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Despite increasing knowledge about the impacts of pathogens on the interactions

between plants and insect vectors, relatively little is known about their effects on other,

non-vector, organisms. In cranberries, phytoplasma infection causes false blossom

disease, which is transmitted by leafhoppers. We hypothesized that changes in

plant chemistry induced by phytoplasma infection might affect the performance and

feeding behavior not only of vectors but also of other phytophagous insects. To test

this, we measured growth, survival, and the number of leaves damaged by larvae

of three common non-vector herbivores: spotted fireworm (Choristoneura parallela

Robinson), Sparganothis fruitworm (Sparganothis sulfureana Clemens), and gypsy moth

(Lymantria dispar L.) on phytoplasma-infected and uninfected cranberries (Vaccinium

macrocarpon Ait.). We also assessed the effects of phytoplasma infection on nutrients

and phytochemistry related to defenses. In general, larvae of all three herbivore species

grew 2–3 times bigger, and damaged 1.5–3.5 times more leaves, while feeding on

infected vs. uninfected plants. Survival of Sparganothis fruitworm larvae was also ∼1.5

times higher on infected plants, while spotted fireworm and gypsy moth larval survival

was not affected. In a long-term (5-week) assay, gypsy moth larval survival and mass

were enhanced when feeding on phytoplasma-infected leaves. Levels of important

plant nutrients (e.g., N, P, K, Ca, S, Mn, Fe, B, Al, and Na) were higher in infected

plants, while levels of defensive proanthocyanidins were reduced by 20–40% compared

to uninfected plants. In contrast, levels of Mg were lower in infected plants, while

concentrations of Cu, Zn, and defensive flavonols were not affected. Taken together,

these findings suggest that phytoplasma infection enhances plant nutritional quality,

while reducing plant defenses in cranberries. These effects, in turn, may explain the

observed enhancement of non-vector herbivore performance, as well as the higher

number of damaged leaves, on infected plants. Improved understanding of the ecology

of pathogen-plant-herbivore interactions could aid efforts to enhance plant resistance

and suppress disease transmission in agricultural settings.

Keywords: Vaccinium macrocarpon, spotted fireworm, Sparganothis fruitworm, gypsy moth, host manipulation,

nutrients, flavonoids
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INTRODUCTION

Insect-borne plant pathogens are common in both natural
and agricultural ecosystems (Eigenbrode et al., 2018). These
pathogens, which include viruses, bacteria, and fungi, often
depend on insect herbivores as vectors for their transfer from
infected to healthy, uninfected plants (Eigenbrode et al., 2018).
Consequently, the epidemiology of these pathogens can be
strongly influenced by the host selection and feeding behaviors
of vector insects, which, in turn, are influenced by the levels of
primary and secondary metabolites in plants (Gandon, 2018).
Over the past two decades, many studies have demonstrated
the ability of pathogens to affect vector behavior by altering
features of host-plant chemistry (Stafford et al., 2011; Ingwell
et al., 2012; Mauck et al., 2012; Eigenbrode and Bosque-Pérez,
2016; Mauck, 2016), including plant defense signals (Zhang
et al., 2016; Carr et al., 2018), volatile emissions (Eigenbrode
et al., 2002; Jiménez-Martínez et al., 2004; Mauck et al., 2010)
and nutrition (e.g., leaf and/or phloem amino acid content)
(Blua et al., 1994; McMenemy et al., 2012; Mauck et al.,
2014). In addition to influencing host-plant interactions with
vectors, such effects are likely to influence interactions with
non-vector organisms, including other herbivores (e.g., Kersch-
Becker and Thaler, 2014). Such effects on host-plant interactions
with non-vectors may likely have broader implications for
the ecology of biological communities and ecosystems, given
increasing appreciation for the ecological significance of parasite
effects on host phenotypes (Lefèvre et al., 2009). Yet, to date,
relatively few studies have explored interactions among plant-
pathogens, host plants, and non-vector organisms (but see
Mauck et al., 2015).

Phytoplasmas are economically important bacterial plant
pathogens, transmitted exclusively by insects in the order
Hemiptera, that cause severe economic losses to agricultural
crops worldwide (Bai et al., 2006; Weintraub and Jones, 2009).
Common symptoms caused by phytoplasmas include stem
proliferation referred to as witch’s broom, changes of the flower
structures to leaf-like structures (known as phyllody), yellowing
(chlorosis), and stunting (Lee et al., 2000; Christensen et al.,
2005). Phytoplasma infection can also alter diverse aspects
of host plant chemistry (Oliveira et al., 2005; Musetti, 2009;
Sugio et al., 2011a). For example, infection by phytoplasmas
can alter carbohydrate and amino acid levels (Lepka et al.,
1999; Tan and Whitlow, 2001), induce changes in volatile
emissions (Mayer et al., 2008a,b; Orlovskis and Hogenhout,
2016), and affect defense signaling (Sugio et al., 2011b) in plants.
Phytoplasma infection has also been shown to increase levels
of plant secondary metabolites, including phenolic compounds
and hydrogen peroxide (Junqueira et al., 2004; Musetti et al.,
2004; Musetti, 2009). Previous work has shown that these
changes in the phytochemistry of phytoplasma-infected plants
can influence the behavior of insect vectors (e.g., leafhoppers
and psyllids) (Weintraub and Beanland, 2006; Mayer et al.,
2008a,b, 2011; Kaul et al., 2009; Maixner et al., 2014). For
example, Beanland et al. (2000) showed that aster leafhoppers,
Macrosteles quadrilineatus Forbes, live longer and have higher
fecundity on asters [Callistephus chinensis (L.) Nees] infected

by the aster yellows phytoplasma than on uninfected plants.
Changes in host plant chemistry induced by phytoplasma
infection may also have effects on non-vector herbivores, as host
plants are usually shared by a community of insect herbivores
that may be differentially influenced by pathogen infection
(Barbosa, 1991). However, to our knowledge no previous
study has investigated whether changes in plant chemistry
due to phytoplasma infection affects the performance of non-
vector herbivores.

In cranberries (Vaccinium macrocarpon Ait.), a crop
native to North America, a phytoplasma pathogen causes
false blossom, an economically-important disease that
decreases crop productivity by sterilizing flowers (Chen,
1971; Polashock et al., 2017). This pathogen is transmitted
exclusively by the blunt-nosed leafhopper (Limotettix vaccinii
Van Duzee; Hemiptera: Cicadellidae) (Beckwith and Hutton,
1929; Dobroscky, 1931; De Lange and Rodriguez-Saona,
2015); however, many other herbivorous insects that do
not transmit false blossom also feed on cranberries in the
northeastern United States (USA), including many Lepidopteran
species such as the spotted fireworm (Choristoneura
parallela Robinson; Tortricidae), Sparganothis fruitworm
(Sparganothis sulfureana Clemens; Tortricidae), and gypsy
moth (Lymantria dispar L.; Erebidae) (Averill and Sylvia, 1998).
All of these species feed on cranberry leaves, and spotted
fireworm and Sparganothis fruitworm can also damage fruits
(Averill and Sylvia, 1998).

The current study tested the hypothesis that changes
in plant chemistry due to phytoplasma infection affect the
performance of, and the amount of damaged leaves by, non-
vector phytophagous insects in cranberries. Specifically, we asked
the following questions: First, does performance (i.e., mass and
survival) of non-vector insects (spotted fireworm, Sparganothis
fruitworm, and gypsy moth), and the number of damaged leaves,
differ between phytoplasma-infected and uninfected plants? We
tested these three herbivore species because they have different
co-evolutionary history with cranberries and could thus be
affected differently by phytoplasma infection: spotted fireworm
and Sparganothis fruitworm are both native to the USA while
gypsy moth is an invasive pest (Averill and Sylvia, 1998). Second,
does phytoplasma infection alter features of plant chemistry that
affect the plant’s suitability for herbivores, including nutrient
levels and chemical defenses?

MATERIALS AND METHODS

Plant Preparation
Phytoplasma-infected and uninfected cranberries (V.
macrocarpon c. “Crimson Queen”) were collected in November
2016 (at the dormant stage) and maintained at 10◦C for about
3 months. Uninfected plants were taken from stolons provided
by Integrity Propagation (http://integritypropagation.com/;
Chatsworth, NJ, USA; this nursery regularly tests its plants
to ensure they are free of any common cranberry viruses and
phytoplasmas), while phytoplasma-infected plants were taken
from a commercial cranberry field in Chatsworth, NJ, that

Frontiers in Ecology and Evolution | www.frontiersin.org 2 May 2019 | Volume 7 | Article 181

http://integritypropagation.com/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Pradit et al. Phytoplasma Effects on Non-vector Herbivores

FIGURE 1 | Morphological differences (A) and close-ups of uprights (B) and

leaves (C) of phytoplasma-infected and uninfected cranberry (Vaccinium

macrocarpon) plants.

was originally planted with material originated from Integrity
Propagation. In February 2017, infected and uninfected plants
were propagated clonally by stem cuttings (∼7 cm each), that
were transferred to individual 4 × 4-cm cells and placed in
a greenhouse (20 ± 2◦C, 70 ± 10% relative humidity [RH],
and 15:9 light:dark [L:D]) for rooting. Plants were grown in a
50:50 v/v peat:sand mix, fertilized once a month from March
till May with PRO-SOL 20-20-20 of nitrogen (N)-phosphorus
(P)-potassium (K) All Purpose Plant Food (Pro Sol, Inc., Ozark,
AL, USA) at a rate of 165 ppm N and were watered daily.
After the cuttings developed roots, groups of five cuttings were
transplanted into single pots (7 × 7 cm2). Plants were allowed to
grow in the greenhouse until August 2017 when they were used
in experiments. Prior to conducting the experiments, 10 plants
(five plants from infected and uninfected plants) were randomly
tested by DNA fingerprinting, using sequence characterized
amplified region markers (Polashock and Vorsa, 2002), to verify
that all plants were genetically the same. Another 10 plants (five
plants from infected and uninfected plants) were randomly
selected to test for phytoplasma infection by using a nested
PCR assay (Lee et al., 2014). These tests showed that all plants
belonged to the same genotype (Crimson Queen) and that only
infected plants were positive for the presence of phytoplasma
(data not shown). Visually, phytoplasma-infected plants did not

show symptoms of any other cranberry disease except for those
associated with false-blossom disease (e.g., bushy characters,
short, and straight uprights; Figure 1). Therefore, our methods
ensured that the plants were genetically similar, that uninfected
plants were free from phytoplasma, and that growing conditions,
propagation methods, and handling were uniform for uninfected
and infected plants.

For insect assays (see below), all five plants from each pot
were used to study the performance of a single herbivore species.
A total of 5, 6, and 9 pots of infected plants and the same
number of pots of uninfected plants (N = 25, 30, 45 total plants
each) were used to study the performance of spotted fireworm,
Sparganothis fruitworm, and gypsy moth larvae, respectively.
For plant chemistry analyses (see below), one plant was selected
from each pot and a total of 10 and 15 uninfected plants and
the same number of infected plants were used for nutrient and
phenolic analyses, respectively. Different plants were used for the
insect performance and chemical assays, and all material for plant
chemistry analyses was harvested at the time of the performance
assays (August 2017). All plants were at the vegetative stage
when used.

Insects
Colonies of spotted fireworm, Sparganothis fruitworm, and gypsy
moth were maintained at the Philip E. Marucci Entomology
Laboratory (Chatsworth, NJ, USA) (24± 1◦C, 65%RH, and 14:10
L:D). The spotted fireworm and Sparganothis fruitworm colonies
originated from larvae collected from commercial cranberry bogs
in Chatsworth, NJ (USA), and larvae were reared on the Stonefly
Heliothis Diet (Ward’s Scientific, Rochester, NY, USA). Gypsy
moth eggs were obtained from the USDAAPHIS (Massachusetts,
USA), and larvae were reared on a wheat germ diet (Bell et al.,
1981). Colonies were supplemented yearly with new individuals
to reduce inbreeding depression. First instars were used for
all experiments.

Insect Performance and Leaf Damage
To assess larval performance and amount of leaf damage on
phytoplasma-infected and uninfected cranberry leaves, feeding
experiments were conducted in a greenhouse at 22 ± 2◦C, 70
± 10% RH, and 15:9 L:D. One hundred infected and uninfected
plants (total of 20 pots each; N = 200 plants total) were
individually covered with 18 × 42 × 48-cm gauze bags (Temkin
International; Springville, UT, USA). Each plant then received
either three spotted fireworm or Sparganothis fruitworm 1st
instars, or one gypsy moth 1st instar [N = 25 (5 pots), 30 (6 pots),
and 45 (9 pots), respectively]. Plants were assigned randomly
to treatments, and each plant was considered a replicate. Larval
mortality and mass were assessed after 7 days (for gypsy moth)
or 14 days (for spotted fireworm and Sparganothis fruitworm,
whose larvae are smaller than gypsy moth larvae). The number
of damaged leaves was estimated by counting the number of
leaves with visible signs of larval feeding; note that leaves of
phytoplasma-infected and uninfected cranberries have similar
surface area (∼0.4 cm2; Figure 1C).

An additional laboratory study was conducted to assess the
long-term effects of feeding on phytoplasma-infected plants
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on gypsy moth larval performance (at 24 ± 1◦C, 65% RH,
and 14:10 L:D). Gypsy moth larvae (1st instars) were placed
individually in 30 1-oz (29.57ml) plastic cups (Maryland Plastic,
Inc., Federalsburg, MD, USA) (i.e., one larva per cup). Fifteen
larvae were fed uninfected cranberry leaves, while the other 15
larvae were fed phytoplasma-infected cranberry leaves (N =

15 replicates per plant type). Leaves (0.1 g) were replaced with
new ones every 3 days; larval mortality and mass were recorded
weekly for a total of 5 weeks.

Plant Nutrient Analysis
To explore the effects of phytoplasma infection on plant
nutrients, leaves were taken from 10 randomly selected infected
and uninfected plants (N = 10 replicates per plant type; 1 plant
per pot), kept separately in paper bags, and allowed to dry.
For each sample, leaves were randomly collected from different
positions within the plant. Dried samples (1.5 g) were sent
for nutrient analyses to the Penn State University Agricultural
Analytical Service Laboratory (http://agsci.psu.edu/aasl). Total
N was analyzed by combustion with an Elementar Vario Max
N/C analyzer (Horneck and Miller, 1998), whereas P, K, calcium
(Ca), magnesium (Mg), manganese (Mn), iron (Fe), copper
(Cu), boron (B), aluminum (Al), zinc (Zn), sodium (Na),
and sulfur (S) were analyzed by inductively coupled plasma
emission spectroscopy (Huang and Schulte, 1985). For total
N concentration, ground dried plant samples (at least 0.1 g)
were combust at a high temperature. The gas from combustion
was oxidized by copper oxide, then tungsten and Cu turned
nitrogen oxide to nitrogen (N2) inside the Elementar Vario Max
N/C analyzer. Total N concentrations are estimates from the
proportion of electrical signal produced by thermal conductivity
detector. For the other chemical elements, ground dried plant
samples (0.25 g) were predigested in concentrated HNO3 from
room temperature to 60◦C for 30min, followed by digestion with
H2O2 at 90◦C for 90min. The sample solution was introduced
into the spectrometer that detected the element emission and
calculated its concentration.

Phenolic Analysis
To explore the effects of phytoplasma infection on plant
defenses, we measured flavonoid levels (i.e., proanthocyanidins
and flavonols)—important secondary metabolites involved in
plant defense against herbivores (Bernays and Chapman, 1994;
Simmonds, 2001)—in phytoplasma-infected and uninfected
plants. Leaves were randomly selected from each of 15 infected
and 15 uninfected plants (1 plant per pot) and stored at
−20◦C before extraction (N = 15 replicates per plant type).
Frozen samples were ground in liquid nitrogen, the ground
material (∼30mg) was then placed in 2ml Eppendorf tubes,
and 0.6ml of the extraction solution (80% acetone: 19.9%
distilled water: 0.1% acetic acid) was added to each tube.
Samples were vortexed for 5min, followed by sonication for
10min. After sonication, samples were centrifuged at 10,000
rpm for 5min. The supernatant was transferred to a new
Eppendorf tube, and the same procedure was repeated twice
with the remaining sample by adding 0.6ml of the extraction
solution each time. The supernatants from these three extractions

(∼1.8ml) were transferred to a 2ml microcentrifuge tube and
dried in a centrifugal vacuum for 24 h. The dried extracts
were dissolved in 0.5ml of 100% methanol and analyzed for
quantification of flavonols and proanthocyanidins in a Waters
Alliance high-pressure liquid chromatography (HPLC) system.
HPLC conditions followed those described in Wang et al. (2017).

For flavonol analysis, a Gemini R© 150 × 4.6mm C18 110
Å, 5µm LC column was used with water + 0.1% formic acid
as solvent A and acetonitrile + 0.1% formic acid as solvent B.
the elution gradient was 0–15% B from 0 to 1min; 15–16%
B from 1 to 5min; 16% B from 5 to 10min; 16–17% B from
10 to 25min; 17% B from 25 to 28min; 17–30% B from 28
to 30min; 30–45% B from 30 to 38min; 45–80% B from 38
to 40min; 80–0% B from 40 to 43min and 0% B from 43 to
50min. Flow rate was 1 ml/min and injection volume was 10 µl.
Compounds were detected in a photodiode array (PDA) detector
at 366 nm. For proanthocyanidins, a Develosil R© 250 × 4.6mm
100 Diol-5, 5µm LC column was used with 98% acetronitrile
+ 2% acetic acid as solvent A and 95% methanol + 3% water
+ 2% acetic acid as solvent B. The elution gradient was 0–10%
B from 0 to 5min; 10–12% B from 5 to 7min; 12% B from
7 to 8min; 12–13% B from 8 to 10min; 13–20% B from 10
to 15min; 20–40% B from 15 to 35min; 40–0% B from 35 to
45min and 0% B from 45 to 50min. Flow rate was 1 ml/min
and injection volume was 10 µl. Compounds were detected in
fluorescence detector with excitation/emission wavelengths at
280/308 nm.

Statistical Analysis
Prior to analysis, all data were checked for normality and
homoscedasticity. If needed, data were square root or log10
transformed to meet the assumptions for analysis of variance
(ANOVA); otherwise, non-parametric Mann-Whitney U-tests
were used. All parametric and non-parametric tests were
performed using IBM R© SPSS R© version 24. Because each
cranberry plant was considered a replicate, the mass and
survival of spotted fireworm and Sparganothis fruitworm
larvae from the same plants were averaged prior to statistical
analysis. Differences in the masses of the spotted fireworm
and gypsy moth larvae between uninfected and phytoplasma-
infected plants were tested using Mann-Whitney U-tests,
whereas differences in Sparganothis fruitworm larval mass were
tested using a mixed model that included infection as a fixed
factor and pot as a random factor. Larval survival of the
spotted fireworm and Sparganothis fruitworm on uninfected
and phytoplasma-infected plants was compared by Mann-
Whitney U-tests, while gypsy moth larval survival was compared
by a chi-square test. Differences in the number of leaves
damaged by the spotted fireworm and gypsy moth between
uninfected and phytoplasma-infected plants were compared
by Mann-Whitney U-tests, whereas we used a mixed model
to test for differences in the number of leaves damaged by
Sparganothis fruitworm. For the long-term performance assay,
we analyzed gypsy moth weekly survival using the Kaplan-
Meyer survivorship curve and compared the weekly larval
mass gained between infected vs. uninfected plants using one-
way ANOVA.
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FIGURE 2 | Mean (±SE) larval mass and survival of spotted fireworm (Choristoneura parallela) (A), Sparganothis fruitworm (Sparganothis sulfureana) (B), and gypsy

moth (Lymantria dispar) (C), and number of damaged leaves, when fed on uninfected and phytoplasma-infected cranberry plants after 7 or 14 days. Asterisks indicate

statistically significant differences (*p ≤ 0.05, **p ≤ 0.001). n.s., not significant (p > 0.05). N = 25, 30, and 35 for spotted fireworm, Sparganothis fruitworm, and

gypsy moth, respectively.

Principal component analysis (PCA) was used to visualize
differences in nutrient content and levels of proanthocyanidins
and flavonols between uninfected and phytoplasma-infected
plants (Minitab R© version 18). Differences in the amounts
of individual nutrients between uninfected and phytoplasma-
infected plants were compared by one-way ANOVA, except
for Mg, S, Cu, and Zn, which were analyzed using Mann-
Whitney U-tests. Differences in total amounts and amounts of
individual proanthocyanidins and flavonols between uninfected
and phytoplasma-infected plants were compared by one-
way ANOVA.

RESULTS

Phytoplasma Infection Improves Larval
Performance and Leaf Damage
Larval mass was consistently enhanced when feeding on
phytoplasma-infected plants as compared to uninfected
plants (Figure 2). Spotted fireworm (U = 118.5, p = 0.004;
Figure 2A), Sparganothis fruitworm [F(1, 5.54) = 81.027, p

< 0.001; Figure 2B], and gypsy moth (U = 62, p < 0.001;
Figure 2C) larvae feeding on infected plants were 2, 1.9, and
3 times bigger, respectively, than those feeding on uninfected
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FIGURE 3 | Survival (Kaplan-Meyer curve) (A) and mass (B) of gypsy moth

(Lymantria dispar) larvae fed on uninfected and phytoplasma-infected

cranberry leaves for 5 weeks. Asterisks indicate statistically significant

differences (*p ≤ 0.05). N = 15.

plants. Survival of Sparganothis fruitworm larvae was also ∼1.5
times higher when feeding on infected plants (U = 239, p =

0.001; Figure 2A), whereas larval survival of spotted fireworm
(U = 300, p = 0.797; Figure 2B) and gypsy moth (χ2 = 1.029, p
= 0.31; Figure 2C) showed no significant effects.

The number of damaged leaves was also consistently higher
on phytoplasma-infected plants compared to uninfected plants
(Figure 2). Spotted fireworm (U = 162, p = 0.039; Figure 2A)
and Sparganothis fruitworm [F(1, 5.09) = 18.898, p = 0.007;
Figure 2B] larvae damaged ∼1.6–1.7 times more infected than
uninfected leaves. Similarly, gypsy moth (U = 12.5, p =

0.028; Figure 2C) larvae damaged 3.4 times more infected than
uninfected leaves.

In the long-term performance assay, survival of gypsy moth
larvae on phytoplasma-infected plants was significantly higher
than on uninfected plants (χ2 = 7.995, p = 0.005; Figure 3A).
Larvae fed on phytoplasma-infected leaves had higher mass than
larvae fed on uninfected leaves [week 1: F(1, 16) = 12.308, p =

0.003; week 2: F(1, 13) = 10.305, p= 0.007; week 3: F(1, 12) = 6.714,
p= 0.024; week 4: F(1, 11) = 22.190, p= 0.001] (Figure 3B). After
5 weeks, the mean mass of gypsy moth feeding on phytoplasma-
infected leaves was 3.6 times that of larvae feeding on uninfected
leaves [mean larval mass ± SE on infected plants = 137.07 ±

21.19mg and on uninfected plants = 38.03 ± 17.36mg; F(1, 11)
= 10.694, p= 0.007].

FIGURE 4 | Score plots for principal components 1 and 2 from Principal

Component Analysis (PCA) for differences in nutrient (A), flavonol (B), and

proanthocyanidin (C) composition between uninfected and

phytoplasma-infected cranberry leaves. Data are grouped into clusters, each

cluster enclosing 80–100% of the data for a particular group.

Phytoplasma Infection Increases Plant
Nutrients
The PCA revealed clear separation in nutrient composition
between phytoplasma-infected and uninfected plants
(Figure 4A). The first two components explained 74.7% of
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TABLE 1 | Effects of phytoplasma infection on the amounts of nutrients in

cranberry leaves.

Nutrients Mean ± SE Statistical

valuea
p-value

Uninfected

plant

Phytoplasma-

infected

plant

Nitrogen (N)b 1.31 ± 0.01 1.62 ± 0.08 F (1, 18) = 6.312 0.022

Phosphorus (P)b 0.18 ± 0.01 0.22 ± 0.01 F (1, 18) = 6.278 0.022

Potassium (K)b 0.97 ± 0.04 1.12 ± 0.03 F (1, 18) = 7.550 0.013

Calcium (Ca)b 0.49 ± 0.02 0.59 ± 0.01 U = 6 0.001

Magnesium (Mg)b 0.19 ± 0.01 0.17 ± 0.003 U = 18 0.012

Sulfur (S)c 0.054 ± 0.003 0.067 ± 0.004 U = 221 0.010

Manganese (Mn)c 287.5 ± 14.91 347.4 ± 10.41 F (1, 18) =10.855 0.004

Iron (Fe)c 34.9 ± 3.83 66.8 ± 3.75 F (1, 18) =

35.436

<0.001

Copper (Cu)c 6.5 ± 0.31 7.5 ± 0.48 U = 27.5 0.067

Boron (B)c 22.2 ± 1.26 32.7 ± 0.82 U = 0 <0.001

Aluminum (Al)c 58.8 ± 3.48 91.7 ± 5.18 U = 6 0.001

Zinc (Zn)c 15.5 ± 0.76 18.7 ± 1.56 U = 35.5 0.263

Sodium (Na)c 115.4 ± 6.16 145.7 ± 8.71 U = 16 0.010

aData were analyzed using one-way ANOVA (F-values, df) or Mann Whitney U-tests.
bAmounts are in percentages.
cAmounts are in mg/kg.

the total variation (53.1 and 21.5% for 1st and 2nd components,
respectively). Additionally, levels of 10 (out of 13) individual
nutrients were significantly higher in phytoplasma-infected than
uninfected plants (Table 1). Levels of Mg were lower in infected
than uninfected plants, whereas levels of Cu and Zn were not
significantly affected by phytoplasma infection (Table 1).

Phytoplasma Infection Lowers
Proanthocyanidin Content
Six flavonols were identified and quantified from cranberry
leaves: quercetin-3-galactoside, quercetin-3-glucoside,
quercetin-3-xyloside, quercetin-3-arabinopyranoside, quercetin-
3-arabinofuranoside, and quercetin-3-rhamnoside. The PCA
revealed a high degree of overlap in flavonol composition
between uninfected and phytoplasma-infected cranberry plants,
with the first two components explaining 98.3% of total variation
(Figure 4B). There were also no significant differences in the
levels of total amounts and of all individual flavonols between
uninfected and phytoplasma-infected plants (all p > 0.05;
Table 2).

Monomeric and oligomeric proanthocyanidins from
cranberry leaves were separated by their degree of polymerization
(DP) into DP1, DP2, DP3, DP4, DP5, DP6, andDP7+ (polymeric
size more than 6). The PCA for the proanthocyanidin polymers
shows the first two components explaining 95.9% of the
variation, with the first component explaining 92.6% of the
variation and separating most of the data into two distinct
groups (i.e., phytoplasma-infected and uninfected plants;
Figure 4C). Phytoplasma infection reduced the concentrations
of all the above-mentioned polymers by 20–40% [DP1: F(1, 28) =

13.523, p = 0.001; DP2: F(1, 28) = 9.404, p = 0.005; DP3: F(1, 28)
= 9.463, p = 0.005; DP4: F(1, 28) = 13.596, p = 0.001; DP5:
F(1, 28) = 8.345, p = 0.007; DP6: F(1, 28) = 12.266, p = 0.002;
DP7+: F(1, 28) = 25.165, p < 0.001; Total: F(1, 28) = 17.627, p <

0.001) compared with uninfected plants (Figure 5).

DISCUSSION

The performance of larvae from three lepidopteran species
was strongly enhanced by phytoplasma infection relative to
uninfected plants. Spotted fireworm, Sparganothis fruitworm,
and gypsy moth larvae all grew significantly bigger and also
damaged significantly more leaves when fed on infected plants.
This increase in the number of leaves damagedmay reflect greater
larval consumption and/or more frequent larval movement from
leaf to leaf due to phytoplasma infection. Though not recorded,
a higher biomass in the phytoplasma treatment could also
mean that the caterpillars were already in another (later) instar
than the ones in the uninfected treatment. Faster growth on
phytoplasma-infected plants could provide a fitness advantage
as the insects are then not exposed as long to predators and
entomopathogens. Previous studies on phytoplasma infection
have reported positive (Sugio et al., 2011a; Maixner et al., 2014),
negative (Mayer et al., 2011), and neutral effects (Vega et al.,
1995) on the performance of insect vectors. There are, however,
fewer data on the impact of plant bacterial infections on non-
vector species. One study found that the non-vector Peregrinus
maidis (Ashmead) (Homoptera: Delphacidae) feeding on corn
infected with corn stunt spiroplasma had decreased body mass
but increased fecundity (Vega et al., 1995). To our knowledge,
this study is the first to document the (positive) effects of
phytoplasma infection on non-vector insect herbivores in a
cropping system.

The enhancement of non-vector herbivore performance
observed in the present study may reflect a pathogen
manipulation of the host plant to enhance vector transmission.
Because phytoplasmas persist and replicate inside the vector
(Hogenhout et al., 2008; Maejima et al., 2014), they may benefit
from prolonged vector feeding on infected plants, which in
turn may increase the likelihood that vectors will acquire the
pathogen. In the current system, we have previously observed
that the performance of blunt-nosed leafhoppers, which serve
as phytoplasma vectors, was enhanced on infected, relative
to uninfected, cranberries (NP, unpublished data). This is
consistent with previous findings that persistently transmitted
plant viruses tend to enhance host-plant quality for aphid
vectors (e.g., Mauck et al., 2012). The current data reveal similar
effects on the performance of non-vector herbivores. It remains
unknown whether the phytoplasma itself affects, or persists
inside, non-vector insects.

To explore the effects of false blossom disease on cranberry
chemistry, we examined the effects of infection on constitutive
levels of plant nutrients and chemical defenses. With respect
to nutrition status, we found that levels of most of the
plant mineral concentrations examined were increased in
phytoplasma-infected cranberry plants compared to uninfected
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TABLE 2 | Concentration (±SE) of flavonols in uninfected and phytoplasma-infected cranberry plants.

Flavonols Mean (mg/100g) ± SE Statistical valuea p-value

Uninfected plant Phytoplasma-infected plant

Quercetin-3-galactoside 169.53 ± 22.79 137.42 ±12.24 1.100 0.303

Quercetin-3-glucoside 2.38 ± 0.36 2.29 ± 0.22 0.573 0.455

Quercetin-3-xyloside 28.01 ± 3.09 24.45 ± 2.17 0.874 0.358

Quercetin-3-arabinopyranoside 17.35 ± 2.36 13.94 ± 1.32 1.591 0.218

Quercetin-3-arabinofuranoside 152.28 ± 16.07 138.05 ± 11.42 0.573 0.455

Quercetin-3-rhamnoside 201.39 ± 32.36 181.35 ± 17.01 0.033 0.857

Total 570.94 ± 76.41 497.49 ± 43.48 0.446 0.510

aData were analyzed using one-way ANOVA (F-values, df = 1, 18).

FIGURE 5 | Mean (±SE) amounts of proanthocyanidin polymers in uninfected

and phytoplasma-infected cranberry leaves. DP, degree of polymerization. An

asterisk indicates statistically significant differences (*p ≤ 0.05). N = 20.

plants. Previous studies have shown that plant nutrient
modulations induced by phytoplasma can vary greatly (e.g., Zhao
and Liu, 2009; Al-Ghaithi et al., 2016). In our study, N levels
were elevated in phytoplasma-infected cranberry plants. Higher
N levels have not only been reported to enhance pathogen
infection, growth, and reproduction (Mitchell et al., 2003), but
also the growth, development, and fecundity of herbivorous
insects (Mattson, 1980; Awmack and Leather, 2002; Chen et al.,
2004). In fact, higher plant N concentrations have previously
been shown to enhance the growth rates of many Lepidopteran
larvae (Chen et al., 2004; Coley et al., 2006). Some of the other
nutrients we found to be elevated in phytoplasms-infected plants,
including K, are also important for both pathogens and insects
(Amtmann et al., 2008). These nutrient changes in cranberries
due to phytoplasma infection may thus benefit both pathogens
and herbivores.

We also compared levels of several plant defense compounds
between phytoplasma-infected and uninfected cranberry plants.
Although phytoplasma infection did not affect flavonol levels, it
significantly reduced concentrations of proanthocyanidins; these
are polyphenolic compounds found in many vascular plants
that play an important role in anti-microbial defense but can
also act as herbivore deterrents and thus reduce insect feeding
(Fisk, 1980; Bernays, 1981; Van Huynh and Bevington, 2014).

This result is consistent with previous studies reporting that
plant chemical defenses are compromised by pathogen infection
(Junqueira et al., 2004; Rusjan et al., 2012). Thus, the increased
performance and feeding of non-vector insects on phytoplasma-
infected cranberry plants may be due in part to this reduction in
plant defenses. In addition to providing plants with protection
against pathogens and insect herbivores (Koskimäki et al., 2009),
the presence of these and other phenolic compounds have been
suggested to have benefits for human health (Côté et al., 2010),
making higher quantities of these compounds in cultivated fruits
desirable (Gallardo et al., 2018); however, it was not possible to
assess effects on fruit chemistry in our study system as false-
blossom plants are sterile. Furthermore, since we measured only
proanthocyanidin and flavonol levels, further investigation is
needed to determine whether other secondary metabolites are
differentially affected by phytoplasma infection in cranberry.

There are at least two possible conflicting scenarios via which
phenotypic changes in plant chemistry due to phytoplasma
infection might arise as the result of a plant-pathogen arms-
race. First, phytoplasmas could trigger a defense response
(i.e., systemic acquired resistance; Sticher et al., 1997) in
plants to suppress the infection: the “induced plant defense”
hypothesis. Under this scenario we would expect an increase
in levels of secondary metabolites and/or increased resistance
against herbivores. However, our data for false blossom
disease in cranberries does not support this hypothesis.
Alternatively, phytoplasmas could manipulate the plant defense
responses for its own benefit and the benefit of the vector:
the “vector manipulation” hypothesis (Ingwell et al., 2012).
Under this scenario the positive effects on vectors could
also conceivably be a side effect of manipulation to enhance
pathogen performance. In this case, we would expect reduced
secondary metabolites and/or increased nutrient content. These
predictions are more consistent with our observations in
cranberry. Furthermore, as the current results demonstrate, these
effects may enhance host plant quality not only for the leafhopper
vector (NP, unpublished data), but also for other herbivores,
an observation with potential implications for pest management
such as an increase in chemical control measures to manage
these pests.

In conclusion, our study demonstrates that phytoplasma-
induced changes in cranberry, including increasing mineral
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nutrient status and lowering defenses, facilitate non-vector
herbivore performance and leaf damage. However, many
additional questions remain about the relationship between
phytoplasma, the host plant, and herbivorous insects. For
instance, our study assessed herbivore performance on relatively
young (i.e., <6 months old rooted clones) tissues; additional
research is needed to evaluate the effects of phytoplasma
infection on herbivore population and community dynamics in
cranberry with varying tissue maturities and determine whether
phytochemistry levels change with the plant’s ontogeny such
as at the reproductive (flowering) stage. In our study, changes
in phytochemistry due to phytoplasma infection were only
investigated before the insects fed on the plants; thus, further
investigation is needed to determine whether and how levels
of primary and secondary metabolites are subsequently affected
by herbivore feeding. However, at least in the short term,
we document a positive effect of phytoplasma infection on
herbivore performance that was seen through most of the larval
development period for gypsy moth. Future transcriptomic and
gene expression studies may also provide us with more details
on the mechanisms that underlie host plant manipulation by
phytoplasmas. Indeed, the mechanisms by which phytoplasmas
and other pathogens with small genomes (Marcone et al., 1999)
are able to manipulate their hosts to influence interactions
with insect vectors is a topic of emerging interest (Musetti,
2009). Addressing these gaps in our existing knowledge
will not only provide information to control the spread of

important agricultural pathogens (by inducing defenses that
could suppress them), but also give us a clearer view of this
complex tripartite host plant-herbivore-pathogen relationship in
the ecosystem.
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