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Mitogen-activated protein kinases (MAPKs) include ERK, p38, and JNK MAPK

subfamilies, which are crucial regulators of cellular physiology, cell pathology, and

many diseases including cancers. For the MAPK signaling system in pituitary

adenomas (PAs), the activation of ERK signaling is generally thought to promote

cell proliferation and growth; whereas the activations of p38 and JNK signaling are

generally thought to promote cell apoptosis. The role of MAPK in treatment of PAs is

demonstrated through the effects of currently used medications such as somatostatin

analogs such as SOM230 and OCT, dopamine agonists such as cabergoline and

bromocriptine, and retinoic acid which inhibit the MAPK pathway. Further, there are

potential novel therapies based on putative molecular targets of the MAPK pathway,

including 18beta-glycyrrhetinic acid (GA), dopamine-somatostatin chimeric compound

(BIM-23A760), ursolic acid (UA), fulvestrant, Raf kinase inhibitory protein (RKIP),

epidermal growth factor pathway substrate number 8 (Eps8), transmembrane protein

with EGF-like and two follistatin-like domains (TMEFF2), cold inducible RNA-binding

protein (CIRP), miR-16, and mammaliansterile-20-like kinase (MST4). The combined use

of ERK inhibitor (e.g., SOM230, OCT, or dopamine) plus p38 activator (e.g., cabergoline,

bromocriptine, and fulvestrant) and/or JNK activator (e.g., UA), or the development

of single drug (e.g., BIM-23A760) to target both ERK and p38 or JNK pathways,

might produce better anti-tumor effects on PAs. This article reviews the advances in

understanding the role of MAPK signaling in pituitary tumorigenesis, and the MAPK

pathway-based potential therapeutic drugs for PAs.
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INTRODUCTION

Pituitary adenomas (PAs) are commonly benign tumors, accounting for about ten
percent of intracranial tumors (1, 2), and are clinically divided into functioning PAs
(FPAs) and non-functioning PAs (NFPAs) (3, 4). It can cause significant morbidity
and mortality (5). The molecular mechanisms in tumorigenesis and functional
regulation of PAs have been extensively studied. This review article focuses on the
roles of mitogen-activated protein kinase (MAPK) in PA tumorigenesis and the MAPK
pathway-based potential therapeutic targets for PAs. MAPKs mainly include three
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subfamilies based on the conserved Thr-Xaa-Tyr motif signature:
ERK1/2, p38, and JNK (Jun N-terminal kinase) (6), which are
activated by multiple factors such as growth factors and stress.
The activation of ERK promotes cell proliferation; whereas,
the activations of p38 and JNK promote cell apoptosis. Studies
demonstrate that MAPKs are involved in multiple cellular
processes, such as cell differentiation, proliferation, apoptosis,
inflammation, stress responses, and immune defense (7–9).

The MAPK signaling pathways play important roles in
cell dissemination, survival, and drug resistance of human
cancers including PAs (2, 10–12). With the in-depth studies
of the MAPK signaling pathway network, MAPK pathways-
based target-specific drugs have been developed, and some drugs
has been used for clinical trials; and the relevance of MAPK
in response and resistance to antitumor drugs has also been
recognized (Figure 1 and Table 1). Because of the important
roles of MAPK signaling pathways in tumorigenesis, the use
of the MAPK signaling pathways as therapeutic targets has
continuously been considered as a promising strategy for cancer
therapy. This review highlights new advances in the role of
MAPK signaling in pituitary tumorigenesis and development, the
key molecules in this pathway network, and anti-pituitary tumor
drugs targeting MAPK signaling pathway.

THE ERK PATHWAY IN PAs

The ERK/MAPK pathway delivers signals from cellular surface
receptors via ERK pathway. Briefly, different cellular surface
receptors such as EGFR, GPCR, and RKT are activated by
the corresponding extracellular factors (e.g., growth factors,
hormones, and stresses) to activate Ras and small GTPase. The
activated Ras-small GTPase complex recruits Raf kinase to the
cell membrane and activates it. Then, Raf activates MEK (MAPK
and ERK kinase) through phosphorylation. The phosphorylated
MEK subsequently activates ERK through phosphorylation (35)
(Figure 1). Rafs include Raf-1, A-Raf, and B-Raf. Raf-1 can bind
to the pro-apoptotic kinases, such as mammalian sterile-twenty-
like-2 (MST2) and apoptosis signal-regulating kinase (ASK1),
to involve in cell apoptosis (36). Raf-1 also exerts scaffolding
function in regulation of the Rho pathway (37). Typically,
cytokines and growth factors binding to TKR activate ERK1/2,
which transduces the signals into its upstream Ras/Raf/MEK
pathway. In PAs, H-Ras mutations have been identified in two
cases of prolactinomas, which indicates that Ras/ERK takes part
in regulation of PAs (38, 39). Overexpression of B-Raf is pre-
dominantly observed in NFPAs (40). The downstream kinases of
B-Raf in ERK MAPK pathway are also over-activated in NFPAs,

Abbreviations: ACTH, Adrenocorticotropin; CIRP, Cold inducible RNA binding

protein; CRH, Corticotropin-releasing hormone; CSAIDs, Cytokine-suppressive

anti-inflammatory drugs; Eps8, Epidermal growth factor pathway substrate

number 8; ERK, Extracellular signal-related kinase; GA, 18beta-glycyrrhetinic

acid; GH, Growth hormone; GnRH, gonadotropin-releaseing hormone; GPCR, G

protein-coupled receptor; IGF1, Insulin-like growth factor 1; JNK, Jun N-terminal

kinase; LPS, Lipopolysaccharide; MAPKs, Mitogen-activated protein kinases;

MKK,MAPK kinases; MKKK,MAPK kinase kinases; MKPs, MAPK phosphatases;

MST4, Mammalian sterile-20-like kinase; PRL, Prolactin; RA, Retinoic acid; RKIP,

Raf kinase inhibitory protein; RTK, Receptor tyrosine kinase; SAPKs, Stress-

activated protein kinases; SSTs, Somatostatin analogs; SST, Somatostatin; TSH,

Thyroid-stimulating hormone.

growth hormone (GH)-secreting PAs, ACTH-secreting PAs, and
prolactinomas. The phosphorylation levels at pSer217/221 of
MEK 1/2 and pThr183 of ERK1/2 are significantly increased
in these PAs compared to controls (41), which indicates that
Raf/MEK/ERK pathway acts as a pro-proliferative role in PAs.

The Effects of ERK MAPK on
Different-Origin PAs
The effect of ERK signaling on PAs depends on the PA subtypes.
(i) In lactotroph cells, the ERK signaling exerts different effect
on cell proliferation based on the exposure time. Short-time
activation of the ERK (24–96 h) leads to increased proliferation
in rat pituitary lactotroph or somatolactotroph cell lines in
vitro (42, 43). However, long-time activation of ERK (over
6 days) promotes somatolactotroph cell differentiation into a
lactotroph cell phenotype, and then decreases proliferation and
tumorigenicity with time (44). Thus, persistent activation of
ERK signaling produces anti-proliferative and anti-tumorigenic
effects in somatolactotroph cells. (ii) In somatotroph cells,
ERK signaling produces pro-proliferative effects. Protein kinase
A (PKA) and C (PKC) pathways regulate ERK signaling.
PKA pathway activates ERK signaling, and leads to improved
proliferation in GH-secreting cells. PKC stimulates ERK
signaling and increases cell proliferation through regulating GH-
releasing hormone (GHRH) (45). ERK pathway is necessary
for somatotrophs to produce GH. In somatotroph PAs, GH-
releasing hormone (GHRH) can promote cell proliferation
through activating ERK signaling (46). In addition to regulation
of cell proliferation, ERK signaling also contributes to GH
secretion by somatotrophs (47). Somatostatin (SST) analogs are
used in clinical treatment of GH-secreting PAs due to its anti-
proliferative effect on somatotroph cells. SST treatment results in
a reduction of pERK1/2 expression and a significant increase in
p27 protein expression. In addition, cell proliferation is driven
by cell cycle which is regulated by a series of cyclins and cyclin
dependent kinases (CDKs). A cyclin-dependent kinase (CDK)
inhibitor has a negative effect on cell-cycle progression which has
a synergistic effect with SST analogs (13). (iii) In gonadotroph
cells, gonadotropin-releasing hormone (GnRH) can activate
ERK, p38, and JNK signaling in the LβT2 gonadotroph cell
lines to contribute to production of luteinizing hormone (LH),
and GnRH phosphorylated ERK via PKC-dependent pathways
(48). Most of NFPAs originate from gonadotroph cells where B-
Raf is upregulated and ERK is over-activated relative to control
pituitary tissues (40, 49). (iv) In thyrotroph cells, ERK cascade has
anti-proliferative effects. The ERK pathway is activated to cause
growth arrest after thyrotroph adenomas are treated with thyroid
hormone (50). And (v) In corticotroph cells, ERK signaling is
activated to produce pro-proliferative effects (51).

ERK MAPK Pathway-Targeted
Pharmacological Treatments of PAs
Somatostatin (SST) Analogs Treatment
SST inhibits cell growth, through G protein-coupled receptors
to inhibit the release of growth factors and angiogenesis,
and increases apoptosis. The majority of NFPAs express SST
receptors on cell membranes. An appropriate concentration of
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FIGURE 1 | MAPK signaling pathways and the potential therapeutic targets. In the ERK signaling, Ras activates the serine/threonine protein kinase Raf to activate

MEK1/2, then MEK1/2 phosphorylates the ERK1/2. In p38 signaling, TNF receptor-associated factor (TRAF) activates ASK1, TAK1, or MEKK1, which activates

MKK3/6, and then MKK3/6 phosphorylates p38 isoforms. In JNK signaling, RAC1 activates MEKK1 or MEKK2/3 to activate MKK4/7, and then MKK4/7

phosphorylates JNK1/2/3. The ASK1 in the p38 signaling also activates MKK4/7 to crosstalk with JNK signaling. ROS means reactive oxygen species. GA means

18beta-glycyrrhetinic acid. BIM-23A760 is a dopamine–somatostatin chimeric compound. OCT means octreotide. SOM230 and OCT are somatostatin analogs.

Rectangle means the potential drug targets.

SST analogs (octreotide or SOM230) can inhibit the release
of GH, prolactin (PRL), and their α-subunit in GH-secreting
PAs, PRL-secreting PAs, ACTH-secreting PAs, and NFPAs,
respectively (14–18). Their anti-tumor effects are in that SST
analogs can inactivate ERK signaling pathways; for example,
octreotide acts on both ERK and PI3K/Akt signaling pathways,
and SOM230 acts on ERK signaling pathway (13, 52). Octreotide
can bind to and activate SST receptor subtype-2 (SSTR2)
and SSTR5, while pasireotide (SOM230) can activate SSTR1,
2, 3, and 5 (53, 54). A study shows that octreotide or
SOM230 reduces cell proliferation and pERK1/2 expression in
rat somatotroph cell line GH3 (13). Octreotide also blocks
the transient G0/G1 cell cycle to produce a cytostatic effect
on GH3 cell proliferation (55). SST analogs (octreotide and
pasireotide) also decrease secretion of LH induced by GnRH
in LβT2 cells (19), and inhibit NFPA cell viability in vitro
(56–59). The SST analogs are the primary medical therapy

to treat acromegaly for maintenance of GH homeostasis and

shrinkage of tumor size (60–62). Moreover, octreotide and
lanreotide bind with high affinity to SSTR2, and with low affinity
to SSTR3 and SSTR5. The decreased expression of SSTR2 in
tumor is associated with lack of response to SST analogs (63,
64). Some studies demonstrate that SST analogs exert their
anti-proliferative effects on somatotroph cells through inhibition
of ERK signaling (13).

Dopamine and Dopamine Agonists Treatment
Hypothalamic dopamine suppresses the production of pituitary
PRL (65). Dopamine acts via the D2 receptor to inhibit
cAMP/PKA and MAPK signaling pathways to control
PRL-secretion and lactotroph proliferation (20). Dopamine
agonists such as bromocriptine (BRC) and cabergoline
(CAB) are primary medical therapy drugs for prolactinomas
and idiopathic hyperprolactinemia and prolactinomas (66).
Dopamine agonists target the dopamine D2 receptor (D2R)
subtype to exert its anti-tumor effects. D2R-activated ERK
signaling cascades inhibit the synthesis and release of PRL
in the pituitary. D2R includes D2L and D2S isoforms.
Overexpression of D2L elevates PRL, and overexpression
of D2S reduces PRL. The ratio of D2L to D2S affects
PRL-secretion of lactotroph cells (67). A study shows that
when pituitary tumor cells are treated with dopamine, D2S
activation stimulates ERK signaling to inhibit lactotroph cell
proliferation (68).

TGFβ Treatment
TGFβ is widely considered to be a tumor suppressor (69).
However, TGFβ1 produces weak growth inhibitory effect on
pituitary tumor cells. TGFβ mainly uses Smad signaling pathway
to convey signals from cytosol to nucleus to regulate expression of
genes that control cell cycle progression (70). In addition, TGFβ
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can also use non-Smad signaling pathway to convey signals, such
as MAPK pathway (71). TGFβ1 treatment decreases pituitary
tumor cell proliferation, and this inhibitory effect is amplified
by MEK inhibitors, because TGFβ1/Smad pathway cross-talks
with MEK/ERK1/2 pathway (23). It clearly demonstrates that
inhibition of MEK/ERK1/2 pathway synergizes with TGFβ1 to
inhibit pituitary tumor cell proliferation.

Potential Targets Related to ERK MAPK
Signaling Pathway for PA Treatment
Components and regulators of the ERK MAPK pathway are
all potential targets for treating pituitary tumors. (i) Raf
kinase inhibitory protein (RKIP). RKIP is a modulator of
MAPK signaling, which inhibits Raf-1 phosphorylation to inhibit
Ras/Raf-1/MEK/ERK signaling pathway (72–74). RKIP interferes
with Raf-1 in several mechanisms. One is that Raf-1 binding to
RKIP causes the conformational change of Raf-1 (75). Another is
that RKIP inhibits phosphorylation ofMAPK-MEK-1 to interfere
with the interaction between two kinases (76). Moreover, protein
kinase C (PKC) can negatively regulate the roles of RKIP because
PKC phosphorylates RKIP to cause the separation of RKIP from
Raf-1 (73). Studies demonstrate that the low expression level
of RKIP in GH-secreting adenomas is correlated with less GH
and IGF-1 reduction with SST analog therapy because RKIP
can inhibit the phosphorylation of Raf1 kinase to attenuate the
activity of MAPK signaling pathway (28).

(ii) Epidermal growth factor pathway substrate number 8
(Eps8). Over-expression of Eps8 and over-activation of Raf,
MEK, and ERK in the ERK signaling pathway promote cell
proliferation and survival in PAs (41). Also, Eps8 is a substrate of
receptor tyrosine kinases (RTKs) in the ERK signaling pathway
(Figure 1), which can enhance EGF-dependent mitogenic
signaling (29). Eps8 expression is significantly higher in human
gonadotroph adenomas relative to controls. Upregulation of
EGFR protein and phosphorylation of ERK are demonstrated
in Eps8-overexpressing LβT2 cells. EGF ligand stimulation leads
to increased proliferation in Eps8-overexpressing LβT2 cells.
MAPK kinase inhibitor (PD98059) can abrogate the proliferative
effects. Silence of Eps8 also inhibits cell proliferation, which
suggests that Eps8 promotes pituitary tumor cell proliferation
through enhancing the Raf/MEK/ERK signaling (30). Therefore,
Eps8 is a potential drug target for PA treatment.

(iii) Retinoic acid (RA). RA has antiproliferative effect in
corticotroph cell, and long-term treatment with RA has some
clinical efficacy in patients with Cushing’s disease (77). The
mechanism of RA anti-tumor effects is shownwith the expression
of TMEFF2 (transmembrane protein with EGF-like and two
follistatin-likedomains) that inhibits phosphorylation of AKT
and ERK1/2 (31). TMEFF2 is significantly downregulated in
corticotropinomas relative to control tissues, which suggests that
TMEFF2 might be a tumor suppressor. Silence of TMEFF2 in
pituitary corticotroph cell line AtT20 promotes cell proliferation,
while over-expression of TMEFF2 inhibits cell proliferation (31).
Thus, TMEFF2 is a potential therapeutic target for ACTH-
secreting adenomas.
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(iv) Cold inducible RNA binding protein (CIRP). The
underlying mechanism of cold-shock protein (CIRP) in its
role in tumorigenesis is through its induction of cyclinD1
which decreases p27 expression via ERK1/2 signaling (32,
78). CIRP is significantly upregulated at the mRNA and
protein levels in multiple cancers (79, 80), including human
corticotroph adenomas relative to normal pituitary tissues. CIRP
over-expression is associated with recurrence of corticotroph
adenomas in murine models (32). CIRP-overexpressing AtT20
cells have increased cell proliferative abilities. Tumor xenografts
generated by CIRP-overexpressed AtT20 cells are significantly
larger than AtT20 cells with normal level of CIRP expression.

THE P38 PATHWAY IN PAs

The p38 MAPK includes isoforms p38α, p38β, p38γ, and p38δ,
with ∼60% of sequence similarity among four isoforms (81).
Of these, p38α (MAPK14) and p38β (MAPK11) are highly
expressed in various tissues, p38γ (MAPK12/ERK6) in muscle,
and p38δ (MAPK13/SAPK4) in lung and kidney (34, 82). The p38
MAPK plays vital roles in cell responses to stimulators, including
proinflammatory cytokines and environmental stresses such as
ultraviolet irradiation and heat shock; and is involved in cellular
differentiation, cell migration, and inflammation. Activation of
p38 kinases are due to phosphorylations at Thr180 and Tyr182
within Thr-Gly-Try motif (83). This canonical phosphorylation
is regulated by MKK3 and MKK6, which are highly selective
for p38 MAPKs (84–86) (Figure 1). There exist a large body of
substrates of p38 MAPKs both in cytoplasm and nucleus, such
as transcription factors (p53, MEF2, CHOP, and ATF2), and
other protein kinases (MNK1/MNK2, and MSK1/MSK2) which
in turn phosphorylate other important proteins (Hsp27, and eIF-
4E) (81). In PAs, p38 MAPK plays an important role in immune
escape. Tumor immune escape means that tumor cells escape
from the body’s immune system recognition and attacking to
survive and proliferate in the body. When tumor cells appear
in the healthy body, the body’s immune surveillance system
can recognize and specifically remove these “non-self ” tumor
cells through natural and acquired immunity to prevent the
development of tumors (87). However, in some cases, malignant
cells can escape the immune surveillance of the body through
various mechanisms to rapidly proliferate and form tumors.
Studies demonstrate that phosphorylated p38 stimulates the
expression of matrix metalloproteinase 9 (MMP9), which is
involved in accelerating the process of tumor immune escape
(88). In addition, studies based on murine gonadotroph cells
LβT2 reveal that mammalian sterile-20-like kinase (MST4) is
upregulated in the levels of mRNA and protein to promote cell
proliferation by activating p38 MAPK and AKT during long-
term hypoxia (89).

PA Treatment Related to p38 MAPK
Signaling
Previous studies demonstrate that p38 MAPK is associated with
apoptosis, and drugs that activate this pathway can thereby
induce apoptosis in pituitary tumor cells. A study found that
dopamine agonists such as BRC and CAB activate p38 pathway

to induce cell apoptosis; for example, when BRC is used to
treat rat lactosomatotroph GH3 cells, BRC activates p38 MAPK
and promotes cell apoptosis. Moreover, p38 MAPK inhibitors
(SB202190, SB203580) completely inhibit BRC-induced p38
MAPK activation and cell apoptosis (21). Similarly, CAB also
activates p38MAPK and induces apoptosis in PRL-D2S cells (22).
In addition to dopamine agonists, the natural compound 18beta-
glycyrrhetinic acid (GA) extracted from liquorice can induce
several types of tumor cell apoptosis (24, 90). In rat PA cellsMMQ
and GH3, GA can induce cellular damage, decrease cell viability,
and cause G0/G1 phase arrest to contribute to cell apoptosis
(91). GA can enhance the phosphorylation of JNK and p38,
and these effects are abrogated through pretreatment with JNK
inhibitor (SP60125) or p38 inhibitor (SB203580). Furthermore,
the fact that ROS inhibitor (NAC) abolished the activation of
JNK and P38 suggests that GA exerts the anti-PA effects by
activating ROS/MAPKs (JNK and P38)-dependent pathway (91).
BIM-23A760, a dopamine-somatostatin chimeric compound,
by activating p38 and ERK1/2, inhibits cell proliferation and
demonstrates cytotoxic effects in primary culture of NFPAs (25).

Potential Targets Related to p38 MAPK
Signaling Pathway for PA Treatment
In recent years, with the development of next-generation
sequencing (NGS), a large number of non-coding RNAs have
been identified (92, 93). Non-coding RNAs not only deepen
our understanding of tumorigenesis and development, but also
provide new directions for the diagnosis and treatment of
tumors. Studies demonstrate that microRNA-16 (miR-16) is
significantly downregulated in PAs compared to the healthy
controls, and overexpression of miR-16 reduces the protein
expressions of phosphorylated p38, VEGFR2, MMP-9, and NF-
kB in HP75 cells, which suggests that miR-16 is involved in
PA cell proliferation and angiogenesis via VEGFR2/p38/NF-
κB pathway (94). Studies show that miR-16 suppresses MEK1
expressions thereby inhibiting ERK/MAPK pathway activity,
leading to inhibition of cell proliferation, cell-cycle arrest, and
apoptosis in PAs (33). Therefore, miR-16, as a regulator of
p38 MAPK, might be a diagnostic biomarker and a target
of PAs. In addition, based on miR-6-related studies, miR-6-
protein and/or miR-6-lncRNA interactions are also worth further
exploring for discovery of potential therapeutic targets. Further,
MST4 promotes cell proliferation by activating p38MAPK under
long-term hypoxia. Therefore, MST4 might be a target for PA
treatment (34).

THE JNK MAPK PATHWAY IN PAs

The JNK MAPK pathway is mainly activated by various stress
stimuli, including oxidative stress, UV irradiation, osmotic
shock, heat shock, and proinflammatory cytokines (95), and plays
vital roles in controlling proliferation, cell growth, apoptosis,
inflammatory, and immune responses (96–98). JNK includes
three isoforms: JNK1 and JNK2 are extensively distributed in
different tissues, and JNK3 is mainly expressed in testis, heart,
and brain (99, 100). JNK is activated by a cascade reaction: stress
signals are delivered by small GTPases (Rac, Rho, and cdc42)
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to a series of kinase cascades, and eventually MKK4/7 activates
JNKs (101). In addition, MKK4/7 can also be activated by a
member of the germinal center kinase (GCK) family to activate
JNKs (95). Moreover, MKK4 might also activate p38 MAPKs
(p38α and p38δ), which lets JNK pathway cross-talk with p38
MAPK pathway (34). The activated JNKs are translocated from
cytoplasm to nucleus where it can regulate the activity of multiple
transcription factors (ATF-2, Elk-1, Smad4, p53, NFAT4, and
Stat3) (102).

JNK pathway has been reported to be involved in many
kinds of cancers, including retinoblastoma, melanoma, colorectal
cancer, breast cancer, and ovarian cancer; and these cancers
exhibit the elevated JNK activities (103–107). While there
are limited studies on the role of the JNK pathway in the
initiation and progression of pituitary tumors, several studies
have demonstrated that alteration of JNK in the pituitary gland
could be associated with pituitary tumoregensis. For instance,
mice with a conditionally inactivated JNK1 in nestin-expressed
cells (JNK11NES) are used to study the effects of JNK1 signaling
on glucose metabolism. Unexpectedly, the decreased somatic
growth and increased thyroid axis activities are observed in
JNK11NES mice with decreased levels of circulating GH and IGF1
(108). Another study shows that ablation of Jnk genes in anterior
pituitary gland of mice leads to increased energy expenditure,
and decreased obesity compared to control mice; and pituitary
thyroid-stimulating hormone (TSH) and blood thyroid hormone
(T4) are increased (109). Thus, JNK signaling might be involved
in pituitary tumorigenesis (110).

JNK MAPK Pathway-Targeted
Pharmacological Treatments of PAs
The first one is ursolic acid (UA), a triterpenoid compound
found in food, medical herbs, and other plants (111), which has
antitumor effects in a number of tumors such as hepatocellular
carcinoma, melanoma, breast cancer, colorectal cancer, bladder
cancer, and prostate cancer (112–117). In the treatment of PAs,
UA decreases cell viability and induces apoptosis in AtT20 cells
by upregulating JNK phosphorylation. JNK signaling can also
cross-talk with UA-induced mitochondrial apoptotic signaling
transduction through phosphorylation and degradation of Bcl-
2 (26). Moreover, GA, as described above, can induce cellular
cytotoxicity and apoptosis by enhancing the phosphorylation of
JNK. With further research progress, it is strongly believed that
more drugs will be developed to target JNK MAPK pathway.

THE MAPK PATHWAY NETWORK IN PAs

ERK, p38, and JNK signaling pathways both independently and
concordantly contribute to pituitary tumorigenesis. Thus, some
chemotherapeutic drugs for PAs may target several subfamilies
of the MAPK signaling pathway at the same time. For example,
fulvestrant is an estrogen receptor antagonist without agonist
effects (118), which is approved in the EU and USA to
treat post-menopausal women who have hormone-sensitive
advanced breast cancer, after prior antiestrogen therapy (119).
In the treatment of PAs, recent studies reveal that fulvestrant

significantly suppresses the cell viability and invasion of rat
PA GH3 cells by simultaneous regulation of ERK1/2, JNK1/2,
and p38 signaling pathways (27). GA exerts anti-tumor effects
against PAs through enhancing the activations of JNK and p38
MAPK signaling pathways (91). BIM-23A76 that is a dopamine-
somatostatin chimeric compound demonstrates the function of
inhibiting cell proliferative and cytotoxic effects by activating p38
and ERK1/2 (25).

The comprehensive pathway-network analysis of multiple sets
of proteomic data in PAs (120–124) reveals that MAPK signaling
abnormalities, including ERK-MAPK signaling pathway, are
significantly associated with PAs (125), and that some important
molecules such as ERK, p38, JNK, Ras, Akt, NF-kB, TNF, and
TGFb1 in MAPK signaling pathway network are identified in
human PAs. In addition, the regulatory effect of MAPK cascades
on cell differentiation, proliferation, survival and apoptosis
interact with other transduction pathways (126). For instance,
both PI3K-Akt and Raf/MEK/ERK pathways synergistically
promote cell proliferation at the initial stage of PAs (127).
Another study demonstrates the critical role of ERK1/2 and
cAMP in determination of tumoural phenotype in PAs (128).
Thus, a combination of drugs that target pathways which
cross-talk with MAPK signaling may produce a more effective
treatment for PAs.

In the MAPK network system in PAs, the activation of ERK
is generally thought to promote cell proliferation and growth;
whereas the activations of p38 and JNK are generally thought
to promote cell apoptosis. The MAPK signaling pathway can
be targeted by several mechanisms. Two types of combination
strategies can be used: (i) A single drug to target ERK pathway
and p38 or JNK pathway. For example, BIM-23A76 inhibits cell
proliferation through targeting ERK1/2 pathway, and promotes
cytotoxic effects through targeting p38 pathway (25). And
(ii) multiple drugs to target different ERK and p38 or JNK
pathways, such as ERK inhibitor (e.g., SOM230, OCT, or
dopamine) plus p38 activator (e.g., cabergoline, bromocriptine,
and fulvestrant) and/or JNK activator (e.g., UA). Also, fulvestrant
can target both p38 and JNK pathways to promote the cell
apoptosis for cell cytotoxic effects. These MAPK pathway-
based combination therapies might produce better anti-cancer
effects on PAs.

CONCLUSION

This review summarized the studies of MAPK signaling in
pituitary tumorigenesis.We discussed some important molecules
involving in MAPK signaling pathway and potential drugs
targeting the MAPK signaling (Figure 1 and Table 1). The ERK-
MAPK signaling, p38-MAPK signaling, and JNK signaling all
play important roles in PAs. Some therapeutic drugs exert anti-
tumor effects by targeting one of these pathways or all these three
pathways at the same time. MAPK signaling is a very complex
network, and always interacts with other pathways such as PI3K
and cAMP pathway to affect tumor progression. The latest
development of MAPK signaling in PAs and the related anti-
tumor drugs targeting MAPK signaling pathways would provide
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new insights on PA pathogenic mechanisms and pre-clinical data
for treatment.
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