
BLOOD VESSELS SEGMENTATION METHOD FOR RETINAL FUNDUS IMAGES 

BASED ON ADAPTIVE PRINCIPAL CURVATURE AND IMAGE DERIVATIVE 

OPERATORS 
 

 

Dang N. H. Thanh 1, Dvoenko Sergey 2, V. B. Surya Prasath 3, 4, 5, 6, Nguyen Hoang Hai 7 

 
1 Department of Information Technology, Hue College of Industry, Vietnam – dnhthanh@hueic.edu.vn 

2 Department of Information Security, Tula State University, Russia – dsd@tsu.tula.ru 
3 Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, USA 

4 Department of Pediatrics, University of Cincinnati, OH USA 
5 Department of Biomedical Informatics, College of Medicine, University of Cincinnati, USA 

6 Department of Electrical Engineering and Computer Science, University of Cincinnati, USA – prasatsa@uc.edu 
7 Department of Informatics, University of Education, University of Danang, Vietnam – hoanghai@ued.udn.vn 

 

Commission WG II/5, WG II/10 

 

 

KEY WORDS: Blood Vessels, Image Segmentation, Retinal Fundus Images, Principal Curvatures, Derivative Operator. 

 

 

ABSTRACT: 

 

Diabetes is a common disease in the modern life. According to WHO’s data, in 2018, there were 8.3% of adult population had diabetes. 

Many countries over the world have spent a lot of finance, force to treat this disease. One of the most dangerous complications that 

diabetes can cause is the blood vessel lesion. It can happen on organs, limbs, eyes, etc. In this paper, we propose an adaptive principal 

curvature and three blood vessels segmentation methods for retinal fundus images based on the adaptive principal curvature and images 

derivatives: the central difference, the Sobel operator and the Prewitt operator. These methods are useful to assess the lesion level of 

blood vessels of eyes to let doctors specify the suitable treatment regimen. It also can be extended to apply for the blood vessels 

segmentation of other organs, other parts of a human body. In experiments, we handle proposed methods and compare their 

segmentation results based on a dataset – DRIVE. Segmentation quality assessments are computed on the Sorensen-Dice similarity, 

the Jaccard similarity and the contour matching score with the given ground truth that were segmented manually by a human. 

 

 

1. INTRODUCTION 

Computer-aided diagnosis for various diseases is a modern 

technology that plays a vital role to assist doctors in the 

interpretation of the medical images. The medical image 

processing techniques are helpful to detect early lesions inside 

human body. So, medical image processing in particular, and 

image processing in general are widely studied all over the world. 

 

According to the WHO’s data, there were 8.3% of adult 

population had diabetes. The diabetes is a common disease in the 

modern life that causes many lesions in the blood vessels of eyes, 

kidneys, heart, nerves, etc. The diabetic retinopathy is a primary 

cause of blindness (Patwari, et al., 2014). The early symptoms 

that can be visible on the retinal fundus image are lesions on 

blood vessels of retinal fundus of patients. So, the task of 

applying the image processing techniques to process the retinal 

fundus images are really necessary. 

 

The blood vessels segmentation for the retinal fundus images 

plays very important role in the medical image processing. 

Unlike other medical segmentation tasks of organs, bone, brain, 

etc., the blood vessels are very small, and their intensity is very 

similar to intensity of other parts of retinal fundus images. So, the 

blood vessels segmentation problem is really a big challenge. 

 

Because blood vessels segmentation is an important problem in 

medical image processing, it has attracted a lot of attention. There 

are many methods were developed, such as the Gabor filters with 

fractional derivatives and Expectation Maximization (Hugo, et 

al., 2018), supervised methods (Ngo & Han, 2017), multiscale 

line detection (Aigerim & Mahmud, 2015), scale space analysis, 

morphological processing (Moccia, et al., 2018), etc. 

 

In this paper, we proposed three blood vessels segmentation 

methods for the retinal fundus images based on the adaptive 

principal curvature and the derivatives: the central difference, the 

Sobel and the Prewitt operators. The principal curvatures proved 

the potential to improve the line/edges contrast to get clearer 

(Hongli, et al., 2007). The principal curvatures are better than the 

gradient magnitude to improve the contrast of the lines/edges, 

because the gradient magnitude focuses on the borders, but the 

principal curvatures – on the sketch structure. So, the principal 

curvatures are more helpful for blood vessels segmentation and 

they are also helpful for segmenting buildings, roads of 

aerial/satellite images. 

 

Otherwise, we also proposed a new principal curvature, that is 

called to be an adaptive principal curvature. This principal 

curvature is a combination of the maximum and the minimum 

principal curvatures. This combination is expected to be better 

than the maximum and the minimum principal curvatures. 

 

In the experiment, we handle the proposed methods to segment 

the blood vessels of retinal fundus images of DRIVE dataset. The 

segmentation quality is assessed by the Sorensen-Dice metric, the 

Jaccard metric (Abdel & Allan, 2015) and the contour matching 

score (Gabriela, et al., 2013). The segmentation quality is 

compared to the ground truth that is segmented manually. The 

ground truth is also given in the DRIVE dataset. 

 

Our contribution focuses on applying the principal curvatures to 

improve blood vessel structures and proposing an adaptive 
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principal curvature. Although the maximum principal curvature 

was used in several works of pattern recognition and computer 

vision, its application for the blood vessel segmentation problem 

is also a novelty of this work. However, we mainly focus on the 

adaptive principal curvature, because it enhances blood vessel 

structures better that we will show in the experiments. Otherwise, 

combination of some other image enhancement methods to 

improve segmentation quality is also a part of our contribution. 

 

The rest of the paper is organized as follows. Section 2 presents 

the proposed blood vessels segmentation methods. Section 3 

presents experimental results for blood vessels segmentation and 

the comparison. Finally, Section 4 is the conclusions.  

 

2. PROPOSED BLOOD VESSELS SEGMENTATION 

METHODS 

2.1 Adaptive Principal Curvature 

Let us consider that 𝑢(𝒙) is an input image need to be segmented, 

where 𝒙 = (𝑥1, 𝑥2) ∈ Ω ⊂ ℝ
2, Ω is the image domain and 

𝑢(𝒙) ∈ ℝ (e.g. the input image is grayscale image). To segment 

the colour image, we can use separate colour channels of the 

RGB colour model (or other colour models, such as CIE Lab, CIE 

XYZ etc.), or simply convert the colour image to a grayscale. The 

consideration on grayscale images in ℝ is also similar to on RGB-

colourful images in ℝ3. 

 

We consider that the image 𝑢(𝒙) is a regular surface. Let 𝜼 be a 

unit tangent vector of the surface 𝑢. Then, the normal curvature 

of the surface 𝑢 in the direction 𝜼 is defined as: 

𝜅(𝜼) = 𝒮(𝜼) ∙ 𝜼, 
where 𝒮 is a shape operator (e.g. the second fundamental tensor) 

as the tangential component of the rate of the change of the 

normal vector when moved along the curve of the surface tangent 

to the tangent vector.  

 

Let us consider that 𝜆1, 𝜆2, … – values of the normal curvature 

𝜅(𝜼) at a given point on the regular surface. Then, the maximum 

and the minimum of the normal curvature (Gray, 1997) at a given 

point on a surface are called to be principal curvatures.  

 

The maximum principal curvature 𝜆+ and the minimum principal 

curvature 𝜆− can be computed by the Gaussian curvature ℋ and 

the mean curvature 𝒦: 

ℋ = det(𝒮(𝒙)) , 𝒦 = 1 2⁄ tr(𝒮(𝒙)), 

where det⁡ is a matrix determinant, tr is a matrix trace (sum of 

elements of the main diagonal). 

 

Let us consider that the shape operator at a given point is: 

𝒮 = (
𝑠11 𝑠12
𝑠21 𝑠22

) , 𝑠12 = 𝑠21. 

 

Then, the Gaussian curvature and the mean curvature are: 

ℋ = 𝑠11𝑠22 − 𝑠12
2 ⁡, 𝒦 = 1 2⁄ (𝑠11 + 𝑠22)⁡. 

 

On the other hand, if 𝜆1 and 𝜆2 are eigenvalues of the shape 

operator, then we have: 

det(𝒮) = 𝜆1𝜆2⁡, tr(𝒮) = 𝜆1 + 𝜆2⁡. 
 

So, 𝜆1, 𝜆2 are solutions of the equation: 

𝜆2 − 2𝒦𝜆 +ℋ = 0, 
for the variable 𝜆 ∈ ℝ. Then, we have solutions: 

𝜆1, 𝜆2 = 𝒦 ±√𝒦
2 −ℋ. 

 

Finally, we acquire values of the principal curvatures: 

𝜆+ = max{𝜆1, 𝜆2} = 𝒦 + √𝒦
2 −ℋ⁡, 

𝜆− = min{𝜆1, 𝜆2} = 𝒦 − √𝒦
2 −ℋ⁡. 

 

The maximum principal curvature detects the dark lines/edges on 

the light background. The minimum principal curvature detects 

the light lines/edges on the dark background (Hongli, et al., 

2007). 

 

As we can see, the evaluation of Gaussian and mean curvatures 

reaches the definition of the shape operator 𝒮. To define the shape 

operator concretely, we need to solve the Weingarten equations 

(Gray, 1997). To simplify the evaluation, we consider that the 

image is a surface, in that curvilinear structures (e.g. lines such 

as roads in aerial or satellite images or blood vessels in medical 

images) correspond to its ridges (high curvatures) and valleys 

(low curvatures). Then, the local shape of characteristics of the 

surface at a given pixel 𝒙 = (𝑖, 𝑗), where 𝑖 ∈ {1,2,… ,𝑚}, 
𝑗 ∈ {1,2,… , 𝑛}, 𝑚 and 𝑛 are numbers of pixels by horizon and 

vertical, respectively, can be expressed by the Hessian: 

ℍ(𝒙, 𝜎) =

(

 
 

𝜕2𝑤

𝜕𝑥1
2 (𝒙)

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
(𝒙)

𝜕2𝑤

𝜕𝑥1𝜕𝑥2
(𝒙)

𝜕2𝑤

𝜕𝑥2
2 (𝒙)

)

 
 
, 

where 𝜎 is a standard deviation, and it plays the role of a spatial 

scale parameter of the Gaussian kernel for the low pass filters in 

a window with odd size: 

𝐺𝜎(𝒚) =
1

2𝜋𝜎2
exp (−

𝑦1
2 + 𝑦2

2

2𝜎2
), 

where 𝒚 = (𝑦1, 𝑦2), 𝑦1, 𝑦2 ∈ {1,3,5,…}, and 𝑤 = 𝐺𝜎(𝒚) ⋆ 𝑢, 

where ⋆ denotes 2D convolution. Therefore, 𝑤 is a result of 

applying the 2D convolution of the Gaussian kernel with the 

standard deviation 𝜎 to the input image 𝑢. In practice, the 

symmetric Gaussian kernel (i.e. 𝑦1 = 𝑦2) is usually used.  

 

Hence, the principal curvatures at a given pixel can be computed 

as eigenvalues of the Hessian at that pixel. The evaluation of the 

principal curvatures is handled on every pixel of the image. This 

means that the maximum and the minimum principal curvatures 

of the image 𝑢 are matrices that have the same size with the input 

image 𝑢. 

 

Let us consider that 𝜆𝑖𝑗
(1)
, 𝜆𝑖𝑗
(2)

 are eigenvalues of the Hessian at 

every pixel (𝑖, 𝑗). Then, the maximum and the minimum principal 

curvatures are defined as: 

𝜆𝑖𝑗
+ = max⁡{𝜆𝑖𝑗

(1)
, 𝜆𝑖𝑗
(2)
}, 

𝜆𝑖𝑗
− = min⁡{𝜆𝑖𝑗

(1)
, 𝜆𝑖𝑗
(2)
}. 

 

Let Λ+, Λ− be matrices of the maximum principal curvature and 

the minimum principal curvature, respectively. That means 

Λ+ = (𝜆𝑖𝑗
+ )

𝑚×𝑛
⁡, Λ− = (𝜆𝑖𝑗

− )
𝑚×𝑛

⁡. 

 

We call the matrix 

Λ =
3Λ+ + Λ−

2
 

to be a matrix of the adaptive principal curvature. 

 

The adaptive principal curvature is expected to improve blood 

vessels structure better than the maximum principal curvature 

and the gradient magnitude because the adaptive principal 

curvature combines both the maximum and minimum principal 

curvatures. Hence, contrast/brightness of blood vessels will be 

enhanced better. 
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2.2 Derivative Operators 

To evaluate the adaptive principal curvature of the image, we 

need to compute the second order derivatives. We consider three 

methods presented below. 

 

Derivatives by the central difference 

Derivatives by the central difference (Gonzalez & Woods, 2008) 

can be computed as follows: 
𝜕𝑢

𝜕𝑥1
=
𝑢(𝑖 + 1, 𝑗) − 𝑢(𝑖 − 1, 𝑗)

2
, 

𝜕𝑢

𝜕𝑥2
=
𝑢(𝑖, 𝑗 + 1) − 𝑢(𝑖, 𝑗 − 1)

2
, 

where 𝑖, 𝑗 are spatial steps by the image width and the image 

height, respectively. 

 

By using the central difference, the derivative of specific 

row/column is evaluated by two neighbour rows/columns. 

 

The Sobel derivative operator 

Derivatives are evaluated by the Sobel operator (Gonzalez & 

Woods, 2008) as follows: 

𝜕𝑢

𝜕𝑥1
= ((

1
2
1
) (1 0 −1)) ⋆ 𝑢 = (

1 0 −1
2 0 −2
1 0 −1

) ⋆ 𝑢, 

𝜕𝑢

𝜕𝑥2
= ((

1
2
1
) (1 0 −1))

𝑇

⋆ 𝑢 = (
1 2 1
0 0 0
−1 −2 −1

) ⋆ 𝑢, 

where 𝑇 is the transposition. By using the Sobel operator, we can 

compute the directional derivatives by horizon and vertical at the 

same time. However, the Sobel operator uses three rows/columns 

to evaluate the derivative. It considers the weight of the specific 

row/column higher than the weights of two neighbouring 

rows/columns. Therefore, the Sobel operator preserves details of 

specific rows/columns better than the central difference. The 

Sobel operator is also used to detect the image edges. 

 

The Prewitt derivative operator 

Derivatives are evaluated by the Prewitt operator (Gonzalez & 

Woods, 2008) as follows: 

𝜕𝑢

𝜕𝑥1
= ((

1
1
1
) (1 0 −1)) ⋆ 𝑢 = (

1 0 −1
1 0 −1
1 0 −1

) ⋆ 𝑢, 

𝜕𝑢

𝜕𝑥2
= ((

1
1
1
) (1 0 −1))

𝑇

⋆ 𝑢 = (
1 1 1
0 0 0
−1 −1 −1

) ⋆ 𝑢. 

 

Like the Sobel operator, the Prewitt operator can also evaluate 

the directional derivatives and is used for edges detection. It also 

uses three rows/columns to compute the derivative of the specific 

row/column. However, unlike the Sobel operator, the Prewitt 

operator considers same weights of all three rows/columns. So, 

details of the specific row are preserved no better than by the 

Sobel. Another difference of the Sobel from the Prewitt is that in 

the case of the image has a little noise, the Sobel operator gives 

higher accuracy for the task of edge detection. 

 

The gradient magnitude can be computed based on directional 

derivatives: 

|∇𝑢| = √(
𝜕𝑢

𝜕𝑥1
)
2

+ (
𝜕𝑢

𝜕𝑥2
)
2

. 

 

In all above cases, the second order derivatives can be acquired 

by applying the derivative operator twice over the image: 

𝜕2𝑢

𝜕𝑥1
2 =

𝜕

𝜕𝑥1
(
𝜕𝑢

𝜕𝑥1
) ,

𝜕2𝑢

𝜕𝑥1𝜕𝑥2
=
𝜕

𝜕𝑥1
(
𝜕𝑢

𝜕𝑥2
) ,
𝜕2𝑢

𝜕𝑥2
2 =

𝜕

𝜕𝑥2
(
𝜕𝑢

𝜕𝑥2
). 

 

2.3 Blood Vessels Segmentation Methods 

Because there are many small blood vessels that their intensity is 

similar to the intensity of other parts of images, applying 

thresholding segmentation directly in this case is ineffective. The 

goal of blood vessels segmentation by the adaptive principal 

curvature is like the goal of several similar works based on the 

matched filter, Gabor filter, multiscale line detection, etc. is that 

improve the image curvilinear structure so that the blood vessels 

intensity is higher and clearer than intensity of other parts. In this 

case, we propose to use the adaptive principal curvature to get 

better result. The Figure 1 shows an example of applying the 

adaptive principal curvature, the maximum principal curvature 

and the gradient magnitude for the retinal fundus image with ID 

01. We convert the colourful image to grayscale image. The 

derivative operator used in this case is the Sobel operator. 

 

 
(a) The input retinal fundus 

image 

 
(b) Adaptive principal 

curvature by the Sobel 

operator 

  

 
(c) Maximum principal 

curvature by the Sobel 

operator 

 

 
(d) Gradient magnitude by 

the Sobel operator 

 
(e) Zoomed-in of (b) 

 
(f) Zoomed-in of (c) 

 

Figure 1. Lines/edges contrast enhancement by applying the 

adaptive principal curvature, the maximum principal curvature 

and the gradient magnitude. 
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As can be seen, the gradient magnitude improves the contrast of 

the blood vessels well, but it is still not too clear. The gradient 

magnitude detects the blood vessels based on the edges and it 

does not create the continuous structures (sketch structure). By 

using the principal curvatures (the maximum principal curvature 

or the adaptive principal curvature), the blood vessels are 

produced as a clearer structural sketch. The adaptive principal 

curvature processes better than the maximum principal curvature: 

the contrast of blood vessels is clearer, and the non-blood-vessels 

structures are smaller, and are separated from the blood vessels. 

This can be seen clearly on Figures 1(e) and 1(f) that we zoom in 

the regions marked by the red colour. 

 

Next step, we need to enhance the contrast of the considered 

regions again to guarantee that the small blood vessels will not 

be lost (Prasath, 2017). This task can be done by the contrast-

limited adaptive histogram equalization (CLAHE) method 

(Zuiderveld, 1994) (Yadav, et al., 2014). 

 

 

Algorithm 1. The blood vessels segmentation methods 

based on the adaptive principal curvature and derivative 

operators. 

 

Input: The image 𝑢, method to compute derivative. 

Output: The segmented image of blood vessels 𝑢𝑠𝑒𝑔. 

Function 𝑢𝑠𝑒𝑔 ← 𝐀𝐒𝐞𝐠(𝑢,𝑚𝑒𝑡ℎ𝑜𝑑) 

Step 1. Extract the considered region to be segmented. 

Step 2. 𝑤 ← Apply the Gaussian kernel to the input image 𝑢. 

Step 3. Compute derivatives by the given method: 

𝑤𝑥1 ←
𝜕𝑤

𝜕𝑥1
, 𝑤𝑥2 ←

𝜕𝑤

𝜕𝑥2
, 𝑤𝑥1𝑥1 ←

𝜕

𝜕𝑥1
(𝑤𝑥1), 

𝑤𝑥1𝑥2 ←
𝜕

𝜕𝑥1
(𝑤𝑥2), 𝑤𝑥2𝑥2 ←

𝜕

𝜕𝑥2
(𝑤𝑥2). 

Step 4. {𝜆𝑖𝑗
(1)
, 𝜆𝑖𝑗
(2)
} ←Find eigenvalues of the Hessian at every 

pixel 𝒙 with position (𝑖, 𝑗) in the input image: 

ℍ(𝒙, 𝜎) ← (
𝑤𝑥1𝑥1(𝒙) 𝑤𝑥1𝑥2(𝒙)

𝑤𝑥1𝑥2(𝒙) 𝑤𝑥2𝑥2(𝒙)
). 

Step 5. Find the maximum and the minimum principal 

curvatures: 

λ𝑖𝑗
+ ← max {𝜆𝑖𝑗

(1)
, 𝜆𝑖𝑗
(2)
} , ⁡⁡⁡⁡⁡Λ+ ← (𝜆𝑖𝑗

+ )
𝑚×𝑛

⁡⁡, 

λ𝑖𝑗
− ← min{𝜆𝑖𝑗

(1)
, 𝜆𝑖𝑗
(2)
},⁡⁡⁡⁡⁡⁡⁡Λ− ← (𝜆𝑖𝑗

+ )
𝑚×𝑛

⁡⁡. 

Step 6. Compute the adaptive principal curvature: 

Λ ←
3Λ+ + Λ−

2
. 

Step 7. Β ←⁡Improve limited contrast of the adaptive principal 

curvatures Λ by the CLAHE method. 

Step 8. 𝑢𝑏𝑖𝑛 ←⁡Segment Β by binary threshold segmentation. 

Step 9. 𝑢𝑠𝑒𝑔 ← Filter out small segments of 𝑢𝑏𝑖𝑛. 

End. 

 

Finally, we must apply the binary thresholding segmentation 

method to segment the blood vessels based on the acquired result 

of the adaptive principal curvature. This is helpful to evaluate the 

Sorensen-Dice and Jaccard metrics and the contour matching 

score to compare to ground truth. In this case, we use the iterative 

self-organizing data analysis technique (ISODATA) method 

(Ridler & Calvard, 1978) (El-Zaart, 2010). This method is a well-

known k-means clustering to define the optimal clusters. For the 

binary segmentation, this method evaluates 𝑘 = 2. So, the global 

image threshold value will be evaluated based on the image 

pixels intensities automatically. This value is the threshold used 

for the binary segmentation (i.e. the segmentation result is only 

black and white regions). Regions with intensity higher than this 

threshold are segmented regions (blood vessels). We must notice 

that, in Algorithm 1, the step 1 is used for extracting the region 

of interests (ROI). This step is useful to remove the outline border 

(the border between the black background and the retinal fundus). 

This step can be completed easily by the binary thresholding 

segmentation with given thresholding value that is higher than 

the black colour intensity, for example, with the value 10. This 

value is good enough to extract the retinal fundus area from the 

black background. Otherwise, the step 9 is used for removing 

small regions by the area opening operation that is a part of the 

image morphology. This operation removes all connected 

components (objects) that have fewer than a given number of 

pixels from the binary image. 

 

The algorithm details of the blood vessels segmentation methods 

based on the adaptive principal curvature and derivative 

operators are presented in Algorithm 1. 

 

Corresponding to various derivative evaluation methods, we 

develop three separated blood vessels segmentation methods. So, 

we have three blood vessels segmentation methods named 

ASeg_C, ASeg_S, ASeg_P according to the blood vessel 

segmentation by the adaptive principal curvature with the central 

difference, with the Sobel operator, with the Prewitt operator, 

respectively. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

We handle experiments of the proposed blood vessels 

segmentation methods based on the adaptive principal curvature 

and derivative operators in MATLAB 2018a. The configuration 

of the computing system is Windows 10 Pro with Intel Core i5, 

1.6GHz, 4GB 2295MHz DDR3 RAM memory. The execution 

time will be smaller if we implement the algorithm on more 

powerful computing systems or by using parallel processing. We 

will consider benchmark tests in another future investigation. 

 

3.1 Synthetic Images 

To handle tests, we implement the proposed blood vessels 

segmentation methods for DRIVE dataset of the Image Sciences 

Institute, University Medical Center Utrecht, Netherlands: 

https://www.isi.uu.nl/Research/Databases/DRIVE/index.html. 

 

In the dataset, there are 20 retinal fundus images. The ground 

truths are also given. All retinal fundus images are store in TIF 

format, colourful image and have the same size of 565x584 

pixels. Figure 2 shows all images of DRIVE dataset used for 

tests. Images IDs are given under their thumbnails (e.g. 

01_test.tif – ID is 01, 02_test.tif – ID is 02, ...). 

 

In this dataset, there are two collections of ground truth: 

manual_01 and manual_02. Both are segmented manually by 

human. In this paper, we only use the manual_01. All ground 
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truths are stored in GIF format, binary (black/white) mode, and 

they have the same ID with corresponding input images. 

 

 
Figure 2. The retinal fundus images for testing 

 

3.2 Image segmentation quality assessment metrics 

To assess the segmentation quality of the proposed blood vessels 

segmentation methods, we need the ground truth. We use ground 

truth manual_01 of DRIVE dataset. In this paper, we consider the 

following metrics to assess the segmentation quality: 

 

The Sorensen-Dice similarity 

Let consider that 𝐴 is segmented regions that we need to assess 

the quality, 𝐵 is ground truth. The Sorensen-Dice similarity 

(Abdel & Allan, 2015) is computed as follows: 

𝑑𝑖𝑐𝑒(𝐴, 𝐵) =
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
⁡⁡, 

where | | denotes the set cardinality (number elements of the 

set). The value of the Sorensen-Dice similarity metric is between 

0 and 1 (or 0% to 100%). The higher the Sorensen-Dice value, 

the better the segmentation result. 

 

The Jaccard similarity 

The Jaccard similarity metric (Abdel & Allan, 2015) is related to 

the Sorensen-Dice similarity: 

𝑗𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
𝑑𝑖𝑐𝑒(𝐴, 𝐵)

2 − 𝑑𝑖𝑐𝑒(𝐴, 𝐵)
⁡⁡. 

The range of the Jaccard value is in [0,1]. The higher the Jaccard 

value, the better the segmentation result. 

 

The contour matching score 

The contour matching score (e.g. BF score) (Gabriela, et al., 

2013) measures how close the boundary of segmented regions 

matches the ground truth boundary. BF score is defined as the 

harmonic mean of the 𝛿 and 𝛾 values with the distance error 

tolerance to decide whether a point on the boundary of segmented 

regions has a match on the ground truth boundary or not: 

𝐵𝐹(𝐴, 𝐵) = 2
𝛿𝛾

𝛾 + 𝛿
⁡⁡⁡, 

where 𝛿 is the ratio of the number of points on the boundary of 

segmented regions 𝐴 are closed enough to boundary of the 

ground truth 𝐵 to the length of the boundary 𝐴; 𝛾 is the ratio of 

the number of points on the boundary of the ground truth 𝐵 that 

are closed enough to the boundary of the segmented regions 𝐴 to 

the length of the ground truth boundary 𝐵. The value range of the 

BF score is in [0,1]. The higher BF score, the better segmentation 

quality. 

We must notice that Sorensen-Dice and Jaccard similarities 

assess the segmentation quality based on all pixels inside the 

segmented regions, the BF score assesses the segmentation 

quality based on boundaries of the segmented regions and of the 

ground truth. 

 

3.3 Test cases 

The first test case: we implement the blood vessels segmentation 

method based on the adaptive principal curvature with the Sobel 

operator for the image 01. In this test, we show results of main 

steps of the Algorithm 1: the input image (input), the considered 

region need to be segmented (ROI, step 1), the adaptive principal 

curvature (step 6), the contrast-limited improvement (CLAHE, 

step 7), the black-white segmented regions (step 8), the final 

blood vessels segmentation result (step 9). 

 

 
 

Figure 3. Results by steps of the proposed blood vessel 

segmentation method based on the adaptive principal curvature 

with the Sobel operator. 

 

IDs ASeg_C ASeg_S ASeg_P 

01 0.75197 0.76137 0.76746 

02 0.73862 0.76148 0.76312 

03 0.66144 0.69312 0.69604 

04 0.70939 0.73041 0.73058 

05 0.71797 0.73901 0.74017 

06 0.70606 0.71543 0.71556 

07 0.66939 0.70175 0.70804 

08 0.64035 0.65707 0.65583 

09 0.6967 0.72143 0.72078 

10 0.69791 0.69692 0.70453 

11 0.69515 0.70467 0.71041 

12 0.70061 0.72875 0.73089 

13 0.6935 0.71156 0.71437 

14 0.68939 0.71648 0.72928 

15 0.68723 0.66726 0.67179 

16 0.73092 0.76355 0.76371 

17 0.67768 0.71734 0.71975 

18 0.71179 0.75507 0.75641 

19 0.79706 0.81019 0.80968 

20 0.71732 0.75289 0.75293 

Average 0.70452 0.72529 0.72807 

Table 1. The Dice similarity value of proposed methods 

      a) Input            b) ROI                   c) The Adaptive 

                                                                      principal curvature 

   d) CLAHE     e) Binary segmentation          f) Final result  
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The Figure 3 shows the main steps of the proposed blood vessels 

segmentation method with the Sobel operator.  In the first row: 

the first image from left – the input retinal fundus image, the 

second one – the considered region, the third one – the adaptive 

principal curvature. In the second row: the first image from left – 

the improved limited contrast of the adaptive principal curvature, 

the second one – the binary thresholding segmentation result, the 

third one – the final blood vessels segmentation result. 

 

IDs ASeg_C ASeg_S ASeg_P 

01 0.60252 0.61469 0.62266 

02 0.58557 0.61483 0.61697 

03 0.49414 0.53036 0.53379 

04 0.54965 0.57531 0.57553 

05 0.56003 0.58606 0.58752 

06 0.54567 0.55694 0.5571 

07 0.50307 0.54054 0.54804 

08 0.47096 0.48928 0.4879 

09 0.53456 0.56425 0.56345 

10 0.53599 0.53482 0.54384 

11 0.53275 0.54401 0.55088 

12 0.53919 0.57325 0.5759 

13 0.5308 0.55226 0.55566 

14 0.526 0.55821 0.57391 

15 0.52349 0.50067 0.50578 

16 0.57594 0.61753 0.61775 

17 0.51249 0.55927 0.56219 

18 0.55254 0.60651 0.60825 

19 0.6626 0.68095 0.68022 

20 0.55924 0.60371 0.60375 

Average 0.54486 0.57017 0.57355 

Table 2. The Jaccard similarity value of proposed methods 

 

IDs ASeg_C ASeg_S ASeg_P 

01 0.91026 0.94121 0.94038 

02 0.89231 0.91644 0.91639 

03 0.87607 0.88791 0.8857 

04 0.83891 0.86958 0.86831 

05 0.8672 0.88923 0.88939 

06 0.87168 0.87008 0.86805 

07 0.84628 0.85591 0.86226 

08 0.82828 0.85357 0.85355 

09 0.87153 0.8836 0.89252 

10 0.86484 0.89213 0.8972 

11 0.84405 0.86977 0.86465 

12 0.88356 0.91239 0.9186 

13 0.85582 0.87996 0.88046 

14 0.88204 0.91183 0.91284 

15 0.85042 0.86602 0.87071 

16 0.88087 0.89753 0.89661 

17 0.83117 0.85705 0.85779 

18 0.86147 0.89951 0.89815 

19 0.9133 0.93662 0.93461 

20 0.87758 0.93079 0.93074 

Average 0.86738 0.89106 0.89195 

Table 3. The contour matching score of proposed methods 

 
(a) Input image 01 

 

 
(b) Central difference 

 
(c) Sobel 

 
(d) Prewitt 

Figure 4. Blood vessels segmentation results for the image 01 

 

 
(a) Input image 02 

 
(b) Central difference 

 

 
(c) Sobel 

 
(d) Prewitt 

Figure 5. Blood vessels segmentation results for the  image 02 

 

By using the adaptive principal curvature, blood vessels are 

clearly visible. After enhancing the limited contrast, the adaptive 

principal curvature gets more clearly. Hence, we just need to 

remove small details to get the final segmentation result. 

 

The second test case: we implement three proposed blood vessels 

segmentation methods with various derivatives: the central 

difference, the Sobel and the Prewitt operators on all 20 images 

of DRIVE dataset. We compare accuracy of three proposed 

methods based on the Sorensen-Dice similarity, the Jaccard 

similarity and the contour matching score. 
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As can be seen, the blood vessels segmentation quality is very 

good. All blood vessels are extracted exactly. By the proposed 

method with the central difference, there are some small details 

are lost. The result by the proposed methods with the Sobel and 

the Prewitt operators are better much.  

 

Blood vessels segmentation results are presented in Figures 4-6. 

As can be seen, the segmentation results by the adaptive principal 

curvature and the central difference skipped some very small 

blood vessels. The segmentation results by the principal 

curvature with the Sobel operator and with the Prewitt operator 

are better. They can extract very small blood vessels. It is clear 

on Figures 4-6. In Figure 6, there are small details of blood 

vessels lost. As a result, there is an unconnected region (the most 

bottom region). However, this is just a very small region. 

Besides, we can see that the outline borders of the optic disc (the 

highest-intensity circle) in the retinal fundus still exist. 

 

The segmentation quality by the Sorensen-Dice error metric is 

presented in Table 1, the segmentation quality by the Jaccard 

error metric is presented in Table 2 and for the contour matching 

score is in Table 3. 

 

 
(a) Input image 05 

 
(b) Central difference 

 

 
(c) Sobel 

 
(d) Prewitt 

Figure 6. Blood vessels segmentation results for image 05 

 

The Sorensen-Dice error metric and the Jaccard error metric of 

the segmentation result by the proposed method with the Sobel 

operator and the Prewitt operator are better than by the central 

difference. The result by the Prewitt operator is better than the 

Sobel operator with 17/20 cases and better than the central 

difference with 19/20 cases. Average values of the Sorensen-

Dice metric and the Jaccard metric of the proposed method with 

the Prewitt operator are highest and followed by the proposed 

method with the Sobel operator. Lowest average values of the 

Sorensen-Dice and the Jaccard metrics are by the proposed 

method with the central difference. 

 

For the contour matching score, the segmentation result by the 

proposed method with the Sobel operator wins 10/20 cases, with 

the Prewitt operator wins 9/20 cases and the central difference – 

1/20 case. However, the average value the contour matching 

score of the proposed method with the Prewitt operator is still 

highest. In this case, values of the contour matching score, the 

Sorensen-Dice metric and the Jaccard metric are quite different 

because the Sorensen-Dice and the Jaccard metrics assess 

segmentation results based on whole areas of segmented regions, 

but the contour matching score only assesses based on the 

boundary of segmented regions. 
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Table 4. Comparison of the average Dice score, the average 

Jaccard score, the average BF score of the adaptive principal 

curvature and the maximum principal curvature. 

 

In all cases, the best value of the Sorensen-Dice metric of the 

proposed method with the central difference is over 0.79, and 

lowest value – over 0.64. For the proposed method with the Sobel 

operator and with the Prewitt operator are over 0.81 (best) and 

over 0.65 (lowest); over 0.8 (best) and over 0.65 (lowest), 

respectively. The best and the lowest values of the Jaccard metric 

of the central difference are over 0.66 and over 0.47; of the Sobel 

operator – over 0.58 and over 0.48; of the Prewitt operator – over 

0.68 and over 0.48, respectively. For the contour matching score, 

the best and the lowest values of the proposed method with the 

central difference are over 0.91 (best) and over 0.82 (lowest); 

with the Sobel operator – over 0.94 (best) and over 0.85 (lowest); 

with the Prewitt operator – over 0.94 (best) and over 0.85 

(lowest), respectively.  

 

Table 4 presents comparison of the average values of the Dice 

score, of the Jaccard and of the BF score of the adaptive principal 

curvature and the maximum principal curvature. As can be seen, 

the proposed methods with the adaptive principal curvature give 

higher scores than corresponding methods with the maximum 

principal curvature. 

 

As about the performance, all proposed methods only take less 

two seconds to complete the blood vessels segmentation task. 

This is a very good performance and that is suitable to process 

large images, high-resolution images or video sequences data. 
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4. CONCLUSIONS 

In this paper, we proposed three blood vessels segmentation 

methods based on the adaptive principal curvature with the 

central difference, the Sobel operator and the Prewitt operator. 

All three methods give very good segmentation results on both 

accuracy and performance. In that, the proposed method based 

on the adaptive principal curvature with the Prewitt operator has 

highest accuracy by the Sorensen-Dice and Jaccard metrics. 

 

Our proposed methods can work well with grayscale and 

colourful images. In the case of colourful images, we can convert 

images to grayscale mode or process a single colour channel, 

such as the red, green or blue channel. This does not reduce the 

method performance for both grayscale or colourful images. 

 

In a future work, we would like to extend the proposed methods 

to segment blood vessels with higher accuracy by removing the 

optic disc before applying the proposed segmentation procedure. 

Moreover, we can also apply multiscale  technique (Prasath, et 

al., 2018) (Prasath, et al., 2015a) (Prasath, et al., 2015b) to 

improve accuracy; combine with other binary segmentation 

methods, such as Otsu method, adaptive thresholding method etc. 

Otherwise, these methods can be also extended to apply to other 

segmentation problems in medicine (Thanh, et al., 2019, 

Forthcoming), biomedicine (Thanh & Dvoenko, 2015a) (Thanh 

& Dvoenko, 2015b) (Prasath, 2017), etc. 
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