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Toward qualifying hydrologic changes in the High Mountain Asia (HMA) region, this

study explores the use of a hyper-resolution (1 km) land data assimilation (DA)

framework developed within the NASA Land Information System using the Noah

Multi-parameterization Land Surface Model (Noah-MP) forced by the meteorological

boundary conditions from Modern-Era Retrospective analysis for Research and

Applications, Version 2 data. Two different sets of DA experiments are conducted:

(1) the assimilation of a satellite-derived snow cover map (MOD10A1) and (2) the

assimilation of the NASA MEaSUREs landscape freeze/thaw product from 2007 to

2008. The performance of the snow cover assimilation is evaluated via comparisons

with available remote sensing-based snow water equivalent product and ground-based

snow depthmeasurements. For example, in the comparison against ground-based snow

depth measurements, the majority of the stations (13 of 14) show slightly improved

goodness-of-fit statistics as a result of the snow DA, but only four are statistically

significant. In addition, comparisons to the satellite-based land surface temperature

products (MOD11A1 and MYD11A1) show that freeze/thaw DA yields improvements

(at certain grid cells) of up to 0.58 K in the root-mean-square error (RMSE) and 0.77

K in the absolute bias (relative to model-only simulations). In the comparison against

three ground-based soil temperature measurements along the Himalayas, the bias and

the RMSE in the 0–10 cm soil temperature are reduced (on average) by 10 and 7%,

respectively. The improvements in the top layer of soil estimates also propagate through

the deeper soil layers, where the bias and the RMSE in the 10–40 cm soil temperature

are reduced (on average) by 9 and 6%, respectively. However, no statistically significant

skill differences are observed for the freeze/thaw DA system in the comparisons against

ground-based surface temperature measurements at mid-to-low altitude. Therefore,

the two proposed DA schemes show the potential of improving the predictability of

snow mass, surface temperature, and soil temperature states across HMA, but more

ground-based measurements are still required, especially at high-altitudes, in order to

document a more statistically significant improvement as a result of the two DA schemes.
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1. INTRODUCTION

High Mountain Asia (HMA) is a landscape of tundra, enormous
glaciers, and alpine lakes, in addition to being a storehouse of
freshwater central to the well-being of more than one billion
people across Asia (Immerzeel et al., 2010). Snow and glacier melt
are important hydrologic processes in HMA (Immerzeel et al.,
2009, 2010), and changes in surface temperature are expected
to seriously affect the surface melt characteristics (Barnett et al.,
2005; Immerzeel et al., 2010) as well as subsurface conditions,
such as permafrost (Wu et al., 2013). Quantifying changes to this
fragile environment is of utmost importance to protect, restore,
and promote sustainable use of the HMA ecosystem, including—
but not limited to—water resource management (Immerzeel
and Bierkens, 2012) and agricultural activities (Immerzeel et al.,
2010; Qiu, 2016). However, the process of developing a better
understanding of the HMA ecosystem faces many challenges,
especially in the context of climate change (Liu and Chen, 2000;
Xu et al., 2008; Yang et al., 2014). For example, the availability
of in-situ surface measurements for hydrologic, weather, and
climate studies in this complex area is scarce, particularly at
relatively high altitudes (see Figure 1A). In addition to the lack
of dense and stable in-situ hydrometeorological measurement
networks, high variability in regional weather conditions
triggered by the complex topography further complicates the

characterization of land processes in HMA (Salzmann et al.,
2007). Therefore, a comprehensive knowledge of the regional
spatiotemporal variability in the HMA environment might
only be achieved by applying advanced modeling techniques,
remote sensing products, and data assimilation (DA) methods at
relatively high spatial and temporal resolutions.

The Community Noah Land Surface Model with Multi-
Parameterization Options (Noah-MP), has been developed and
used to simulate land-atmosphere energy, water, and carbon

exchanges, as well as key hydrologic states, such as surface runoff,
soil moisture, snow depth, snow water equivalent (SWE), and
terrestrial water storage at local or basin scales (mainly) over the
Continental United States (Niu et al., 2011; Yang et al., 2011; Cai
et al., 2014; Chen et al., 2014; Ma et al., 2017). However, few
studies have been conducted to rigorously assess the Noah-MP
model performance over HMA, particularly across the complex
Tibetan Plateau terrain (Zhang et al., 2016), and the majority of
these studies (e.g., Gao et al., 2015; Zheng et al., 2015; Zhang et al.,
2016) only focus on assessing the effects of new representations of
a specific physical process on the improvements of the model’s
performance at local scales (Ma et al., 2017). Therefore, it is

Abbreviations: AMSR, Advanced Microwave Scanning Radiometer; CEOP,

Coordinated Enhanced Observing Period; CHARIS, Contribution to High Asia

Runoff from Ice and Snow; CMA, Chinese Meteorological Administration; DA,

data assimilation; DI, direct insertion; FTDA, freeze/thaw assimilation; GlobSnow,

Global Snow Monitoring for Climate Research; GSOD, Global Summary of the

Day; HMA, High Mountain Asia; LDAS, land data assimilation system; LDT,

Land surface Data Toolkit; LIS, Land Information System; MEaSUREs, Making

Earth System Data Records for Use in Research Environments; MERRA, Modern-

Era Retrospective analysis for Research and Applications; MODIS, Moderate

Resolution Imaging Spectroradiometer; Noah-MP, Noah multi-parametrization

land surface model; OL, open-loop; SC DA, snow cover assimilation; SWE, snow

water equivalent.

necessary to evaluate key modeled states, such as snow depth,
SWE, surface temperature, and soil temperature estimates in a
more systematic manner across the entire HMA.

Land data assimilation systems (LDASs) can optimally merge
information from satellite-derived observations and land surface
models (usually uncoupled from an atmospheric model) at
regional, continental, and global scales (Rodell et al., 2004).
LDASs are intended to construct quality-controlled and spatially
and temporally consistent land surface datasets from the best
available observations andmodel outputs to support hydrological
modeling activities (Mitchell et al., 2004). The ultimate goal of
developing such an assimilation framework is to yield a merged
state of estimate that is superior to either the observations or
model alone (Reichle, 2008). Previous studies found that snow
mass and soil moisture modeling performance can be improved
through rule-based direct assimilation of (binary) remotely-
sensed snow cover (Rodell and Houser, 2004; Zaitchik and
Rodell, 2009; Arsenault et al., 2013), and landscape freeze/thaw
observations (Farhadi et al., 2015), respectively. The land surface
models used in the three aforementioned studies are the Mosaic
(in Rodell and Houser, 2004) applied to Continental United
States, the Community Land Model (version 2.0) (in Arsenault
et al., 2013) applied to Washington and Colorado, United States,
and the NASA Catchment Land Surface Model (in Farhadi et al.,
2015) applied to North America between 45◦N and 55◦N and
90◦E and 110◦E. In the HMA region, few studies showed the
potential of LDASs for improving surface soil moisture and
skin temperature states by merging remotely sensed observations
(e.g., passive microwave brightness temperature observations at
relatively coarse spatial resolutions) into land surface models
across the Tibetan Plateau (Rasmy et al., 2011; Lu et al., 2012).
Based on the relatively encouraging performance of the LDASs
investigated in previous studies, this study is intended to integrate
the state-of-the-art, remotely sensed snow and freeze/thaw
products at relatively fine spatial resolutions into the Noah-
MP model to further improve snow- and temperature-related
estimates across HMA.

Snow- and land surface-related estimates can be generated
from a land surface model at a desired spatial scale. However,
they are subject to errors arising from imperfect model
parameterizations as well as errors in the boundary conditions
used to drive the model. On the other hand, satellite-derived
observations (retrievals) are also imperfect due to the
instrumentation accuracy, sensor applicability, and retrieval
algorithm development assumptions. For example, snow cover
extent can be derived from optical (i.e., visible to near-infrared
wavelength) satellite sensors at a relatively high spatial resolution
[e.g., the Moderate Resolution Imaging Spectroradiometer
(MODIS)-derived snow cover extent at 500 m]. The accuracy
of these snow cover products is often impacted by atmospheric
conditions (e.g., cloud cover). In addition, satellite-based
retrievals of snow mass at global scale are available from
polar-orbiting platforms carrying microwave sensors, such
as the Advanced Microwave Scanning Radiometer–Earth
Observing System (AMSR-E)-based SWE product (Tedesco
and Narvekar, 2010). This product is available at a spatial
resolution of 25 km, but has been reported to yield a high degree
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FIGURE 1 | (A) Reprocessed Shuttle Radar Topography Mission elevation map on the 0.01◦ model grid. Grid cells used during assimilation evaluations are marked in

magenta. Again, GlobSnow is a product, rather than in-situ measurements, but we utilize GlobSnow product in a point-scale manner as discussed in section 4. (B)

Reprocessed National Centers for Environmental Prediction modified International Geosphere-Biosphere Programme 20-category global vegetation class map, where

“Decid." represents “deciduous trees," “Evergrn" represents “evergreen trees," “bl" represents “broadleaf," and “nl" represents “needleleaf”.

of uncertainty over densely-vegetated areas and regions with
relatively deep snowpack due to the sensor’s saturation depth,
snow grain size evolution, and/or inaccurate representation
of snow density in the retrieval algorithm (Foster et al., 1997;
Tedesco and Narvekar, 2010). Comparatively, snow cover
observations are more preferable for use during assimilation
than satellite-based SWE retrievals in this study because (1)
satellite-based SWE retrievals are too coarse in spatial resolution,
(2) SWE retrievals are prone to relatively large uncertainties,
and (3) passive microwave sensors typically do not resolve
snow conditions well in mountainous areas. The relatively poor
predictability of the AMSR-E based SWE product is also partially
demonstrated by Dai et al. (2012) as applied in Xinjiang, China.
Without appropriate corrections in the bias of the satellite-
based snow mass retrievals, very little improvements—or even
degradations—are likely to occur during the assimilation phase
according to previous studies (Andreadis and Lettenmaier, 2006;
De Lannoy et al., 2012; Liu et al., 2013).

Similarly, the relatively long record of satellite-based retrievals
of land surface conditions, such as land surface temperatures
and freeze/thaw states, provides LDASs with a considerable

number of possibilities to improve hydrological and biospheric
processes in weather and climate models. Satellite-based land
surface temperature retrievals can be obtained from a variety
of polar-orbiting and geostationary platforms carrying infrared
(e.g., Wan and Li, 1997; Jin, 2004) and microwave (e.g.,
Holmes et al., 2009) sensors. Infrared land surface temperature
retrievals are largely impacted by weather conditions (i.e.,
cloud cover, water vapor amount, and aerosols), whereas the
accuracy of microwave land surface temperature retrievals
are often associated with surface type determination and
surface emissivity estimates. On the other hand, satellite-based
freeze/thaw states can be obtained from radiometer (e.g., Bateni
et al., 2013) and scatterometer (e.g., Bartsch et al., 2007)
measurements at various frequencies along the microwave
spectrum. Previous studies showed that satellite-based retrievals
of land surface temperatures typically exhibit different mean
values and variabilities from model estimates (Jin, 2004; Reichle
et al., 2010) and/or in-situ measurements (Jin et al., 1997)
due to differences between satellite overpass times (along
with look angles), model output times, and ground-based
measurement times. Comparatively, satellite-based freeze/thaw
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state assimilation is more preferable than that of satellite-based
surface temperature retrievals (e.g., fromMODIS), partly because
the microwave-based MEaSUREs freeze/thaw product is less
affected by cloud contamination than the infrared-based MODIS
surface temperature product. In addition, the assimilation of
satellite-based surface temperature retrievals generally requires
prior scaling and/or bias adjustment during the assimilation
process (Reichle et al., 2010) because of different climatologies of
model estimates and satellite-based retrievals (see Figure 6 for an
example of Noah-MP estimates and MODIS surface temperature
products). To avoid subjective assumptions of what climatology
is more correct, we chose not to assimilate the MODIS surface
temperature product.

In this paper, we systematically evaluate the ability of the
baseline Noah-MP model along with two data assimilation
schemes to simulate surface temperature, soil temperature, snow
depth, and SWE states in HMA. Specifically, this work aims to
(1) assess the performance of snow depth and SWE estimates
simulated by Noah-MP (with and without snow assimilation)
and (2) assess the performance of surface temperature and soil
temperature profile estimates simulated by Noah-MP (with and
without freeze/thaw states assimilation).

2. STUDY AREA, MODEL, AND DATASETS

2.1. Study Area and Noah-MP Land Surface
Model
The study domain is the HMA region bounded between 20◦N
and 41◦N and 66◦E and 101◦E (see Figure 1). The forward
(prognostic) model used in this study is the Noah-MP (version
3.6; Niu et al., 2011; Yang et al., 2011) forced by meteorological
fields from Modern-Era Retrospective analysis for Research and
Applications, Version 2 (MERRA-2; Gelaro et al., 2017). The
Noah-MP model is integrated forward in time at a time step of
15 min from 1 September 2007 to 31 August 2008 on a regular
0.01◦ spatial grid using the NASA Land Information System (LIS)
version 7.2 (Kumar et al., 2006). Noah-MP outputs are generated
on a daily-averaged basis, which is consistent with the temporal
resolution of the majority of the measurements or products used
during the evaluation phase. The model is spun up, reaching
quasi-equilibrium of both surface and subsurface temperature
states, by looping eight times through the 1-year period from 1
January 2001 to 1 January 2002 (see section 5.1 for details) and
then once through the 5.75-year period from 1 January 2002 to
31 August 2007.

Within LIS, the MERRA-2 forcing fields (i.e., air temperature,
specific humidity, downward longwave flux, downward
shortwave flux, zonal wind, meridional wind, surface pressure,
total pressure, total precipitation, and convective precipitation),
originally with an hourly temporal resolution and a 0.5◦ × 0.625◦

spatial resolution, are spatially interpolated using bilinear
interpolation onto the 0.01◦ model grid and temporally
interpolated using linear interpolation onto the same model time
step. No additional physically-based downscaling procedure
(e.g., temperature or humidity lapse rate corrections) is applied
to the atmospheric forcing variables in this study. An advanced

downscaling framework (https://eospso.gsfc.nasa.gov/sites/
default/files/eo_pdfs/Mar_Apr_2018_color%20508_0.pdf) will
be included in the future to evaluate the impact of high-
resolution atmospheric forcings on hydrologic modeling. It
is worth noting that the MERRA-2 product provides both
uncorrected and corrected (i.e., gauge-corrected) precipitation
fields. This study utilizes the uncorrected precipitation field from
MERRA-2 because the corrected precipitation field may inherit a
dry bias from the gauge measurements according to Ghatak et al.
(2018) based on their findings in South Asia.

The static input data for Noah-MP are obtained from the
National Center for Atmospheric Research/Research Application
Laboratory website (https://ral.ucar.edu/solutions/products/
noah-multiparameterization-land-surface-model-noah-mp-
lsm), which are preprocessed (or re-gridded) onto the same
0.01◦ model grid using the NASA Land surface Data Toolkit
(LDT) public release of version 7.2 (Arsenault et al., 2018). The
soil texture types are aggregated from the 30-s, 16-category
hybrid State Soil Geographic Database/Food and Agriculture
Organization 0–30 cm top-soil texture. The vegetation (land-
use) types are obtained from the 1 km, National Centers for
Environmental Prediction modified International Geosphere-
Biosphere Programme 20-category global vegetation class map
(see Figure 1B). The bottom boundary layer conditions for
Noah-MP soil models are obtained from the 1-degree annual
2-m air temperature, which are processed from the European
Centre for Medium-Range Weather Forecasts model analysis.
The monthly climatological green vegetation fraction, monthly
climatological surface albedo, and maximum albedo over
snow covered area are obtained from the National Centers for
Environmental Prediction for the Americas/Global Energy and
Water Cycle Experiment America Prediction Project.

The Noah-MP is developed based on the original Noah land
surface model, with a number of enhancements including (1) the
addition of improved physical processes [e.g., separation of the
vegetation canopy from the ground surface (section 2.1.2), (2) the
inclusion of a multi-layer snowmodel (section 2.1.1)] (Dickinson
et al., 1998; Yang and Niu, 2003; Niu et al., 2007), and (3) the
addition of multiparameterization options (Niu et al., 2011; Yang
et al., 2011; Cai et al., 2016), which allow a user to configure the
model with different options. Table 1 summarizes all Noah-MP
options and parameters used in this study.

2.1.1. Noah-MP Snow Physics
Similar to the legacy Noah model, the snow
accumulation/ablation parameterizations of the Noah-MP
model are based on mass and energy balance in the snowpack.
The change in SWE is balanced by the input snowfall, and output
snowmelt and snow sublimation (Wang et al., 2010). Snow
compaction, melting, and freezing processes are all taken into
account via physically-based snow processes (Niu et al., 2011).

Unlike the legacy Noah model, the snowpack can be divided
by up to three layers depending on the snow depth in Noah-MP
(Niu et al., 2011). When snow depth is <0.025 m, no snow layer
exists and the snowpack is combined with the soil layer. When
snow depth is between 0.025 and 0.05 m, a single-layer snowpack
is formed. When snow depth is in between 0.05 and 0.15 m,
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TABLE 1 | Noah-MP model runtime options and parameters used in this study.

Option Value Definition

Vegetation model option 2 dynamic vegetation

Canopy stomatal resistance option 1 Ball-Berry type (Ball et al., 1987)

Soil moisture factor for stomatal resistance option 1 original Noah (Chen and Dudhia, 2001)

Runoff and groundwater option 1 TOPMODEL with groundwater (Niu et al., 2007)

Surface layer drag coefficient option 1 Monin-Obukhov (Brutsaert, 1982)

Supercooled liquid water option 1 No iteration (Niu and Yang, 2006)

Frozen soil permeability option 1 linear effects, more permeable (Niu and Yang, 2006)

Radiation transfer option 1 modified two-stream

Snow surface albedo option 2 CLASS (Verseghy, 1991)

Rainfall and snowfall option 1 Jordan (Jordan, 1991)

Lower boundary of soil temperature option 2 Noah (read from file mentioned in section 2.1)

Snow and soil temperature time scheme 1 semi-implicit

Parameter Unit Value

Number of soil layers [–] 4

Each soil layer thickness (from top to bottom) m 0.1, 0.3, 0.6, 1.0

Number of snow layers [–] 3

Soil color index [–] 4: for medium dark color soil

a two-layer snowpack is created. When snow depth is above
0.15 m, a three-layer snowpack is formed. In addition, the snow
interception routine in the Noah-MP is employed to account for
the loading and unloading of snowfall, melting of intercepted
snow (e.g., by the vegetation canopy) and refreezing of the
meltwater, frost (or sublimation), and dew (or evaporation).
The Noah-MP derived snow cover fraction (on the ground) is
parameterized as a function of the snow depth, ground roughness
lengths, and snow density (Niu et al., 2007, 2011).

Based on the Noah-MP derived snow cover fraction and SWE
on the ground, the model grid cells are categorized into three
types: (1) snow-covered, (2) snow-free, and (3) undetermined.
If the Noah-MP derived snow cover fraction is greater than or
equal to 50% and the modeled SWE is greater than 1 mm, the
model grid cell is considered as “snow-covered." On the other
hand, if the model derived snow cover fraction is <50% and the
modeled SWE is less than or equal to 1 mm, the model grid
cell is considered as “snow-free." All other cases are considered
as undetermined model grid cells in terms of the binary snow
cover output.

2.1.2. Noah-MP Temperature States
One of the augmentations of Noah-MP with respect to the
legacy Noah model is the separation of vegetation canopy
(from the ground surface) to account for vegetation effects
on surface energy and water balances. Using a “semi-tile”
subgrid scheme, the Noah-MP is able to represent land surface
heterogeneity appropriately (Niu et al., 2011). The Noah-MP
has the structure of a single-layer of canopy cover. The canopy
temperature state and the bare ground temperature state are
both solved iteratively via the evaluations of the surface energy
balance of solar radiation, longwave radiation, sensible heat,
latent heat, and ground heat flux (Niu et al., 2011; Ma et al.,

2017). The surface temperature in Noah-MP is then diagnosed
from the areal-weighted average of the canopy temperature
and the bare ground temperature within a model grid cell. In
other words, the canopy layer, the bare ground layer, and the
diagnosed “combined surface layer” are all associated with zero
heat capacities.

layer center (from the ground surface)A four-layer soil
column configuration is used in the Noah-MP model (see
Table 1). The thicknesses of each soil layer (from top to bottom)
are 10, 30, 60, and 100 cm. Using the ground heat flux (at
the surface) as the upper boundary, the soil temperatures of
the four-layer soil column are solved together through a tri-
diagonal matrix of the implicit time scheme with soil thermal
diffusivity properties (Niu et al., 2011). Soil temperature values
obtained from Noah-MP represent the temperatures at each
soil layer center (from the ground surface) at 5, 25, 70, and
150 cm, respectively.

Based on the Noah-MP derived surface temperature, the
model grid cells are categorized into three types: (1) frozen, (2)
thawed, and (3) undetermined. If the Noah-MP derived surface
temperature is greater than or equal to 274.15 K (+1 ◦C; Tub),
the model grid cell is considered as “thawed.” On the other hand,
if the model derived surface temperature is ≤ 272.15 K (–1 ◦C;
Tlb), the model grid cell is considered as “frozen.” All other
cases (i.e., between Tlb and Tub) are considered as undetermined
model grid cells in terms of the binary freeze/thaw output. It is
important to note that in most studies, 0 ◦C is considered as the
temperature threshold between the frozen and thawed states (e.g.,
Colliander et al., 2012; Farhadi et al., 2015; see also section 2.2).
The upper temperature boundary (+1 ◦C; also denotes as “Tub”
in Equation 2) and the lower boundary (–1 ◦C; also denotes as
“Tlb” in Equation 1) are used in a similar manner as Farhadi et al.
(2015) for binary freeze/thaw categories, which is used to account
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for the threshold temperature uncertainty associated with the
freeze-thaw transition due to landscape heterogeneity and water
solute concentration.

2.2. Satellite-based Snow Cover and
Freeze/Thaw Observations
The satellite-based snow cover observations are obtained from
MODIS Snow Cover Daily L3 Global 500-m Grid (MOD10A1,
version 6; Hall and Riggs, 2016). Snow cover in this data set
consists of a single, best observation of the day for each grid cell
selected from theMODIS/Terra SnowCover 5-Min L2 Swath 500
m data set. Each observation represents the best sensor view of
the surface in the grid cell based on solar elevation, distance from
nadir, and grid cell coverage (Hall and Riggs, 2016). The daily,
binary snow cover maps are then processed from the MOD10A1
product, with ones (i.e., representing snow-covered conditions)
and zeros (i.e., representing snow-free conditions) for land pixels,
and “no-value” flags for water bodies or indecisive grid cells
(e.g., missing data). If the MOD10A1-derived product observes
a Normalized Difference Snow Index snow cover percentage
greater than 0 and less than or equal to 100, the land grid cell
is treated as “snow-covered.” When the index of snow cover
percentage = 0, the land pixel is treated as “snow-free.” For
all other cases, the “no-value” flags are applied. These binary
snow cover maps are subsequently re-gridded onto the 0.01◦

model grid using the nearest neighbor interpolation, for later
use in the snow cover assimilation (SC DA) scheme. That is, the
model and observational information are mapped 1:1 spatially
where satellite-based observations are coincidental with model
grid cells. It is important to note that the MODIS/Aqua Snow
Cover product (MYD10A1, version 6; Hall and Riggs, 2016)
is not used in this study because 75% (15 out of 20) of the
detectors in the Aqua MODIS band 6 (1.628–1.652 mum) failed
shortly after launch. The band 6 is important for the Normalized
Difference Snow Index computation. Even though an additional
quantitative image restoration technique had been developed
to restore the missing band 6 signals used in the MYD10A1
production (Riggs et al., 2017), the MOD10A1 product without
the extra image restoration process is deemed preferable in
this context.

The satellite-based freeze/thaw observations are obtained
from the Making Earth System Data Records for Use in Research
Environments (MEaSUREs) Northern Hemisphere Polar Equal-
Area Scalable Earth Grid 2.0 Daily 6 km Land Freeze/Thaw Status
from the AMSR-E and the AMSR-2 (version 1; Kim et al., 2017,
2018). The MEaSUREs product is used here because (1) it is a
publicly available product covering the entire HMA, (2) it has
a relatively fine spatial resolution, and (3) it yields relatively
high spatially-averaged agreement (greater than 80%) among
other satellite-based freeze/thaw products when compared to the
offline Noah-MP derived estimates (before assimilation; results
not shown). The algorithm identifies surface freeze/thaw state
changes based on the dynamic relationship between vertically-
polarized brightness temperature observations at 36.5 GHz
and changes in the aggregate landscape dielectric constant
associated with transitions between predominantly frozen and

non-frozen conditions with 0 ◦C being the temperature threshold
(Kim et al., 2011).

Both morning (AM) and afternoon (PM) binary freeze/thaw
states are employed in this study, with zeros representing the
frozen landscape and ones representing the non-frozen (or
thawed) landscape. For all other cases (e.g., water bodies or
grid cells not significantly affected by cold season constraints),
the “no-value” flags are applied. Similar to the reprocessing
procedure of the binary snow cover observations, both AM and
PM binary freeze/thawmaps are re-gridded onto the 0.01◦ model
grids using the nearest neighbor interpolation for later use in the
freeze/thaw assimilation (FT DA) scheme.

3. DATA ASSIMILATION METHOD AND
EXPERIMENTAL DESIGN

There is a variety of assimilation techniques to choose from,
ranging from the direct insertion (DI) method, Kalman filter
(or with its variants, such as an ensemble Kalman filter or an
extended Kalman filter), particle filter, Kalman smoother (or
with its variants, such as an ensemble Kalman smoother), and
variational methods (Walker et al., 2003) to different hybrid
assimilation methods that combine two or more techniques
together. More sophisticated DA methods (e.g., ensemble
Kalman filter) might produce more optimal results than the DI
method (Arsenault et al., 2013), partly because the latter treats
observations being perfect without dynamically analyzing the
relationship between model errors and observation errors, as
an ensemble Kalman filter would do. However, sophisticated
DA approaches, other than DI methods, generally rely on the
existence of a continuous relationship between model states
and observations (Walker et al., 2003). Both snow cover and
freeze/thaw observation maps are binary, which relate in non-
continuous, threshold fashion to model states, and therefore,
rule-based (a.k.a. DI-based) updating schemes described below
are employed for this study. It is important to note that satellite-
based snow cover observations (i.e., MOD10A1 used in this
study) can also be assimilated as snow cover fraction using an
ensemble Kalman filter into the Noah-MP model, without being
converted to binary snow cover maps as described in section 2.2.
However, the relatively simple DI method (i.e., assimilation of
binary snow cover maps) is used in this study because it is (1)
not impacted by uncertainties associated with the estimation of
SWE using the depletion curve as a function of fraction snow
cover through an ensemble Kalman Filter (De Lannoy et al.,
2012); (2) computationally efficient; and (3) more capable of
removing modeled snowpack than adding snowpack (Rodell and
Houser, 2004; Arsenault et al., 2013), especially considering that
the uncorrected MERRA-2 precipitation used in this region is
likely to be positively biased (Xie et al., 2017; Ghatak et al., 2018).

Proper characterization of errors in a DA system is also very
important, in terms of both model and observation errors. In
the DI-based DA systems presented in this study, the model
errors are taken into consideration by applying more stringent
thresholds to key state variables as outlined in section 2.1.2 for
surface temperatures and in section 2.1.1 for snow-related states.
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The observation errors are implicitly included during the re-
gridding (or re-projection) processes as outlined in section 2.2,
and therefore, no additional observation errors are applied in
both DA systems.

3.1. Snow Cover Assimilation (SC DA)
An accurate representation of the snow mass (e.g., snow depth
and SWE) is important in this region because the meltwater
generated from the snowpack accounts for the majority of the
water budget, from∼50% in the Indus and Amu Darya basins to
∼67% in the Syr Darya, Tarim, and Tibetan Plateau basins (Smith
and Bookhagen, 2018). Following Rodell and Houser (2004) and
Arsenault et al. (2013), the Noah-MP model assimilates satellite-
derived binary snow cover observations. The updates take place
daily at 00:00 (UTC). If the model derived and the corresponding
MODIS derived snow cover observations agree with each other,
or the observations are flagged as “no-value” (see section 2.2), or
the model derived snow cover estimates are undetermined (see
section 2.1.1), then no updates occur.

If the model indicates a snow-covered grid cell, but the
observation indicates snow-free conditions, both SWE and snow
depth states are reduced to zeros. If the model indicates a
snow-free grid cell, but the observation indicates snow-covered
conditions, the modeled SWE during the analysis update step
is increased to 5 mm, the snow depth is increased to 0.02 m
accordingly, and one layer of snowpack is created forcefully
despite the single snow layer threshold of 0.025 m (of snow
depth) as discussed in Section 2.1.1, which is then used to
initiate snowpack growth as described in Rodell and Houser
(2004). All other snow-related states, such as number of snow
layers, snow depth distribution profile (as a function of the snow
layers), snow temperature profile, snow liquid water content,
and snow ice content, are also modified accordingly within the
Noah-MP routines.

3.2. Freeze/Thaw Assimilation (FT DA)
Land surface temperature plays a key role in governing the
surface energy balance. It dictates the longwave radiation emitted
by the surface and serves as an “anchor” for the soil temperature
profile (Crago and Qualls, 2014). It also serves as an important
boundary condition, which influences the latent and sensible
heat flux partitions to the atmosphere (Reichle et al., 2010).
Furthermore, soil temperature plays a key role in the land surface
processes by affecting a series of physical, chemical, and biological
processes in the soil, such as water and heat flux (Meng et al.,
2017). Following Reichle et al. (2010) and Farhadi et al. (2015),
the Noah-MP assimilates the satellite-derived binary freeze/thaw
observations on a daily basis. The updates take place twice a day
at 01:30 (AM;UTC) and 13:30 (PM;UTC), which corresponds to
the AM and PM freeze/thaw observations, respectively. If the
model derived and the corresponding freeze/thaw observations
agree with each other, or the observations are flagged as “no-
value" (see section 2.2), or the model derived freeze/thaw
conditions are undetermined (see section 2.1.2), then no updates
occur. In addition, it is important to note that model grid cells
covered with a significant amount of snowpack (i.e., greater
than 50% of the snow cover fraction or greater than 5 cm of

the snow depth as simulated by the Noah-MP model) are not
being updated during the FT DA due to the limited penetration
depth of the 36 GHz brightness temperature channel used in the
MEaSUREs detection algorithm.

If the model indicates a frozen grid cell, but the observation
indicates thawed condition, the increment (d) during the analysis
(update) step is then computed as:

d = Tlb − T−
sur f

, (1)

where Tlb (= –1 ◦C or 272.15 K) is the lower boundary of
the freeze/thaw state using the surface temperature (see section
2.1.2), and T−

sur f
is the modeled surface temperature before

update. Similarly, if the model indicates a thawed grid cell, but
the observation indicates frozen condition, the increment is then
computed as:

d = Tub − T−
sur f

, (2)

where Tub (= +1 ◦C or 274.15 K) is the upper boundary of
the freeze/thaw state using the surface temperature (see section
2.1.2). Under both Equations (1, 2) circumstances, the updating
scheme does not change the modeled freeze/thaw conditions
dramatically before and after the analysis update in order to
avoid completely reverting the modeled surface energy and water
balance conditions. The increment is directly applied onto the top
layer of soil temperature state, and therefore the top layer of soil
temperature during the analysis step is computed as:

T+
topsoil

= T−
topsoil

+ d, (3)

where T−
topsoil

is the top layer of soil temperature before update

and the T+
topsoil

is the top layer of soil temperature after update.

We applied the increments directly, and completely (1:1) onto
the top layer of soil temperature instead of modifying surface
temperature directly. This is because the Noah-MP surface
layer is associated with zero heat storage (see section 2.1.2),
and applying the DA increments onto the modeled surface
temperature state directly will have minimum effects on the
model forecast. However, the relative error correlation between
the “observed" surface temperature and the FT DA state variable
of the top layer of soil temperature is somewhat difficult to
characterize within the DI approach, let alone the phase shift
between the diurnal cycle of the two aforementioned variables
(Reichle et al., 2010). A series of error analyses is performed
and it is found that, assuming all forcing errors arise from the
air temperature only, the daily-averaged changes in the modeled
surface temperature and the daily-averaged changes in the top
layer of soil temperature are roughly proportional, which could
be approximated with a ratio of 1:1 in terms of the daily-averaged
changes. It is acknowledged that FT DA analysis updates are
performed at two model time steps (i.e., morning and afternoon
time) rather at the daily-averaged basis, so the relatively simple
ratio applied here might not be accurate.
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4. EVALUATION METHODOLOGY AND
REFERENCE DATASET

With limited ground-based stations available over such complex
terrain, it is well-acknowledged that HMA is a challenging
place to conduct evaluations. In this study, the goodness-
of-fit statistics of bias, root-mean-square error (RMSE), and
correlation coefficient (R) are adopted for evaluating model
derived, daily-averaged snow depth, SWE, surface temperature,
and soil temperature estimates. Besides, the 95% confidence
intervals are also computed for comparison against in-situ
surface temperature measurements by assuming a student’s
t distribution for spatially-averaged statistics of bias, gamma
distribution for RMSE, and an asymptotic normal distribution
for R after a Fisher Z transformation, considering each grid cell
as an independent data point.

4.1. Comparison Against in-situ
Temperature and Snow Depth
Measurements
The performances of both open-loop (OL; no assimilation)
and DA estimates (both SC DA and FT DA) are evaluated
via comparisons against in-situ measurements. Model derived
estimates (at a spatial resolution of approximately 1 km) are
evaluated against the closest colocated ground-based stations.

The in-situ, daily-averaged surface temperature
measurements are obtained from the Chinese Meteorological
Administration (CMA), namely the Dataset of Daily Climate
Data From Chinese Surface Stations for Global Exchange
(V3.0) (https://data.cma.cn/en/?r=data/detail&dataCode=
SURF_CLI_CHN_MUL_DAY_CES_V3.0&keywords=daily).
The daily-averaged surface temperature values provided in
this dataset are computed by averaging the four measurements
taken by platinum resistance thermometers at 02:00, 08:00,
14:00, and 20:00. One CMA station (not shown in Figure 1A) at
(22.57◦N, 99.94◦E) within the HMA region is removed from the
comparison because FT DA is identical to OL for this grid cell
(i.e., no analysis updates are performed). Therefore, there are in
total 23 CMA stations used for FT DA evaluation.

The in-situ soil temperature measurements are obtained
from the Coordinated Enhanced Observing Period (CEOP) Asia
Monsoon project at the Himalayas site (https://www.eol.ucar.
edu/projects/ceop/dm/insitu/sites/ceop_ap/). A total of three
CEOP stations are available for the FT DA evaluation. Soil
temperatures are measured using DLA400 Lsi-Lastem sensors
at a time step of an hour (or 20 min), and at depths of 5 and
20 cm (or 15 cm) from the ground surface (depends on the
station). Measurements collected at the depth of 5 cm are used
to evaluate the model derived estimates for the top layer of soil
(0–10 cm). Measurements collected at the depth of 20 cm (or
15 cm) are used to evaluate the model derived estimates for
the second layer of soil (10–40 cm). Since no measurements
are available at the center of the second layer of soil (i.e., 25
cm), the Inverse Distance Weighting method is applied onto the
model estimates to match with the measurement depths. Daily-
averaged temperature values are then computed as the temporal

mean of the temperatures collected during the 24-h period of
the day as a function of the measured depth. In addition, CEOP
also provides users with soil temperature measurement flags to
help with data quality controls. Therefore, only soil temperature
measurements with the “good" CEOP flags are retained and used
in the daily-averaged temperature calculations.

The in-situ, daily-averaged snow depth measurements are
obtained from (1) the Global Summary of the Day (GSOD;
https://data.noaa.gov/dataset/dataset/global-surface-summary-
of-the-day-gsod) and (2) the Contribution to High Asia Runoff
from Ice and Snow (CHARIS) project (http://himatmap.apps.
nsidc.org/hma_insitu.html). It is important to note that in-situ
snow stations with records less than 20 days during the snow
season (from December 2007 to March 2008) are not used in the
analysis. Both CHARIS and GSOD provide their station elevation
information along with the depth measurements. We use station-
provided elevation information to compare against the model
grid cell elevation obtained from the Shuttle Radar Topography
Mission (see Figure 1A). If the absolute elevation difference
between the model grid cell and the GSOD station is greater than
100 m, the station is removed from comparison. One GSOD
station (not shown in Figure 1A) at (39.29◦N, 71.87◦E) within
the HMA region is removed because the elevation difference
is greater than 3,000 m. The pre-examination of the elevation
difference is important because disparities in the horizontal
support (i.e., in-situ station vs. 1 km model grid cell) will be
exacerbated by the differences in vertical elevation, especially in
such complex terrain for snow estimates. The implementation of
the quality control process finally yields three CHARIS stations
and 11 GSOD stations during SC DA evaluation.

4.2. Comparison Against Reference
Satellite-Based SWE and Surface
Temperature Products
The satellite-based snow product used during the evaluation
process is the European Space Agency Global Snow Monitoring
for Climate Research (GlobSnow) SWE (Pulliainen, 2006;
Takala et al., 2011). GlobSnow SWE estimates are a Bayesian
combination of a semi-empirical snow emission model
(Pulliainen and Grandell, 1999), space-borne passive microwave
observations, and ground-based snow depth measurements
obtained from adjacent weather stations. GlobSnow SWE is
provided daily at a 25 km horizontal resolution, limited between
latitudes 35◦ and 85◦N across non-mountainous regions. During
the evaluation period, 138 days (out of 365 days) of estimates
are missing. The majority of the missing days are in June,
July, August, and September during the snow-off or very thin
snow season.

The quality of the snow reanalysis product (e.g., GlobSnow
SWE product used here) depends on the availability of ground-
based snow stations used in the production phase, especially
for the HMA region with a limited number of ground-based
stations (e.g., Toure et al., 2016). Instead of comparing against
the regional GlobSnow SWE estimates, the study only extracts
qualified pixels with colocated GlobSnow-provided weather
stations. It is important to note that only the station coordinates
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are provided by GlobSnow. No time series of the station
measurements and no ancillary station related information (e.g.,
station elevation) are provided. There are in total nine qualified
model grid cells with colocated GlobSnow weather stations. Due
to the scarcity of ground-based measurements across HMA used
in their product, only one weather station is available per one
GlobSnow pixel.

Similar to the strategy adopted in section 4.1, we only compare
the model derived estimates obtained from the single model
grid cell with colocated GlobSnow weather station against the
corresponding GlobSnow SWE estimates. If the model grid cell
has an elevation greater than 3,000 m, the cell is removed
from the comparison because GlobSnow SWE is not able to
represent mountain snowpack conditions. Thus, two model grid
cells (markers not shown in Figure 1A) are removed. In addition,
four of the remaining seven qualified model grid cells (markers
not shown in Figure 1A) are removed because SC DA is identical
to OL (i.e., no SC DA updates are performed). Therefore,
only three grid cells are used to compare against GlobSnow
estimates. Additionally, it is important to note that the Canadian
Meteorological Centre derived daily snow depth (or SWE),
also a snow reanalysis product, is not used in the evaluation
because this reanalysis product does not provide coordinates
of the in-situ snow observations used within their production
phase. The satellite-retrieved AMSR-E SWE product is not used
in the evaluation because it has been reported to significantly
underestimate SWE (see sections 1, 3.1 for discussions).

The satellite-based surface temperature products used during
the evaluation process are the MODIS/Terra Land Surface
Temperature Daily L3 Global 1-km Grid (MOD11A1, version
6; Wan et al., 2015a) and the MODIS/Aqua Land Surface
Temperature Daily L3 Global 1-km Grid (MYD11A1, version
6; Wan et al., 2015b). The MODIS instruments on Terra
and Aqua image the same area on Earth approximately 3
h apart. The MODIS instrument observes the instantaneous
land surface temperature during the satellite overpass times
using infrared bands. Cloud-contaminated observations are
removed from both products during their production phases
(Wan et al., 2015a,b). The median UTCs of satellite overpasses
across the HMA area between 2007 and 2008 are approximately
05:49 (MOD11A1 daytime), 16:46 (MOD11A1 nighttime), 08:15
(MYD11A1 daytime), and 20:47 (MYD11A1 nighttime). Both
daytime and nighttime land surface temperatures derived from
MOD11A1 and MYD11A1 products are re-gridded onto the
0.01◦ model grid using the nearest neighbor interpolation. Given
the availability of both nighttime and daytime land surface
maps generated by MOD11A1 and MYD11A1—in total four
measurements—several methods exist that can evaluate the
model derived estimates. In this study, we use the simple
arithmetic mean of all four measurements to approximate the
daily-averaged values (see Equation 4) and then to compare with
the model derived daily averages.

LSTm = 1/4∗(LSTmoddy+LSTmodnt+LSTmyddy+LSTmydnt) (4)

where LSTm is the MODIS derived, daily-averaged land
surface temperature. The subscript “moddy” denotes MOD11A1

daytime product, “modnt" denotes MOD11A1 night product,
“myddy” denotes MYD11A1 daytime product, and “modnt"
denotes MYD11A1 nighttime product. For a single grid cell,
four measurements, including daytime MOD11A1, nighttime
MOD11A1 as well as daytime MYD11A1, and nighttime
MYD11A1 have to present simultaneously in order to calculate
the daily-averaged surface temperature; otherwise, a “no-value"
flag is applied.

5. RESULTS AND DISCUSSIONS

5.1. Model Spin-up
In order to allow the model states of interest with longer
memories (e.g., deep-soil temperature) to reach quasi-
equilibrium, the model must be properly initialized via
spinning up. Using the initial conditions given in Table 2,
the Noah-MP model is spun up by looping through several
integrations with 2001 forcing data. The year of 2001 is used
because it is neither too cold nor too warm, neither too dry nor
too wet (Ren et al., 2017), which is relatively representative of the
recent (e.g., 2000 and beyond) climate with minimized regional
annual anomalies in the meteorological forcings (Rodell et al.,
2005). The completion of the spin-up procedure is determined
by looping through the model repeatedly until all model states of
interest reach their equilibrium states. The equilibrium state is
defined as all model grid cells in the study region having to meet
the requirement set by Equation (5) across the majority (at least
90%) of the days within the year. That is, the relative difference
in the model states between consecutive spin-up years cannot
exceed 0.1% across 90% of the year. The 0.1% relative difference
criteria is adopted based on the method outlined in Rodell et al.
(2005) and Cai et al. (2016).

|xn+1 − xn|

|xn|
≤ 0.001, (5)

where n defines the n-th loop of the year used in the spin-up
procedure and x represents the daily average, a single model grid
cell based state variable output (i.e., surface temperature, or each
layer of the soil temperature). The operator | · | denotes taking the
absolute value of the state variable from the n-th loop as well as
the absolute value of state variable difference obtained from the
n+1 and n-th loop.

When the fourth layer of soil reaches its quasi-equilibrium,
the three other soil layers (0–10, 10–40, 40–100 cm) also reach
their own quasi-equilibrium states, which is expected. Noah-MP
derived surface temperature generally requires 3–5 years for spin-
up, and the fourth layer of soil temperature requires 3–8 years for
spin-up (not shown). Longer spin-up periods are often witnessed
in the Tibetan Plateau, where homogenized initial temperatures
(288.0 K) of soil, vegetation, and ground (see Table 2) applied at
the spin-up beginning in January significantly deviate from the
comparatively cold climate (relative to the rest of HMA, such as
Central India) across the Tibetan Plateau. This phenomenon is
especially notable across the western extensions of the Himalayas,
such as Karakoram, Pamir, and Hindu Kush mountain ranges,
where extremely cold weather persists throughout the year.
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TABLE 2 | Initial conditions of model prognostic variables used for Noah-MP

model run.

Variable Unit Value

Initial soil temperature for each layer

(from top to bottom)

K 288.0, 288.0, 288.0, 288.0

Initial soil moisture for each layer (from

top to bottom)

m3/m3 0.2, 0.2, 0.2, 0.2

Initial canopy air temperature K 288.0

Initial canopy air vapor pressure K 261.7

Initial wetted or snowed fraction of

canopy

[–] 0.0

Initial vegetation temperature K 288.0

Initial ground temperature K 288.0

Initial snowfall on the ground mm/s 0.0

Initial snow height m 0.0

Initial snow water equivalent mm 0.0

Initial depth to water table m 2.5

Initial water storage in aquifer mm 4900.0

Initial water in aquifer and saturated

soil

mm 4900.0

Initial lake water storage mm 0.0

Initial leaf mass g/m2 9.0

Initial mass of fine roots g/m2 500.0

Initial stem mass g/m2 3.33

Initial mass of wood including woody

roots

g/m2 500.0

Initial leaf area index [–] 0.5

Initial stem area index [–] 0.1

Initial momentum drag coefficient [–] 0.0

Initial sensible heat exchange

coefficient

[–] 0.0

Initial snow aging term [–] 0.0

Initial soil water content between

bottom of the soil and water table

m3/m3 0.0

Initial reference height of temperature

and humidity

m 6.0

5.2. Assessments of SC DA
Figure 2A shows an example time series of OL and SC DA
derived SWE estimates when compared against GlobSnow
estimates at a grid cell in an urban area in Xinjiang, China. OL
generally underestimates SWE, while SC DA successfully adds
some snow on 02 January 2008. Overall, the bias in the model
derived SWE estimates is reduced by 35%, the RMSE is reduced
by 10%, and the R is increased by 13% as a result of SC DA
relative to OL (see Table 3). It is interesting to note that there
is a dramatic decrease in the GlobSnow-derived SWE of more
than 35 mm on 18 January 2008, when neither OL nor SC DA
demonstrates similar behavior. The sharp drop in the SWEmight
be due to snow plowing activities by the local residents; however,
under such circumstances, it is relatively difficult to explain the
dramatic, and seemingly unrealistic, subsequent increase in SWE
of 40 mm on 27 January 2008. Therefore, it is more likely that
GlobSnow derived estimates are prone to higher uncertainty

(relative to Noah-MP model estimates) between 18 January 2008
and 27 January 2008 for this grid cell. The erroneous estimates
in GlobSnow might arise from the uncertainty in the passive
microwave brightness temperature observations used in the
algorithm development phase (see section 4.2). Such brightness
temperature observation uncertainty might be attributable to
urban construction and human activity disturbances in the area
(Xiong et al., 2017).

Figure 2B shows an example time series of OL and SC
DA derived snow depth estimates in comparisons with GSOD
measurements at a grid cell close to Dushanbe airport in
Tajikistan. OL generally overestimates snow depth, while SC
DA successfully removes some snow since 15 December 2007.
Overall, the bias in the model derived snow depth estimates is
reduced by 50%, the RMSE is reduced by 50%, and the R is
improved from –0.05 to 0.16 as a result of the SC DA relative to
OL (see Table 3). Even though SC DA demonstrates significant
improvements in snow depth estimates relative to OL, the bias
(or RMSE) in the SC DA derived snow depth of 30 cm is still
too large. It is possible that the large bias in the model estimates
is due to measurement errors in the in-situ GSOD dataset. That
is, snow depth measurements collected in an open area (i.e.,
airport) are subject to wind-blown snow redistribution effects
that might contain negative biases (Reichle et al., 2011). It is also
possible that the large bias in the model estimates might be due
to infrequent updates (i.e., removal of snow in this grid cell) in
the SC DA along with the overestimation of the precipitation in
MERRA-2 (Xie et al., 2017).

Table 3 summarizes the goodness-of-fit statistics, including
bias, RMSE, and R, of both OL and SC DA experiments with
respect to ground-based CHARIS snow depth measurements,
ground-based GSOD snow depth measurements, and the
reanalysis product based GlobSnow SWE estimates. Again,
the three grid cells shown in Table 3 for GlobSnow SWE
comparisons are the ones colocated with GlobSnow-provided
weather stations (see section 4.2 for discussions). It is not too
surprising to see that the majority of these publicly-available
in-situ stations were installed at relatively low elevations because
highest terrain is too steep, exposed, and/or inaccessible to
maintain a snow measuring instrument (Lundquist et al., 2015).
It is still encouraging to see that themajority of the in-situ stations
(13 of 14) installed at relatively low-to-medium altitudes witness
improved goodness-of-fit statistics in the snow depth estimates
as a result of the SC DA relative to OL. However, only four of the
14 stations witness statistically significant improvements in the
SC DA derived evaluation metrics. It is important to note that
four ground-based stations, including two CHARIS stations and
two GSOD, stations yield biases and/or RMSEs greater than 40
cm in both OL and SC DA experiments. The mean elevation of
the four grid cells coinciding with these ground-based stations
are approximately 2,500 m according to Figure 1A. Therefore,
the large uncertainty in the model estimates might be attributed
to the positive bias in the MERRA-2 forcing at relatively high
altitudes. It might also be explained by the fact that a single
ground-based station is not representative of the snow condition
across a 1 by 1 km model grid, especially for the mountain
snowpack where the snow is highly variable spatially. During the
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FIGURE 2 | (A) Comparison of OL and SC DA derived SWE against GlobSnow SWE estimates at (39.48◦N, 76.00◦E) between 01 October 2007 and 01 July 2008

(with white gaps representing missing GlobSnow estimates). Time series between September and October, and between July and August are not shown in the Figure

because no GlobSnow estimates are available. (B) Comparison of OL and SC DA derived snow depth against GSOD snow depth measurements at (38.55◦N,

68.83◦E) between 1 December 2007 and 1 April 2008 (with white gaps representing missing GSOD measurements). Time series between September and December,

and between April and August are not shown in the Figure because no GSOD measurements are available.

TABLE 3 | Statistics computed when comparing model derived, including both OL and SC DA derived, snow depth or SWE estimates against measurements obtained

from GSOD, CHARIS, or GlobSnow.

Evaluation source - state, OL SC DA

with station elevation (m) Latitude (◦) Longitude (◦) Bias (cm) RMSE (cm) R Bias (cm) RMSE (cm) R

CHARIS–snow depth, 2563 39.45 70.20 88.89 90.45 0.62 88.74 90.30 0.62

CHARIS–snow depth, 2234 39.44 69.66 63.35 66.66 0.70 51.40 55.44 0.70

CHARIS–snow depth, 1016 39.51 67.60 –6.44 8.08 0.61 –6.39 8.02 0.61

GSOD–snow depth, 345 40.12 67.84 1.24 3.03 0.70 0.99 2.92 0.76

GSOD–snow depth, 264 40.82 68.69 –7.14 9.41 0.11 –7.09 9.32 0.11

GSOD–snow depth, 474 40.98 71.59 –5.75 6.46 –0.09 –5.52 6.24 0.06

GSOD–snow depth, 765 40.92 72.95 2.02 8.00 0.23 1.97 8.00 0.23

GSOD–snow depth, 868 40.70 72.90 5.94 10.36 –0.03 5.84 10.34 –0.03

GSOD–snow depth, 604 40.37 71.76 -4.87 5.42 –0.13 -4.73 5.26 –0.11

GSOD–snow depth, 678 39.71 66.99 0.30 3.87 0.74 0.44 3.86 0.74

GSOD–snow depth, 2561 39.45 70.20 70.63 73.60 0.55 70.51 73.47 0.55

*GSOD–snow depth, 785 38.55 68.83 60.15 61.63 –0.05 30.03 30.75 0.16

GSOD–snow depth, 265 37.52 66.03 –3.48 4.69 0.85 –3.41 4.66 0.85

GSOD–snow depth, 2077 37.51 71.51 85.67 86.56 0.87 77.06 78.27 0.87

*GlobSnow–SWE 39.48 76.00 –0.30 1.10 0.62 –0.19 0.99 0.70

GlobSnow–SWE 39.77 78.56 –0.19 0.79 0.70 –0.12 0.74 0.69

GlobSnow–SWE 40.51 81.05 –0.19 0.93 0.73 –0.08 0.88 0.65

OL or SC DA derived estimates with statistically significant (at a significance level of 5%) metrics (i.e., bias, RMSE, and R) are bolded. The grid cell marked with an asterisk also provides
time series in Figure 2. It is important to note that GlobSnow product only provides station coordinates, and no station elevation information is provided (see section 4.2).
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comparison against GlobSnow SWE estimates, all (three out of
three) grid cells show improved (but not statistically significant
improved) bias and RMSE in SC DA relative to OL, but only one
of them shows slightly improved (but not statistically significant
improved) R in SC DA. The exact reason for the degraded
statistics in R at some grid cells is unclear since it is relatively
difficult to discern the uncertainty of the model derived estimates
from the GlobSnow product.

Figure 3 shows daily-averaged SWE estimates derived from
OL and SC DA along with assimilated MODIS snow cover maps
on 15 September 2007 and 3 February 2008, respectively. At
the start of the snow accumulation season in September, slightly
more snow is being added to OL model estimates (relative to
being removed) as a result of the SC DA along the western
extensions of the Himalayas as well as the Kunlun mountain
range. It is therefore not surprising to find that compared withOL
SWE estimates, the snow estimates pattern derived from SC DA
agrees more closely with the MODIS snow cover map as shown
in Figure 3C. As the winter season progresses into February, SC
DA derived SWE estimates tend to remove more snow from
OL especially across the Inner Tibetan Plateau. Similar findings
can also be witnessed in Figure 4. The solid line is calculated
by averaging all grid cells with lower SC DA derived SWE
estimates (relative to OL) as a function of the time, for which
the SWE amount difference between SC DA and OL can be
used to represent the spatially-averaged amount of SWE being
removed from OL due to SC DA. On the other hand, the dashed
line is calculated by averaging all grid cells with higher SC DA
derived SWE estimates (relative to OL) as a function of the time,
for which the SWE amount difference between SC DA and OL
can be used to represent the spatially-averaged amount of SWE
being added onto OL due to SC DA. Overall SC DA tends to
removemore snow from the baseline Noah-MPmodel, especially
during the snow melt season after April, which might be due to
(1) the correction of the positive bias in the MERRA-2 derived
precipitation (Xie et al., 2017), and/or (2) the capability of DI
to remove snow (see section 3). If the precipitation data had
a negative bias, we would probably expect less updates during
the snow melt period, but perhaps more updates in the peak
periods. However, without adequate ground-based stations to
evaluate against, it is still difficult to conclude whether SC DA
performance is better than OL across the entire Tibetan Plateau.

Based on the evaluations against in-situ snow depth
measurements and SWE products at point-scale and at relatively
low-to-medium altitudes, it is therefore concluded here that SC
DA generally performs better than OL in terms of both snow
depth and SWE estimates, especially for bias and RMSE statistics.
Besides the representativeness issue of the ground-based stations,
there exist some limitations with the SC DA direct insertion
technique. It is obvious that the improvement (or degradation)
magnitudes arising from SC DA are strongly dependent on the
number of analysis updates that occurred during the assessment
period. Most of the updates take place during early and late snow
seasons when observations and modeled estimates do not agree
with each other more frequently relative to the other time of the
snow season. In other words, the DI-based SC DA is unlikely
to initiate a large update in the peak winter. In addition, the

increments of SWE and snow depth as applied during the SC
DA update phase are somewhat subjective (see section 3.1). For
example, Figure 2A shows that an update (increase) of 5 mm of
SC DA derived SWE on 02 January 2008 is inadequate to capture
the SWE increase in the GlobSnow product. Furthermore, a
successful implementation of SC DA is also closely related to an
accurate representation of the forcing, especially for precipitation
(including snowfall) used in the snow estimation.

5.3. Assessments of FT DA
Figure 5 shows the histograms of average bias, RMSE, and
R computed by comparing OL and FT DA derived surface
temperature estimates against 23 in-situ CMA stations. Both OL
and FT DA derived estimates show relatively good agreement
with the CMA surface temperature measurements in the
average R statistics, where ROL = RFTDA ≈ 0.98, and the
subscripts indicate estimates obtained from either OL or FT
DA experiments. The good agreement in R between model and
in-situ measurements demonstrate that the model is able to
capture the day-to-day variability within the surface temperature
time series. In addition, slight improvements are witnessed for
FT DA where the average bias is reduced by 16% from –
0.19 K (OL) to –0.16 K (FT DA), and the average RMSE is
reduced by 2% from 3.04 K (OL) to 2.99 K (FT DA). The
negative biases in the modeled surface temperature estimates
might be explained by the negative biases in the MERRA-2 air
temperatures, which had been reported by Xie et al. (2017).
FT DA shows some improvements in bias and RMSE statistics
relative to OL and also shows some tendency to correct the
negative bias in the MERRA-2 air temperature. However, due
to the relatively large variations of the computed statistics, no
statistically significant skill differences (at a significance level
of 5%) between OL and FT DA could be concluded here.
There could exist several possibilities to explain the relatively
insignificant improvement obtained from FT DA. First, the
relatively insignificant improvements might be explained by
the stations used during the evaluation since a single ground-
based station is not able to represent the entire 1 by 1 km
model grid cell. It might also be explained by the incorrect
magnitudes of increments applied onto the FT DA state
variable since we significantly simplify the error correlation
between the surface temperature and the top-layer of soil
temperature. Additional explanations might be the uncertainty
in the assimilated freeze/thaw observations, which might arise
from the simple interpolation strategy as discussed in section
2.2. Further, it is worthwhile pointing out that all CMA stations
are installed in the eastern Tibetan Plateau and Taklamakan
Desert, with relatively low elevations compared with the western
Tibetan Plateau. Therefore, no solid conclusions could be made
for FT DA performance in estimating surface temperatures
at relatively high altitudes when compared against in-situ
CMAmeasurements.

Figure 6 shows the spatial distributions of bias, RMSE,
and R computed between daily-averaged OL, FT DA surface
temperature estimates, and the MODIS derived surface
temperature. Gray regions in Figure 6 indicate inadequate
presence (i.e., <60 days) of MODIS derived daily-averaged
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FIGURE 3 | Daily-averaged SWE estimates on 15 September 2007 derived from (A) OL and (B) SC DA. Daily-averaged SWE estimates on 3 February 2008 derived

from (D) OL, and (E) SC DA. Assimilated MODIS snow cover maps are shown in (C) for 15 September 2007 and (F) for 3 February 2008, respectively, where “NaN" is

the no-value indicator as discussed in section 2.2.

FIGURE 4 | The spatially averaged amount of SWE being removed or added from OL due to SC DA from 2007 to 2008. Grid cells that never go through any SC DA

updates are removed from the calculation.

surface temperature measurements computed using Equation
(4), which are removed from all goodness-of-fit statistics
computations. Noticeable positive biases in the surface
temperature estimates are witnessed in Pakistan and Northern
India along the Ganges and Indus rivers, covered with cropland
(see Figure 1B). The area with the positive bias happens

to be coincident with the “irrigated cropland" category as
defined by the International Crops Research Institute for the
Semi-Arid Tropics shown in http://geoagro.icarda.org/en/cms/
metadata/index/762/SRT2-type%25252Bdrylands%25253A
%25252Bland%25252Buse%25252Fland%25252Bcover. It
is thus very likely that human-related irrigation activities
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FIGURE 5 | Histogram of the average (A) bias, (B) RMSE, and (C) R computed by comparing OL, and FT DA against CMA ground-based surface temperature

measurements. All histograms are supplemented with 95% confidence intervals. It is important to note that (C) does not start with 0.

introduce more evaporative cooling of the cropland, and the
surface temperature drops accordingly. However, Noah-MP
does not model irrigation-related activities, and therefore
yields an overestimation of the surface temperature in this
region. In addition, relatively high bias, high RMSE, and
low R shown in Figure 6 are often found to be coincidental
with glaciated area along the Pamir-Karakoram-Himalayas
region shown in Olson and Rupper (2019), which are
likely due to inaccurate model estimates since Noah-MP
does not contain a glacier modeling routine. Future studies
will be conducted to incorporate an advanced, hyper-
resolution glacier model into the Noah-MP within LIS
in order to better characterize model estimates along the
glaciated region.

Figures 5, 6 also share some common findings. For example,
both OL and FT DA yield negative, spatially-averaged bias
in HMA possibly due to negative bias in the MERRA-2
air temperature. Relatively high, spatially-averaged correlation
coefficients are shown for both OL and FT DA, where OL R
≈ DA R = 0.93. Slight improvements are witnessed for FT DA,
where the average bias is reduced by 2% from –3.46 K (OL) to
–3.40 K (FT DA) and the average RMSE is reduced by 1% from
5.31 K (OL) to 5.27 K (FT DA). Relatively large improvements
obtained from FT DA relative to OL in terms of absolute bias
and RMSE statistics are observed in the southern Tibetan Plateau,
eastern Tibetan Plateau, and eastern Afghanistan compared with
the rest of the region in HMA (see Figures 6C,F). However,
due to the relatively large variations of the computed statistics,
no statistically significant spatially-averaged skill differences
(at a significance level of 5%) between OL and FT DA are
observed. This might partly be attributed to the uncertainty
in the MODIS/Terra and MODIS/Aqua surface temperature
estimates (Zou et al., 2014) as well as the Equation (4) used
to derive the daily-averaged surface temperature estimates. A
more sophisticated semi-empirical model, different from the
simple averaging method as applied in this study, for deriving
daily-averaged surface temperatures based on MODIS/Terra and
MODIS/Aqua is also provided by Zou et al. (2014). However, the
method outlined in their study requires intensive measurements

of the ground-based surface temperature to calibrate model-
related coefficients (or parameters), which is not applicable in our
study, and also out of the study scope.

Part of the reason for the statistically insignificant skill
difference between OL and FT DA might also lie in the many
zero-differences in bias and RMSE seen in Figure 6. For these
zero-difference grid cells, seen across the majority of Pakistan,
Southern India, and Western India, MEaSUREs observations
and modeled freeze/thaw states always agree with each other,
and hence no analysis updates take place. Therefore, the
improvement (or degradation) magnitudes arising from FT DA
are strongly dependent on the number of analysis updates that
occurred during the assessment period. That is, Figure 7 further
corroborates what is observed in Figures 6C,F. Figure 7A shows
the box plots of change in the absolute value of bias (1|bias|) and
Figure 7B shows the change in the RMSE (1RMSE) computed
between OL and FT DA. The |·| operator denotes taking the
absolute value of OL and FT DA bias. The change in the R
(1R) does not show as box plots in Figure 7 because very little
improvement (or degradation) is seen from Figure 6I. Figure 7
is binned as a function of the number of analysis updates per
grid cell. The spatially-distributed number of updates per grid
cell (N) throughout the assessment period are binned into six
categories, including (1) 20 ≤ N ≤ 60, (2) 60 < N ≤ 100, (3)
100 < N ≤ 140, (4) 140 < N ≤ 180, (5) 180 < N ≤ 220, and
(6) N > 220. The sample sizes (number of grid cells) for the six
bins are 1112242, 1047492, 1135645, 765940, 125861, and 26369,
respectively. As the number of analysis updates increases, there is
generally a decreasing trend in the number of grid cells associated
with each bin, especially when N > 140. This phenomenon is
expected because of the relatively good agreement computed
between satellite-based freeze/thaw observations and Noah-MP
(model-only) simulated estimates (see Section 2.2). The positive
1RMSE and positive 1|bias| indicate skill improvements in the
FT DA relative to OL. In general, the average skill improves
with the number of analysis updates. It is encouraging to see
that FT DA yields improvements of up to 0.58 K in RMSE and
0.77 K in the |bias| relative to OL during the comparison against
MODIS-derived surface temperature estimates.
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FIGURE 6 | Spatial distribution of bias, RMSE, and R computed between daily-averaged (A,D,G) OL surface temperature and MODIS derived surface temperature,

and (B,E,H) FT DA surface temperature and MODIS derived surface temperature. Spatial distribution of the change in the absolute value of bias (1|bias|) between OL

and FT DA is shown in (C). The |·| operator in the title denotes taking the absolute value of each corresponding bias. Spatial distributions of the change in the RMSE

and in the R are shown in (F,I), respectively. The red colors in (C,F,I) indicate FT DA agrees better with MODIS derived measurements than OL. Conversely, blue colors

indicate that OL agrees better with MODIS. The title also demonstrates the spatial mean, m, computed for each map. Gray regions indicate grid cells with inadequate

presence (i.e., <60 days) of MODIS derived daily-averaged measurements computed using Equation (4).

It is also important to analyze the effects of soil temperature
estimates in response to the FT DA. Table 4 summarizes the
goodness-of-fit statistics computed when comparing OL and
FT DA derived soil temperature estimates against three in-situ
CEOP stations along the Himalayas. Only the statistics for the
top layer of soil (0–10 cm) and the second layer of soil (10–40
cm) are shown in Table 4 because no CEOP soil temperature
measurements are available beyond 20 cm (see section 4.1). The
total number of analysis updates for the colocated grid cells at

Lukla station, Pyramid station, and Syangboche station are 172,
168, and 157, respectively. It is encouraging to see that the bias
and the RMSE in the 0–10 cm soil temperature are reduced (on
average) by 10 and 7%, respectively. The improvements in the
top-layer of soil estimates also propagate through the deeper soil
layers, where the bias and RMSE in the 10–40 cm soil temperature
are reduced (on average) by 9 and 6%, respectively. However,
slight degradations in R at both the top and second layers of
soil are witnessed for FT DA relative to OL for the Syangboche
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FIGURE 7 | Box plots of (A) 1|bias| and (B) 1RMSE computed between OL

and FT DA during the comparison against MODIS derived surface

temperature, which are binned as a function of the number of analysis updates

per grid cell. The boxes show the median (marked as the black line in the box)

along with the 25th and 75th percentiles while the whiskers show the 5 and

95th percentiles. The spatially-averaged skill metrics are marked as dots for

each bin. The positive 1RMSE and positive 1|bias| indicate skill

improvements in the FT DA relative to OL.

station installed at (27.82◦N, 86.72◦E) covered with open shrub.
Relatively poor R statistics are witnessed for FT DA or OL
compared with the other two stations, especially for the second
layer of soil. This is most likely due to the measurement gap (i.e.,
no measurements) seen between 4 November 2007 and 21 May
2008 in the CEOP Syangboche station (not shown). For example,
the R computed between 1 September 2007 and 4November 2007
comparing the CEOP top layer of soil and the CEOP second layer
of soil temperature is 0.95, while the R computed between 22
May 2008 and 31 August 2008 is 0.40. Given the assumption
that the measurement gap seen for Syangboche station arising
from sensor failure, it is suspected that the soil temperature
sensor had not been calibrated carefully after re-installation on
22 May 2008. However, no such information is documented by

the website (or by the CEOP measurement flags), and therefore,
all measurements remain as they are without implementing any
additional quality control procedures other than the basic quality
control activity mentioned in section 4.1.

Overall, model derived soil temperature estimates yield
relatively large negative biases when compared against Lukla and
Syangboche stations. The negative bias witnessed at Lukla station
covered with open shrub is likely due to the negative bias of –
5.03 K in the MERRA-2 air temperature, which is computed with
respect to CEOP air temperature measurements. The negative
bias observed at Syangboche station might be explained by
(1) the sensor calibration issue discussed above, and/or (2)
the positive bias of 0.37 kg/m2/h in the total precipitation.
The overestimation of MERRA-2 total precipitation is mainly
witnessed in June, July, August, and September when the
air temperature is generally above freezing at Syangboche
station. Rainfall infiltrates into the soil, and tends to cool the
soil, which possibly leads to a negative bias in the model
derived soil temperature profile. In addition, inaccurate model
parameterization in the soil related properties, such as soil
texture, soil layering, total soil depth, and soil organic carbon
content might also negatively impact the model derived soil
temperature estimates.

The goodness-of-fit statistics computed from the CEOP
Pyramid station are generally better than the other two
stations. Figure 8 shows several example time series of MERRA-
2 precipitation, MERRA-2 air temperature, OL derived soil
temperature estimates, and DA derived soil temperature
estimates when compared against measurements collected by the
CEOP Pyramid station installed at (27.96◦N, 86.82◦E) covered
with sparse vegetation (i.e., barren land cover). The Pyramid
station is shown here because (1) there is no measurement data
gap within the assessment period, and (2) the vegetation effect
is at its minimum compared with the other two stations. Due to
the relatively high thermal inertia of the soil (especially for deep
soil), the soil within the top 40 cm experiences more variability in
the temperature estimates, but less so for deeper soil layers. The
increase in the time lag of such fluctuations is also observed as
the soil depth getting deeper, as shown in Figure 8. In general,
the bias in the model derived top layer of soil temperature is
reduced by 26%, and the RMSE is reduced by 16% as a result of
FT DA relative to OL. The bias in the model derived second layer
of soil temperature is reduced by 21% and the RMSE is reduced
by 15% as a result of FT DA. Compared with CEOP measured
total precipitation, MERRA-2 precipitation has a negative bias of
–0.86 kg/m2/h. The most significant difference between model
simulation and in-situ CEOP measurements occurs around
mid-December. Besides the occasional underestimation of air
temperature during this period, it is hypothesized that Noah-
MP might underestimate snow on the ground. Since snow cover
acts as an effective insulator to protect the ground surface and
the underlying soil from heat loss when the air temperature is
below freezing, Noah-MPwith less snow covermight presumably
underestimate soil temperature in such cases. Without further
detailed ground-based snow information obtained from CEOP
or from other colocated stations, it is rather difficult to discern
exactly the origin of the error.
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TABLE 4 | Statistics computed when comparing model derived, including both OL and FT DA derived, top-layer (0–10 cm) and second-layer (10–40 cm) of soil

temperature estimates against measurements obtained from CEOP.

Evaluation CEOP station name, OL FT DA

source-state with station elevation (m) Bias (K) RMSE (K) R Bias (K) RMSE (K) R

CEOP–top-layer of soil temp. Lukla, 2660 –8.43 8.59 0.92 –8.17 8.36 0.92

*CEOP–top-layer of soil temp. Pyramid, 5035 –2.07 2.79 0.92 –1.54 2.34 0.93

CEOP–top-layer of soil temp. Syangboche, 3833 –5.15 5.47 0.75 –5.10 5.42 0.74

CEOP–second-layer of soil temp. Lukla, 2660 –8.23 8.31 0.95 -7.98 8.05 0.95

*CEOP–second-layer of soil temp. Pyramid, 5035 –2.50 2.89 0.94 -1.98 2.48 0.94

CEOP–second-layer of soil temp Syangboche, 3833 –4.03 5.78 0.24 –3.95 5.74 0.21

OL or FT DA derived estimates with statistically significant (at a significance level of 5%) metrics (i.e., bias, RMSE, and R) are bolded. The grid cell marked with an asterisk also provides
time series in Figure 8.

6. CONCLUSIONS AND FUTURE
DIRECTIONS

A hyper-resolution (1 km) land data assimilation configuration
is developed within the NASA LIS using the Noah-MP forced
by the MERRA-2. Two different sets of DA experiments are
conducted from 2007 to 2008, including the SC DA and FT DA.
Before conducting any assimilation experiments, the model spin-
up analysis is first conducted in order to achieve a more stable
initial condition of themodel states. It is found that the Noah-MP
derived surface temperature generally requires 3–5 years for spin-
up, and the fourth layer of soil temperature requires 3–8 years
for spin-up. Longer spin-up periods are often witnessed in the
Tibetan Plateau due to the existence of temperature extremes.

The performance of the SC DA system is evaluated via
comparisons with daily-averaged, qualified GlobSnow SWE
estimates as well as available ground-based snow depth
measurements. In the comparison against ground-based snow
depth measurements, the majority of the stations (13 of 14) show
slightly improved goodness-of-fit statistics as a result of the SC
DA relative to OL. In the comparison against GlobSnow SWE
estimates colocated with GlobSnow-provided weather stations,
all (three out of three) of the grid cells demonstrate slightly
improved bias and RMSE in SC DA relative to OL. It is important
to note that only four of the 14 stations are statistically significant,
due to the limited sample size and relatively high sample variance.
The limited sample size is partly attributed to the limited ground-
based stations available in the complex HMA region as well as the
single-year evaluation period showed in this study.

The performance of the FT DA system is evaluated
via comparisons with daily-averaged, MODIS derived surface
temperature product. The average skill in FT DA improves with
the number of analysis updates. FT DA yields improvements of
up to 0.58 K in RMSE and 0.77 K in the absolute bias relative
to OL. In addition, slight improvements in bias and RMSE are
also observed in the FT DA derived 0–10 and 10 cm–40 cm soil
temperature estimates when compared to ground-based CEOP
stations. That is, in the comparison against three ground-based
soil temperature measurements along the Himalayas, the bias
and the RMSE in the 0–10 cm soil temperature are reduced
(on average) by 10 and 7%, respectively. The improvements
in the top-layer of soil estimates also propagate through the

deeper soil layers, where the bias and RMSE in the 10–
40 cm soil temperature are reduced (on average) by 9 and
6%, respectively. In addition, in the comparison against 23
in-situ CMA stations, slight (but not statistically significant)
improvements in RMSE and bias are both achieved as a
result of the FT DA relative to OL at regions with relatively
low elevations.

Some limitations associated with the SC DA and FT DA
systems along with their evaluation strategies are also discussed.
For example, the station representativeness issue persists among
all in-situ measurements. It is relatively difficult to justify that
a single ground-based station can represent the condition of
a relatively large model grid cell, especially in the context
of the complex terrain across HMA. Similarly, satellite-based
snow products and surface temperature products are also prone
to uncertainties. It is relatively difficult to discern the model
uncertainty from the uncertainty embedded in the reference
products used during the evaluation procedure. In addition, the
SWE and snow depth increments, either positive or negative,
as applied during the SC DA is somewhat subjective. The
error correlation analyzed between modeled surface temperature
and the top layer of soil temperature during the FT DA
update process is overly simplified. Therefore, the increment
magnitudes applied in both SC DA and FT DA systems
(with DI methods) might be used as first-order adjustments
or updates. In order to apply more accurate increments in
both systems during the analysis update procedure, more
sophisticated DA techniques, such as an ensemble Kalman
filter, should be employed along with advanced, satellite-based,
continuous remote sensing products at relatively fine spatial
resolution. Furthermore, the soil parameterization, such as the
total soil depth of 2 m with four layers in the current Noah-
MP configuration, might not be deep enough to simulate the
near-surface soil conditions accurately, especially in the cold
regions (Lawrence et al., 2008; Sapriza-Azuri et al., 2018).

Despite the limitations discussed above, the two proposed DA
schemes did show some promise in improving the predictability
of SWE, snow depth, surface temperature, and soil temperature
states across HMA. Future studies will be conducted to develop a
multi-variate DA framework by integrating both SC DA and FT
DA systems together. In addition, an improved meteorological
forcing input, a glacier model, and a river routing routine
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FIGURE 8 | Comparisons of daily-averaged (A) MERRA-2 total precipitation and CEOP Syangboche station measured precipitation, and (B) MERRA-2 air

temperature and CEOP Syangboche station measured air temperature. Comparisons of the model simulated, including both OL and FT DA derived, daily-averaged

soil temperature profiles against CEOP measurements, including (C) top-layer (0–10 cm), (D) second-layer (10–40 cm), (E) third-layer (40–100 cm), and (F) fourth

layer (100–200 cm). No CEOP measurements are available at the third and fourth soil layers. The evaluation period is from 1 September 2007 to 31 August 2008.

would be useful to be included in the Noah-MP model to
evaluate runoff in the region. The methods to generate improved
forcings include, but are not limited to, (1) an advanced forcing
downscaling framework (https://eospso.gsfc.nasa.gov/sites/
default/files/eo_pdfs/Mar_Apr_2018_color%20508_0.pdf), (2)
a meteorological forcing scaling framework (e.g., Voegeli et al.,
2016), or (3) an ensemble-based bias correction framework when

intensive ground-based snow observations are made available
(e.g., Winstral et al., 2019). The runoff evaluation analysis will
be beneficial to show whether the slight improvements seen in
snow mass as a result of the SC DA would translate into runoff.
Furthermore, more soil profile configurations should be carefully
analyzed to assess their impacts on the soil temperature and
moisture estimates in HMA. A combination of various snow
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DA techniques (i.e., by combining the DI method outlined in
this study with an ensemble Kalman filter outlined in Xue et al.,
2018) will also be studied in the future to better characterize SWE
and snow depth estimates in HMA. Therefore, the DI-based DA
scheme presented in this study can be used as a benchmark for
evaluating more advanced DA schemes.
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