6-well plates and transfected
with siRNA duplexes using Lipofectamine 2000 (Invivogen,
San Diego, CA, United States) according to manufacturer’s
instructions. The medium was replaced 6 h later, and then the
cells were grown for an additional time up to 48 h. At the time
point of 24 h before harvest, the siRNA-intervened cells were
treated with emodin, UDCA or DXM.

Lentivirus Transfection in LO2 Cells
The FXR and negative normal lentiviral vectors were constructed
by GeneChem Co., Ltd., Shanghai, China. GV367-FXR/NC-
enhanced green fluorescent protein (EGFP) was transfected into
LO2 cell lines, and viral supernatant was harvested after 48 h
(2 × 108 transducing units [TU]/ml). LO2 cells were seeded
onto 96- or 6-well plates and transfected with lentivirus with
a multiplicity of infection of 50 according to manufacturer’s
instructions. The medium was replaced 6 h later, and then the
cells grew for an additional time up to 72 h. Then, the lentivirus-
intervened cells were treated with emodin, UDCA or DXM
for another 24 h.

Animal Model Establishment and
Specimen Collection
Specific pathogen-free neonatal Sprague-Dawley rats (60–80 g)
were obtained from Hubei Provincial Centers for Disease
Control, including 21 female rats and 21 male rats. All rats
were kept under constant housing conditions with 22◦C, 60%
relative humidity, and a 12-h light/dark cycle and had free
access to water and food throughout the experiment (Jin
et al., 2013; Du et al., 2016). The animal experiment number
was SCXK (HUBEI) 2015-0018. The study was reviewed and

approved by the Research Ethics Committee of Tongji Medical
College, Huazhong University of Science and Technology
(Li et al., 2016; Yang et al., 2016). After feeding for 3
days for adaptation, 42 rats were equally divided into seven
groups, i.e., emodin (80 mg/kg), emodin (40 mg/kg), emodin
(20 mg/kg), UDCA, DXM, model and control groups. Each
group included six rats with 3 males and 3 females. Emodin
was prepared to 0.4%, 0.2%, and 0.1% suspensions by sodium
carboxymethylcellulose. UDCA was prepared to 0.3% suspension
by water. Dexamethasone was dissolved in water with the
concentration of 0.009%. ANIT was dissolved in sesame oil
with the concentration of 0.25%. The intervention cycle for the
model was 7 days for emodin (80 mg/kg, 40 mg/kg, 20 mg/kg),
UDCA (60 mg/kg) and dexamethasone (1.8 mg/kg) groups,
and 0.25% ANIT (50 mg/kg) was given to the six groups
on the fifth day through administration by gavage. Animals
were terminated by cervical dislocation after 48 h of ANIT
treatment. During this time, the rats were fasted for the last
12 h and anesthetized for the removal of 2 ml of eyeball
blood before their death, and all the rats were anesthetized
through intraperitoneal injection with 10% chloral hydrate
(0.3 ml/100 g). The serum was stored at −20◦C. The right liver
was immediately snap frozen in liquid nitrogen and stored at
−80◦C, while the left lobe tissue was fixated in 4% formaldehyde
and embedded in paraffin.

Extraction, Cultivation, and Treatment of
Rat Primary Hepatocytes
Adult male SD rats (6–8 weeks) weighing 180–200 g were chose
to extract hepatocytes, and we use two-step collagenase digestion
method and cultivated according to published steps (Klaunig
et al., 1981). Extract hepatocytes was maintained in an incubator
at 37◦C, 5% CO2 and s cultured humidity in 1640 medium
supplemented with 20% FBS, We used immunofluorescence to
detect CK-18 protein in cells to identify whether the extracted
cells were rat primary hepatocytes (Banaudha et al., 2010). Then,
the hepatocytes were planted in 6-well plates. When the cell
cultivated reaching 70% density after 12 h, they were treated

TABLE 1 | Sequences of primers for reverse transcription and real-time
polymerase chain reaction amplification.

Gene Primer sequence (5′ → 3′) bp

FXR Forward primer AAGTGACCTCCACGACCAAGC 21

(human) Reverse primer TCCGCTGAACGAAGGAACAT 20

FXR Forward primer AAGAGATGGGAATGTTGGCTG 21

(rat) Reverse primer CTCCCTGCATGACTTTGTTGTC 21

BSEP Forward primer ATGTTGACGGGATTCGCTTC 20

(human) Reverse primer CCACTCCAATCCCAGCAACT 20

BSEP Forward primer CAACTGCTGGACCGAC AACC 20

(Rat) Reverse primer CATCCACTGCTCCCAACAA AC 20

GAPDH Forward primer AGGTCCACCACTGACACGTT 20

(human) Reverse primer GCCTCAAGATCATCAGCAAT 20

GAPDH Forward primer ACAGCAACAGGGTGGTGGAC 20

(rat) Reverse primer TTTGAGGGTGCAGCGAACTT 20
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with emodin (0.02 µg/ml, 0.04 µg/ml, and 0.08 µg/ml), UDCA
(0.1 µg/ml), DXM (0.785 ng/µl). After 24 h, each group of
cells was harvested for quantitative real-time PCR and Western
blotting, respectively.

Quantitative Real-Time PCR for mRNA
Expression Measurement
Following our previous steps (Zhou et al., 2013), total RNA from
liver tissues and cells were isolated using RNAiso Plus following
the manufacturer’s protocol. The cDNAs were produced with
PrimeScript RT reagent kit and incubated at 37◦C for 15 min
and 85◦C for 5 s. Real-time PCR reactions were done using
a StepOne Plus device (Applied Biosystems) at 95◦C for 10 s
followed by 40 cycles of 95◦C for 5 s and 60◦C for 20 s
according to instruction of the SYBR Premix Ex Taq kit. Data
were analyzed by 2−11Ct method. All primers were synthesized
by TSINGKE (Wuhan, China). The sequences of all primers are
listed in Table 1.

Western Blotting for Protein Expression
Measurement
Abiding by our previous steps (Li et al., 2017), nucleus
protein and total protein were extracted from the liver
tissues and hepatocytes, respectively. The protein concentration
was determined using BCA method. To each tube, an
equivalent volume of 2× sodium dodecyl sulfate (SDS) loading
buffer (100 mM Tris-HCl, pH 6.8, 4% SDS, 20% glycerine,
10% 2-mercaptoethanol, and 0.2% bromophenol blue) was
added and mixed again. The mixtures were then denatured
at 95◦C for 10 min, and approximately 30 mg of the
protein mixture was loaded and separated in each well on
10% SDS-polyacrylamide electrophoresis gels. After separation
for approximately 80 min, the proteins were transferred
to polyvinylidene difluoride (PVDF) membranes, and the
membranes were saturated and blocked with 5% fat-free
milk at 37◦C for 1 h. Membranes were probed with rabbit
polyclonal anti-rat-FXR1 (1:1000), FXR2 (1:500), BSEP (1:500)

FIGURE 1 | Effect of emodin on the expression of FXR and BSEP in normal LO2 cells. The mRNA levels of FXR (A) and BSEP (B) were detected by RT-PCR. The
protein levels of FXR1, FXR2, and BSEP were measured by Western blot (C–F). Values are the means ± SD (n = 3, ∗P < 0.05 compared to the control group;
∗∗P < 0.01 compared to the control group, as determined by Student’s t-test).
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and then with horseradish peroxidase-conjugated secondary
immunoglobulin IgG (1:1000). The membranes were then treated
with an enhanced chemiluminescence reagent (Amersham,
Piscataway, NJ, United States), and the signals were detected by
exposure of the membranes to X-ray films (Kodak, Rochester,
NY, United States). The relative signal intensity was quantified
by densitometry with Gel pro3.0 image software (Media
Cybernetics, Silver Spring, MD, United States) on an IBM-
compatible personal computer.

Immunohistochemistry (IHC) for
Detecting BSEP Expression in Liver
Tissue
The procedure followed our previous steps (Jin et al., 2015).
The liver tissue specimens were cut into 10 µm sections after
dewaxing and hydrating. The sections were incubated in 3%
H2O2/methanol to eliminate endogenous peroxidase activity.
Then, the sections were incubated with normal goat serum for

10 min and incubated with FXR1 (1:200), FXR2 antibody (1:75)
and BSEP (1:40) overnight at 4◦C and biotin-conjugated goat
anti rabbit IgG (1:200) at 37◦C for 45 min. They were rinsed
again with PBS and incubated with horseradish peroxidase-
labeled streptavidin at 37◦C. The samples were developed
with diaminobenzidene (DAB) and stained with hematoxylin.
After being rinsed with distilled water and dehydrated, the
sections were made transparent and mounted for microscope
examination. After the immunohistochemical analysis, IPP
software (image-pro plus 6.0) was used to analyze the optical
density of the images as described previously.

Biochemical Tests
The serum total bilirubin (TBIL), direct bilirubin (DBIL),
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), alkaline phosphatase (ALP), γ-glutamyl transpeptidase
(GGT), and total bile acids (TBA) were assayed by Aeroset
Fully-auto Chemistry Analyzer provided by Abbott Co LTD.

FIGURE 2 | Effect of emodin on the expression of FXR and BSEP in LO2 cell after guggulsterone stimulation. The mRNA levels of FXR (A) and BSEP (B) were
detected by RT-PCR. The protein levels of FXR1, FXR2, and BSEP were measured by Western blot (C–F). Values are the means ± SD (n = 3, ∗P < 0.05 compared
to the guggulsterone group; ∗∗P < 0.01 compared to the guggulsterone group; #P < 0.01 compared to the control group, as determined by Student’s t-test).
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Histomorphology
After fixation in 4% formaldehyde, tissues were embedded in
paraffin and cut in serial sections of 4 µm for hematoxylin and
eosin (HE) staining as our previous studies (Huang et al., 2013).

Statistical Analysis
The statistical analyses were conducted with SPSS 12.0 software.
Data were expressed as the mean± SEM. The comparisons of the
measurement data between the groups were performed with one-
way ANOVA tests and Student’s t-tests. Statistical significance
was defined at p < 0.05 (Ding et al., 2015).

RESULTS

Effects of Emodin on the BSEP Pathway
in LO2 Cell
Based on the CCK8 assay, pretreatment of unstimulated LO2 cells
with prepared solution of emodin at 0.02 µg/ml, 0.04 µg/ml,

and 0.08 µg/ml for 24 h did not significantly affect cell viability.
Therefore, we chose emodin at 0.02 µg/ml, 0.04 µg/ml, and 0.08
µg/ml to treat cells for 24 h. Compared with the control group,
the mRNA expressions of BSEP and FXR were significantly
elevated in the emodin group (p < 0.05 or 0.01) (Figures 1A,B).
The protein expressions of BSEP, FXR1 and FXR2 were also
significantly increased in the emodin groups (p < 0.05 or
0.01); UDCA could increase the mRNA and protein level of
BSEP (P < 0.01 or P < 0.05) (Figures 1C–F). Compared
with the control group, emodin could notably increase the
mRNA level of FXR, as well as the protein level of FXR1 and
FXR 2 (P < 0.01).

Effects of Emodin on the BSEP Pathway
in LO2 Cell After Guggulsterone
Stimulation
The LO2 cells were interfered with using guggulsterones.
Compared with the control group, the mRNA expressions of
BSEP and FXR were significantly decreased in the guggulsterones

FIGURE 3 | Effect of emodin on the expression of FXR and BSEP in LO2 cell after GW4064 stimulation. The mRNA levels of FXR (A) and BSEP (B) were detected
by RT-PCR. The protein levels of FXR1, FXR2, and BSEP were measured by Western blot (C–F). Values are the means ± SD (n = 3, ∗P < 0.05 compared to the
GW4064 group; ∗∗P < 0.01 compared to the GW4064 group; #P < 0.01 compared to the control group, as determined by Student’s t-test).
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group (p < 0.01), while compared with the guggulsterones group,
the mRNA expressions of BSEP and FXR were significantly
elevated in the emodin groups (p < 0.05 or 0.01) (Figures 2A,B).
The protein expressions of BSEP, FXR1, and FXR2, were also
significantly lowered by guggulsterones (p < 0.01), and compared
with the guggulsterones group, the protein expressions of BSEP,
UGT2B4, FXR1, and FXR2 were significantly elevated in the
emodin groups (p < 0.05 or 0.01) (Figures 2C–F).

Effects of Emodin on the BSEP Pathway
in LO2 Cell After GW4064 Stimulation
The LO2 cells were interfered with using GW4064. Compared
with the control group, the mRNA expressions of BSEP and FXR
were significantly increased in the GW4064 group (p < 0.01),
while compared with the GW4064 group, the mRNA expressions
of BSEP and FXR were significantly elevated in the emodin
groups (p < 0.05 or 0.01) (Figures 3A,B). The protein expressions
of FXR1 and FXR2 were also significantly elevated in the GW4064
group (p < 0.01), and compared with the GW4064 group, the
protein expressions of FXR1 and FXR2 were significantly elevated
in the emodin group (p < 0.05) (Figures 3C–F).

Effect of Emodin on the BSEP Pathway
in LO2 Cells When FXR Was Knocked
Down by siRNA
We used siRNA to down-regulate the expression of FXR in LO2
cells for 24 h. Then, the cells were treated with emodin (0.02,
0.04 and 0.08 µg/ml), UDCA or DXM for 24 h. Compared with
the control group, the mRNA expressions of BSEP and FXR
were significantly decreased in the FXR-siRNA group (p < 0.01)
(Figure 4A), and the protein expressions of BSEP, FXR1, and
FXR2 were also significantly lowered in the FXR-siRNA group
(p < 0.01) (Figures 4B,C). While compared with the FXR-
siRNA group, the mRNA expressions of BSEP, FXR1, and FXR2
were significantly elevated in the emodin groups (p < 0.05
or 0.01) (Figure 4A). While compared with the FXR-siRNA
group, the protein expressions of BSEP, FXR1, and FXR2 were
also significantly elevated in the emodin groups (p < 0.05 or
0.01) (Figures 4B,C).

Effect of Emodin on the BSEP Pathway
in LO2 Cells After FXR Over-Expression
by Lentivirus Transfection
We made the FXR lentiviral vector GV273 and transfected
LO2 cells. GFP (green fluorescent protein) was observed with
a fluorescence microscope after 48 h and 72 h (Figures 5A,B).
Then, the cells were treated with emodin (0.02, 0.04 and
0.08 µg/ml), UDCA or DXM for 24 h. Compared with the
control group, the mRNA expressions of BSEP and FXR were
significantly increased in the lentivirus-up group (p < 0.01)
(Figure 5C), and the protein expressions of BSEP, FXR1, and
FXR2 were also significantly elevated in the lentivirus-up group
(p < 0.01) (Figures 6A,B). Compared with the lentivirus-
up group, the mRNA expressions of BSEP and FXR were
significantly elevated in the emodin groups (p < 0.05 or 0.01)
(Figure 5C), while the protein expressions of BSEP, FXR1, and

FIGURE 4 | Effect of emodin on the expression of FXR and BSEP after FXR
was knocked down by siRNA. The mRNA levels of FXR and BSEP were
detected by RT-PCR (A,B). The protein levels of FXR1, FXR2, and BSEP were
measured by Western blot (C). Values are the means ± SD (n = 3, #P < 0.01
compared to the control group, ∗∗P < 0.01 compared to the FXR-siRNA
group; P < 0.05 compared to the FXR-siRNA group; ∗p < 0.05 compared to
the UDCA group; p < 0.05 compared to the DXM group, as determined by
Student’s t-test).

FXR2 were also significantly elevated in the emodin groups
(p < 0.05 or 0.01) (Figures 6A,B).

Effect of Emodin on Serum Biochemical
Indicators
In this experiment, we set three double ratio concentration
20 mg/kg, 40 mg/kg, and 80 mg/kg. The acute toxicity study
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FIGURE 5 | The expression of GFP was observed with a fluorescence microscope after lentivirus was introduced into LO2 cells for 48 h (A) and 72 h (B). The mRNA
levels of FXR and BSEP were detected by RT-PCR (C). (n = 3, #P < 0.01 compared to the control group, ∗∗P < 0.01 compared to the lentivirus group; ∗P < 0.05
compared to the lentivirus group; p < 0.05 compared to the UDCA group, as determined by Student’s t-test).

for anthraquinones (emodin) showed LD50 values of 8.6 g/kg
and 3.8 g/kg in male and female mice, respectively (Djimeli
et al., 2017), which is much higher than the three concentrations
in our experiment.

Indeed, as is showed in Table 2, there is no dose–response in
emodin. For ALT, AST, DBIL, TBIL, GTT, and ALP, the superior
rank was: 40 mg/kg > 20 mg/kg > 80 mg/kg. For TBA, the
superior rank was: 40 mg/kg > 80 mg/kg > 20 mg/kg. So, the
optimum concentration for emodin may be 40 mg/kg and the
underlying causes deserve further studies.

As shown in Table 2, when compared with the model group,
emodin had a significant effect on decreasing ALT, AST, TBIL,
DBIL, ALP, GGT, and TBA levels (P < 0.05 or P < 0.01). On
ALT, emodin (20 mg/kg) and emodin (80 mg/kg) had a similar
effect with UDCA. Emodin (40 mg/kg) was most effective on
AST, ALP, and DBIL (P < 0.01), which was inferior to UDCA.

Emodin (80 mg/kg and 40 mg/kg) had a notable effect on TBIL
(P < 0.01), and UDCA showed a similar effect on TBIL level
as the emodin (20 mg/kg) group. It was significant that emodin
(20 mg/kg, 40 mg/kg, 80 mg/kg) had an effect on GGT (P < 0.05
or 0.01), and emodin (40 mg/kg) was markedly more effective
(P < 0.01) than the UDCA group on GGT. There is no dose–
response in emodin. For ALT, AST, DBIL, TBIL, GTT, and ALP,
the superior rank was: 40 mg/kg > 20 mg/kg > 80 mg/kg. And for
TBA, the superior rank was: 40 mg/kg > 80 mg/kg > 20 mg/kg.
So, the optimum concentration for emodin may be 40 mg/kg.

Effects of Emodin on BSEP Pathway in a
Rat Model With Cholestatic Hepatitis
Compared with the control group, the mRNA levels of BSEP
and FXR in the model group were decreased significantly
(P < 0.01). The mRNA expression of BSEP and FXR was
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FIGURE 6 | The protein levels of FXR1, FXR2, and BSEP were detected by
Western blotting (A,B). Values are the means ± SD (n = 3, #P < 0.01
compared to the control group, ∗∗P < 0.01 compared to the lentivirus group;
∗P < 0.05 compared to the lentivirus group; p < 0.05 compared to the
UDCA group, as determined by Student’s t-test).

affected by emodin treatments when compared with model group
(P < 0.01 or 0.05) (Figure 7A). Compared with the control
group, the protein expressions of BSEP, FXR1, and FXR2 were
significantly decreased in the model group (p < 0.01). While
compared with the model group, the protein expressions of
BSEP, FXR1, and FXR2 were significantly elevated in the emodin

groups (p < 0.01) (Figures 7B,C). Although UDCA showed a
positive effect on the mRNA and protein expression of BSEP,
FXR1, and FXR2 when compared with model group (p < 0.01
or 0.05), emodin (40 mg/kg) and emodin (80 mg/kg) groups
presented better improvement than that in UDCA and DXM
group (P < 0.05 or 0.01).

Effects of Emodin on Molecules of BSEP
Pathway in Rat Primary Hepatocytes
Rat primary hepatocytes were used to study the effects of emodin
on cholestasis. To demonstrate whether the extracted cells were
rat primary hepatocytes, we used immunofluorescence to detect
CK-18 protein in hepatocytes and observed the red fluorescent
molecule Dylight488 in primary hepatocytes by fluorescence
microscope (Figures 8A–C). As shown in Figure 8D, compared
with the untreated cells, the emodin group showed significantly
elevated mRNA levels of FXR and BSEP. More importantly, the
increases in the mRNA levels of FXR in the 0.08 µg · ml−1

emodin group were more significant than those in the UDCA
groups (Figures 8D,E). The protein expression of FXR and
BSEP were also significantly increased, and there were no
obvious increases in protein expression in the UDCA groups
(Figures 8F,G). Consistent with the results of the LO2 hepatocyte
cell line, the experimental results of primary hepatocytes showed
FXR/BSEP pathways were markedly up-regulated in the 0.04 and
0.08 µg ·ml−1 emodin groups in vitro.

Effects of Emodin on Liver Morphology
by HE Staining
As shown in Figure 9(1), the hepatic tissue in the control group
showed regular arrangement of hepatic lobules and cells and
intact epithelial cells of bile duct. The pathological changes in
the model group were typically showing significant swelling of
hepatic cells, swelling of cytoplasm, uniformed nucleus and a
strongly stained nucleolus. Moreover, in the model group, many
punctiform or focused necrotic zones were shown in the hepatic
tissue and Kupffer’s cell could also be observed. At the same time,
the bile duct showed a narrower canal and bile thrombus and
necrotic cells. The pathological impairment in the DXM group
appeared more serious in hepatic tissue. However, in emodin
groups, the pathological changes were less than the model group

TABLE 2 | Effect of emodin on liver function tests.

Group ALT (U/L) AST (U/L) DBIL (µmol/L) TBIL (µmol/L) GTT (U/L) ALP (King TBA (µmol/L)
unit/100 ml)

Emodin (20 mg/kg) 55.4 ± 2.7∗@% 67.6 ± 3.4∗@% 41.9 ± 2.7∗# 73.1 ± 4.6∗@% 47.3 ± 2.3∗@& 46.3 ± 2.3∗@% 142.9 ± 7.1∗@%

Emodin (40 mg/kg) 48.6 ± 3.2∗@% 62.0 ± 3.5∗@% 39.4 ± 3.1∗# 59.1 ± 4.6∗@% 42.4 ± 3.0∗@% 42.9 ± 2.4∗@% 99.5 ± 3.5∗@%

Emodin (80 mg/kg) 60.0 ± 3.8∗@& 74.4 ± 3.0∗@& 44.3 ± 2.4∗ 78.0 ± 4.4∗@& 51.7 ± 3.1∗@ 50.1 ± 2.0∗@& 120.4 ± 4.2∗@%

UDCA 69.1 ± 3.3∗@ 82.8 ± 3.7∗# 45.3 ± 3.5∗ 85.7 ± 4.3∗@ 54.7 ± 3.0∗# 54.5 ± 3.3∗# 157.1 ± 5.0∗@%

DXM 72.1 ± 3.1∗@ 86.3 ± 3.5∗ 48.5 ± 3.1∗ 95.3 ± 5.0∗# 58.1 ± 2.6∗ 58.9 ± 1.9∗# 186.6 ± 5.9∗@

Model 85.1 ± 1.8∗ 95.8 ± 3.7∗ 52.3 ± 3.1∗ 114.6 ± 5.6∗ 66.2 ± 2.8∗ 66.9 ± 2.6∗ 221.3 ± 8.7∗

Control 24.8 ± 3.3 27.5 ± 2.4 19.8 ± 1.9 44.1 ± 3.4 15.7 ± 1.4 30.2 ± 1.1 47.4 ± 2.2

Data were shown as mean ± SD. n = 6. (∗P < 0.01 vs. control group; #P < 0.05, @P < 0.01 vs. model group; &P < 0.05, %P < 0.01 vs. DXM group; P < 0.01 vs.
UDCA group.)
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FIGURE 7 | Effect of emodin on the SHP-BSEP signaling pathway in
ANIT-treated rats. The mRNA levels of FXR and BSEP were measured by
real-time PCR (A). The protein levels of FXR1, FXR2, and BSEP were
detected by Western blotting (B,C). Data were expressed as the mean ± SD.
n = 3. (#P < 0.01 compared to the control group, ∗∗P < 0.01 compared to
the model group; p < 0.05 compared to the UDCA group; 1p < 0.05
compared to the DXM group, as determined by Student’s t-test).

and the manifestations in the UDCA group were similar to those
in emodin (20 mg/kg) group.

Effect of Emodin on BSEP Protein
Expression Examined by IHC in Liver
Tissues
As shown in Figures 9(2)–(4) the rate of BSEP, FXR1, and
FXR2 positive staining in the model group significantly decreased
(P < 0.01) compared with the control group. With emodin
treatment, the rates of BSEP-, FXR1-, and FXR2-positive staining
could be increased notably (P < 0.01). The BSEP-, FXR1-, and
FXR2-positive staining rates in UDCA and DXM groups were
higher than that in the model group (P < 0.01). Compared with
UDCA and DXM group, the BSEP-, FXR1-, and FXR2-positive
rates in the emodin group were markedly higher (P < 0.01).

DISCUSSION

As a member of adenosine triphosphate (ATP)-binding
cassette (ABC) transporters, BSEP is encoded by the gene
ABCB11 (Meier et al., 2006). It is mainly expressed on the
hepatocytes canalicular membranes and utilizes energy that
from ATP hydrolysis to transport intracellular substrates
into the extracellular compartment. So BSEP is primarily
responsible for the BA excretion (Cheng et al., 2016) and
translocates bile salt from hepatocytes into the canaliculus
and the multidrug resistance protein 3 (MDR3) translocates
phosphatidylcholine from the cytoplasmic to the outer leaflet of
the canalicular membrane. Bile salt in the canaliculus facilitates
the release of phosphatidylcholine from the outer leaflet and
forms phosphatidylcholine-bile salt-mixed micelles, which is
critical for the solubilization of biliary cholesterol. Moreover,
phosphatidylcholine-bile salt-mixed micelles reduce the toxic
activity of bile salts against the bile ducts. Therefore, the proper
and coordinated functioning of BSEP and MDR3 is critical
for mixed micelle formation and can lead to a decreased
solubility of biliary cholesterol and consequently to cholestasis
(Mahdi et al., 2016).

Recent studies have shown that the nuclear receptor FXR is
the central molecule in the metabolism of BAs and is currently
considered as key target in the treatment of cholestasis (Stahl
et al., 2008; Sturm et al., 2009; Zhu et al., 2013). FXR could
not only inhibit BAs transportation but could also inhibit the
formation of liver fibrosis. The specific mechanism is that FXR
can inhibit the synthesis of BAs and then further induce BAs
detoxification and excretion in small bile duct, increasing bile
flow and bile phospholipid content of Bas (Baptissart et al., 2013;
Gardes et al., 2013; Matsubara et al., 2013).

Therefore, the nuclear receptor FXR is currently considered
to be the hub of cholestasis therapy (Kim et al., 2009).
The heterodimer combined with target genes needs to be
translated into proteins and then plays biological functions.
More importantly, during the process of BA transport, BSEP
mainly regulated by FXR plays an important role. BSEP can
pump univalent BAs into the bile duct and ultimately into the
gallbladder. As the BA receptor, FXR can regulate the gene
expression involved in BA metabolism and up-regulate BSEP
expression to maintain BA homeostasis in the case of BA overload
(Mazuy et al., 2015). It is worth noting that the BSEP promoter
contained a response element of FXR (Ananthanarayanan et al.,
2001), and the expression of BSEP was significantly decreased in
FXR knockout mice (Sinal et al., 2000), which is suggesting that
BSEP is a downstream target gene of FXR.

Thus, the selection of FXR downstream molecules is closely
related to BA transportation through excited or inhibited
FXR. BAs are difficult to separate from the blood and
Balasubramaniyan et al. (2013) demonstrated that BSEP was the
target gene of FXR and when FXR was up-regulated or down-
regulated; BSEP was correspondingly increased or decreased with
no natural agonists, i.e., BAs. So the researchers made efforts
to intervene hepatic FXR with chemicals or genetic tools to
identify the role of FXR on BSEP. The use of FXR agonists,
such as GW4064 and 6-ECDCA, can significantly promote
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FIGURE 8 | Effects of emodin on molecules of BSEP pathway in rat primary hepatocytes. Immunofluorescence was used to detect CK-18 protein in hepatocytes,
and the red fluorescence molecule Dylight488 in primary hepatocytes was observed under a fluorescence microscope (A–C). Cytotoxicity of emodin on primary
hepatocytes was determined by CCK8 assay (D). The mRNA levels of FXR and BSEP were detected by qRT-PCR (E). The protein levels of FXR1, FXR2, and BSEP
were detected by Western blotting (F,G). Data are shown as the mean ± SD. n = 5. (∗P < 0.05 compared to the control group; ∗∗P < 0.01 compared to the
control group).

liver cells’ uptake of bile salts to reduce cholestasis and then
restore bile flow and reduce serum cholestatic indicators (Ye
et al., 2009; Zollner and Trauner, 2009). Some reports showed

that Fxr-knockout mice had excessive levels of BAs, cholesterol
and triglycerides (Anakk et al., 2011). The FXR antagonist
guggulsterones has been proven to exacerbate cholestasis in liver
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FIGURE 9 | (1) Effect of emodin on pathological manifestation of hepatic tissue by HE staining at 400× magnification (A: emodin 20 mg/kg group; B: emodin
40 mg/kg group; C: emodin 80 mg/kg group; D: UDCA group; E: DXM group; F: model group; G: control group). (2) Effect of emodin on BSEP expression was
examined with IHC at 400× magnification (A: emodin 20 mg/kg group; B: emodin 40 mg/kg group; C: emodin 80 mg/kg group; D: UDCA group; E: DEX group; F:
model group; G: control group. Values are the means ± SD. n = 3, ##P < 0.01 compared to the control group, ∗∗P < 0.01 compared to the model group; p < 0.01
compared to the UDCA group; MMp < 0.01 compared to the DXM group, as determined by Student’s t-test). (3) Effect of emodin on FXR1 expression was

(Continued)
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FIGURE 9 | Continued
examined with IHC at 400× magnification (A: emodin 20 mg/kg group; B: emodin 40 mg/kg group; C: emodin 80 mg/kg group; D: UDCA group; E: DXM group; F:
model group; G: control group. Values are the means ± SD. n = 3, ##P < 0.01 compared to the control group, ∗∗P < 0.01 compared to the model group;

p < 0.01 compared to the UDCA group; MMp < 0.01 compared to the DXM group, as determined by Student’s t-test). (4) Effect of emodin on FXR2 expression
was examined with IHC at 400× magnification (A: emodin 20 mg/kg group; B: emodin 40 mg/kg group; C: emodin 80 mg/kg group; D: UDCA group; E: DEX group;
F: model group; G: control group. Values are the means ± SD. n = 3, ##P < 0.01 compared to the control group, ∗∗P < 0.01 compared to the model group;

p < 0.01 compared to the UDCA group; MMp < 0.01 compared to the DXM group, as determined by Student’s t-test).

cells (Zhao et al., 2014). Moreover, the FXR agonist GW4064
can reduce estradiol-induced cholestasis in liver cells (Seok et al.,
2014) to increase uptake of bile salts, restore the flow of bile
and reduce the levels of serum bile salt. These compounds
have been approved for the treatment of PBC and NASH
(Neuschwander-Tetri et al., 2015). Therefore, in order to observe
whether emodin could continue to promote the FXR signal
pathway in the condition of low and high FXR levels, we chose
guggulsterones/siRNA and GW4064/lentivirus to down- or up-
regulate FXR. There is another natural product, Dioscin is also
can rescue intrahepatic cholestasis in ANIT-Induced rat model
through regulating transporters, apoptosis, and oxidative stress
(Yao et al., 2017) and through regulating Oatps, Mrp2, and Bsep
expression (Zhang et al., 2016).

Therefore, in our experiment, we choose BSEP as our target
gene for FXR and choose the FXR inhibitor guggulsterone
(Zhao et al., 2014) and siRNA to down-regulate and the
FXR agonist GW4064 and lentivirus transfection to up-regulate
FXR in our cell experiment. For the LO2 cell experiment,
the mRNA and protein expressions of FXR and BSEP were
significantly elevated in the emodin group compared with control
group. Then, the LO2 cells were interfered with guggulsterones
or FXR-siRNA to inhibit the FXR. When compared with
the guggulsterones/FXR-siRNA group, the mRNA and protein
expressions of FXR and BSEP were also significantly elevated
in the emodin groups. Furthermore, to confirm the efficacy of
emodin after FXR was up-regulated, we interfered LO2 cells
with GW4064 or lentivirus to activate the FXR. When compared
with the GW4064/lentivirus-up group, the mRNA and protein
expressions of FXR and BSEP were also significantly elevated
in the emodin groups. GW4064 can significantly reduce the
content of triglyceride, cholesterol and free fatty acid induced
by high-fat diet in liver (Ma et al., 2013). Therefore, we
speculate that GW4064 could weaken the effect of emodin
in promoting the FXR pathway through the degradation of
organic solvent that dissolved emodin in this experiment. In vitro
experiments, we use the normal, guggulsterone stimulation,
GW4064 stimulation and FXR-siRNA or lentivirus-up methods
to compare the emodin’s positive effect on FXR and BSEP
expression, and the results proved that emodin could increase
the level of FXR and BSEP, no matter of the basic level
of FXR low or high. So it seems like that emodin is an
indirect mediator to regulate the expression of FXR. And
we verity our idea in rat primary hepatocytes experiment,
emodin could also increase the level of FXR and BSEP in rat
primary hepatocytes. The FXR-BSEP pathway was activated in
ANIT-induced cholestasis rats. After model establishment and
treatment, the liver pathological changes and the serum TBIL,

DBIL, TBA, ALP, GGT, ALT, and AST were monitored. By
emodin intervention, it could be observed that improvement
of the hepatic impairment was achieved. The molecules of
FXR and BSEP decreased significantly in the model group.
After treatment of emodin, the FXR pathways in cholestatic
hepatitis were markedly activated, and FXR and BSEP were
promoted to some degree.

CONCLUSION

This study demonstrated that BSEP is a viable therapeutic
target for BA canalicular export and certified the efficacy
of emodin in activating the BSEP signaling pathway to
alleviate cholestasis in vitro and in vivo, which may help
find a new way to prevent and treat intrahepatic cholestasis.
BSEP, the key target molecules that we study may provide
new ideas for future precision medicine accurate treatment
of intrahepatic cholestasis. Further research is required to
demonstrate whether emodin could specifically affect the BA
synthesis and detoxification through NTCP (Na+/taurocholate
co-transporting polypeptide), ASBT (apical Na+-dependent BA
transporter), OST α-β (organic solute transporter α-β), OATPs
(organic anion transporting polypeptides), MDR3 (multidrug
resistance protein 3), SHP or UGT2B4.
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