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Abstract. In order to assess the structural behaviour and to evaluate the 

seismic vulnerability of old masonry structures located in Lebanon, a 

historical masonry mosque was analysed under earthquake loading. A 

numerical model developed by the finite element method using Abaqus 

software was elaborated on the basis of previously published experimental 

studies. It was concluded that the numerical model can predict maximum 

stresses with reasonable accuracy, allowing control of a full scale wall 

model. This analysis shows that the stresses generated in the joints between 

the blocks exceed the ultimate shear stress of the mortar, resulting in cracks 

in the joints. The choice of an adequate structural rehabilitation method was 

limited because the mosque is of archaeological importance and its original 

appearance should not be modified. Therefore, a seismic retrofit solution 

using internal or external post tensioned tendons was recommended. 

1 Introduction 

The preservation and restoration of historical and archaeological buildings in Lebanon is 

becoming an urgent issue that requires the attention of the Lebanese engineering community 

as a whole. The studied mosque considered in this study, “Al-Muaallak”, is one of the 

mosques built up by Mahmud ibn-Lutfi, governor of Tripoli during the Ottoman period (Fig. 

1). It is located near the south end of Tripoli’s main street of the souks at Al Haddadeen 

district. 

The studied structure was built using limestone masonry units assembled by lime mortar 

joints. These joints result in weakness points since mortar material breaks the continuity and 

uniformity of stones. The mechanical characteristics of similar blocks and mortar were 

previously determined [1]. These properties were used in order to develop and validate a 

numerical model at the scale of an assembly then at the scale of a wall. A structural analysis 

of the studied building under gravity and earthquake loads was carried out based on the UBC 

97 code [2]. This analysis yields to determine the lateral and gravitational forces applied to 

the masonry walls. The objective was to verify whether the effect of these loads was greater 

than the capacity of the masonry shear walls of the mosque. 
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Fig. 1. External and internal views of the mosque 

2 Structural analysis of the mosque 

Before starting identifying and calculating the loads of the mosque, it is to know that 

modelling the entire mosque seems a complicated mission encountered by several difficulties 

on technical level. To simplify the task, and because of the moderate height of the mosque 

(10.2 m), the equivalent lateral force method of the UBC 97 [2] was applied. This method 

allows the determination of the seismic force applied to each masonry shear wall of the 

mosque. However, the masonry shear wall absorbing the higher portion of the lateral force 

was chosen as the one to be modelled. 

Firstly, the mosque weight was determined by making a summation of all mosque 

elements weights (slabs, columns, walls, arches …). Each element weight is obtained by 

multiplying its volume by the natural limestone unit weight (25.15 kN/m3, [1]). The volume 

was calculated through architectural plans supported by site visits. In addition to mosque self-

weight, a minimum percentage equal to 25% of live load was taken into consideration. For 

this case, the live load was taken equal to 5 kN/m2 for the prayer hall while it was taken equal 

to 1 kN/m2 for the roof with a 50% probability of occurrence. The total self-weight for roof 

and first floor are then estimated equal to 14 360 kN. 

The location of the mosque is characterized by soil profile type class “C”. Referring to 

the Lebanese standard NL 135 [3] and to the universal building code UBC 97 [2], the seismic 

zone factor is Z = 0.25 and the seismic coefficients are Ca = 0.29 and Cv = 0.4. The 

architectural plans of the mosque show a dominance of walls in both directions compared to 

columns (Fig. 2). Hence, the lateral load resisting system is considered as a masonry shear 

wall, and the over-strength factor is taken R = 4.5. Moreover, the importance factor is 

considered equal to 1. The total design base shear is then calculated and found equal to 2416 

kN. Finally the story shear at the roof level is obtained equal to 1397 kN. This force will be 

transferred through the slab to the resisting walls and columns according to their stiffness. 

A manual calculation of the inertial contribution of the walls and columns was carried out 

in X and Y directions. This calculation demonstrated that X axis is the weaker one, thus it 

will be considered in the seismic analysis. Based on stiffness contribution, the wall located 

at the north facade participates by 56.4% of the story shear and the wall located at the south 

facade by 37.2%, thus the wall of the north will be selected for this study. Due to the 

symmetry, only half of the wall will be presented in the following analysis. 

The vertical load applied to the wall was estimated equal to 459 kN taking into 

consideration all the following overlying elements (Fig. 3): 

- Upper wall having a thickness of 0.5 m and including three openings of medium size 0.475 

m × 0.61 m × 0.5 m and 0.435 m × 0.435 m × 0.5 m. 

- Roof slab with a span of 6 m. 

- Arches at the corners having irregular shapes. 
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Fig. 2. Planar view of the mosque 

 
a- real geometry 

 
b- simplified geometry 

Fig. 3. Modelled wall and overlying loads (arches, upper wall and roof). 

3 Numerical modelling 

3.1 Model at the scale of an assembly 

The mechanical characteristics of the limestone masonry units and lime mortar in addition 

to the shear strength of mortar joints were previously investigated [1]. The limestone blocks 

unit weight was found equal to 25.15 kN/m3, the modulus of elasticity E = 17000 MPa and 

the Poisson ratio  = 0.2. The relationship between the mortar shear stress in function of the 

displacement under different levels of normal stress was also determined (Fig. 4). This test 

was made on an assembly of two masonry units with one mortar joint between them. 

 

Fig. 4. Shear stress in function of the displacement for a 10 mm mortar joint [1] 
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The general shape of the shear stress–shear displacement is characterized by a sharp initial 

linear stretch. For very small shear displacement, the peak load is rapidly attained. Nonlinear 

deformations develop in the pre-peak regime. After peak load is reached, there is a softening 

branch corresponding to progressive reduction of the cohesion until reaching a constant dry 

friction value. 

The experimental results obtained on the two blocks assembly scale will be compared to 

the numerical model in order to check the applicability of the used finite element techniques 

for the analysis of the studied structure. A couplet specimens having same dimensions was 

considered for this model. The model was analysed for direct shear test case with a pre-

compression stress level of 0.5 MPa. All degrees of freedom at the bottom of the block were 

restrained. 

The method developed by Lorenço and Rots (1997) [4] to model the masonry-mortar 

interface has been adopted in this study. The 10 mm thickness lime mortar joint between 

blocks is replaced by zero thickness mortar interface controlled by a shear stress and friction 

coefficient derived from experimental results. The interaction at the interface is then defined 

as surface to surface standard contact where two main behaviors are assumed: 

- Normal behaviour where the surface contact is assumed to be “Hard contact”. This contact 

relationship minimizes the penetration of the slave surface into the master surface. 

- Tangential behaviour where the shear strength and friction coefficient of lime mortar joint 

are considered as 0.65 MPa and 0.45 respectively. 

A real representation of the experiment loading order and timing was taken into 

consideration by affecting different loading steps. The self-weight of the couplet specimens 

is applied firstly followed by a pre-compression stress level equal to 0.5 MPa added at the 

top surface. The last loading step consists of a shear pressure distributed along the front 

surface of the top block with a magnitude equal to 1 MPa. Three dimensional solid elements 

(Continuum C3D-8 Nodes) were used in the model to provide the highest degree of accuracy 

allowing the detection of any possible displacement between blocks. The assembly model is 

shown in Fig 5. 

 

Fig. 5. Assembly model showing loadings and boundary conditions 

The shear stress and shear displacement variation as a function of time are investigated 

in the elastic phase for the shear loading step only (Fig 6). The results of the numerical model 

show a perfect match with the experimental results (Fig 7). Therefore, this modelling 

technique can be used to estimate the shear capacity at a larger scale. 

  

Fig. 6. Assembly shear stress distribution in N/mm2 (left) and shear displacement in mm (right) 
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Fig. 7. Comparison between numerical and experimental results 

3.2 Model at the scale of a wall 

The wall to be modelled has the dimensions of 14 m in length, 3.1 m in height and 1m in 

depth. Its geometrical parameters were determined by hand measurements in order to achieve 

the most possible realistic simulation of the wall’s behaviour. It is noteworthy that only half 

of the real wall was modelled (see Fig. 8) in order to reduce the computational time. However, 

an X-symmetry boundary condition is used for this case to reproduce the behaviour of the 

entire wall. This option can be used since it fulfils the required conditions regarding 

symmetric geometry and boundary conditions. The lateral and vertical forces are converted 

to pressures in order to distribute uniformly the load. The vertical pressure is found equal to 

0.065 MPa (vertical load of 459 kN divided by the wall section corresponding to a length of 

7 m and depth of 1 m). The horizontal pressure is calculated by dividing the horizontal load 

of 394 kN by the vertical cross section of the last layer of blocks. 

The failure criterion used for the mortar joint is based on the experimental behaviour 

described in Fig. 4. The failure stress of mortar observed experimentally, even with a normal 

stress value higher than 0.065 MPa, is lower than the stress generated in joints by the 

numerical model (up to 0.73 MPa – Fig. 9a). The shear stress values observed in the blocks 

(up to 1.11 MPa – Fig. 9a) are low enough to say that the failure mechanism is governed by 

the interaction between the blocks. 

The proposed strengthening method aims to apply a sustained normal stress on the 

masonry assembly by external or internal post tension. Two plates at the extreme top and 

bottom of the walls are installed to tie the tendons and transfer the compression forces 

resulting from tensioned tendons as pressure over the area of the wall. The lower end of the 

tendons can be fixed by various techniques (e.g. channel steels embedded at the bottom of 

the foundation, or chemical anchor for concrete foundations).  

To demonstrate the potential of this method, a trial design is adopted using strands of 12.7 

mm diameter with an ultimate strength of 1860 MPa. Strands are installed as shown in Fig. 

10 and are stretched to 60 % of their ultimate capacity. The generated post tension force 

allows the vertical pressure applied to the wall to be increased to 0.5 MPa. Results show that 

stresses in mortar are decreased to around 0.40 MPa (Fig. 9b) which falls in the elastic range 

of the mortar behaviour under the same level of normal stress. Block stresses (up to 1.56 MPa 

– Fig. 9-b) are still too small. Therefore, cracks in joints are well prevented. 

 
Fig. 8. Modelled wall showing loads and boundary conditions. 
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Fig. 9. Distribution of stresses in the wall. a) At left: without post tension. b) At right: with post 

tension 

 

Fig. 10. 3D schematic view of tendons distribution along the walls of the mosque 

4 Conclusion 

The numerical simulation has shown that stresses in joints exceed the mortar ultimate 

shear stress. Cracks in joints are then expected in case of earthquake. These cracks will not 

cause the collapse of the walls, and thus no real danger is threatening the worshiper’s life.  

Due to the historical value of the studied mosque, it is then important to enhance its 

seismic capacity in order to keep it away from any risk of minor or major damages. 

A rehabilitation method based on the increase of the shear friction capacity of the mortar 

joint by increasing the applied normal stress is recommended. Internal or external post 

tension could be an adequate solution. 

A further improvement of the results would be to take into consideration the entire 

geometry of the mosque in the numerical model. This will not be possible using the 

volumetric finite elements due to the required computational time. The use of shell finite 

element will be an adequate solution. 
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