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Abstract. Black Powder (BP) is a worldwide challenge that spans all stages of the natural gas industry from
the producing wells to the consuming points. It can endanger the pipeline operations, damage instruments and
contaminate customer supplies. The formation of BP inside natural gas pipeline mainly results from the corro-
sion of internal walls of the pipeline, which is a complex chemical reaction. This work aims to develop a novel
algorithm for BP source identification within gas pipelines network based on a 1-D model of BP transport and
deposition. The optimization algorithm for BP source identification is developed based on the well-known Par-
ticle Swarm Optimization (PSO) algorithm, which can solve constrained optimization problems. By applying
this optimization algorithm on the gas transmission pipeline network, the BP source at different junctions could
be identified and quantified simultaneously. Extensive simulation studies are conducted to validate the effec-

tivity of the optimization algorithm.

1 Introduction

With the wide use of natural gas, it is challenging to main-
tain operational efficiency and safety for gas transmission
pipeline network, which is a complex system with pipeline
length varying from hundreds to thousands of kilometers
(Banda et al., 2006; Tobin and Shambaugh, 2006). Black
Powder (BP), occurring in both liquid and gas pipelines,
is the name given to the black particulates and sediment
found in pipelines. It is mainly generated due to the chem-
ical reaction of HyS, water and iron, resulting in a mixture
of fine particle corrosion product and other solids, such as
sands, clays, metal or construction debris, and liquid hydro-
carbons chemically incorporated with any quantity of iron
sulfide, iron carbonate and iron oxide contamination (Khan
and Alshehhi, 2015; Khan et al., 2015; Sherik et al., 2008;
Sherik, 2008; Trifilieff and Wines, 2009). Although there
exist various compositions of BP, they possess some com-
mon characteristics, for example, adsorption, high specific
gravity and difficult to clean. In terms of BP generation,
they could come from the gas source in the gas field and also
result from movement of the upstream point with gas flow,
which originates from the corrosion of internal wall of any
pipeline. Specifically, corrosion could only occur in the pipe-
line with the flow of “wet” gas (Beavers and Thompson,
2006; Baldwin, 1998), which is natural gas mixed with a
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certain amount of water, providing a necessary condition
for corrosion. The presence of BP in gas pipeline network
threatens the safety of gas industry and also has lots of
undesirable influence on the operating companies all over
the world (literature reviews of Khan and Alshehhi,
2015). First of all, the gas quality will be greatly affected
by intolerable concentration of solid particles. Secondly,
gas transmission cost will gradually increase, resulting from
raised pressure drop due to changes of internal wall rough-
ness and diameter over a long time of operation. Thirdly,
the contaminations of BP could cause compressor failures,
erosion of control valve and instrument clogging, etc.
(Baldwin, 1998). Finally, the cleaning/removal of BP and
frequent replacement of customers’ cartridge filter elements
could increase the expenses each year.

To reduce the influence of BP on gas industry, many
companies attempted to manage and control the BP in
gas transmission pipeline network. In general, the existing
methods could be classified into two different aspects (Al-
Qabandi et al., 2015; Cattanach et al., 2011; Khan et al.,
2015; Trifilieff and Wines, 2009; Tsochatzidis and Maroulis,
2007): (1) BP removal and (2) prevention methods. The
approach of removing BP from gas transmission pipeline is
successful in several respects, including increasing opera-
tional safety, altering operational parameters, increasing
operational efficiency and facilitating effective corrosion
inspection. If BP problem is not serious (small quantities),
mechanical cleaning is widely used for most of the pipelines.
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Normally, mechanical scrapers are used to clean pipeline
wall, such as mechanical pigs are deployed into a pipeline
to scrape debris from pipeline wall and remove BP.
Although mechanical scrap is efficient to keep the pipeline
in fairly clean condition, frequent cleaning could damage
the pipeline wall by exposing fresh steel surface under
“wet” gas, resulting in excessive corrosion and BP genera-
tion. In addition, mechanical cleaning is not effective with
complex BP formation, which calls for a combination of
chemical cleaning. It has been practiced that chemical clean-
ing, acting as liquid soap, could significantly improve the
efficiency of BP removal combined with mechanical clean-
ing, such as pigging operations, which acts as brush (Trifil-
ieff and Wines, 2009). Separators and cyclo-filters are also
widely installed to reduce the BP concentration, where these
devices could physically knock out the BP particles in the
gas stream. Then, the BP particles are collected at the bot-
tom in a collection hub. However, this method only applies
to gas stream with a high concentration of solid particles and
also relatively large particle size (more than 10 microns).
The removal approach is practiced as a good option to pro-
tect the downstream operations, but it has several disadvan-
tages (Trifilieff and Wines, 2009). These methods are not
single trial, but frequent application, which account for a
large amount of expense. Also, these solutions cannot
address the location of BP formation, that is to say, they
are afterward remedy. In addition, chemical cleaning needs
subsequent handling procedures, which could be costly
and challenging if the chemical disposal is toxic or harmful
to the environment. To compensate the above drawbacks
of removal approach, gas operators have an alternative solu-
tion to prevent the occurring of BP generation, which is con-
sidered as a consequence of corrosions at the internal wall of
gas transmission pipeline (Cattanach et al., 2011; Trifilieff
and Wines, 2009). To prevent the occurring of corrosions,
the inner wall of gas transmission pipeline is normally coated
with high solids solvent-based epoxy polyamine films, which
is used to protect the inner surface of pipelines. This
approach is practiced to be cost effective; however, it is dif-
ficult to be applied to buried pipelines. Reducing water con-
tamination is another approach to prevent the occurring of
pipeline corrosions, which is based on the philosophy of
internal corrosions, are largely related to the case of “wet”
gas. Namely, this approach is moisture control.

Although several removal and prevention methods have
been put into practice, the location of BP generation is still
unpredictable and there is no research on the identification
problem of BP source until now. The main reason is the
unknown information about the BP generation and where
it could be generated. The developed dynamic models for
BP transport and deposition are limited for gas transmis-
sion pipeline network, which in turn restricts the study of
model-based methods for BP identification. It is well known
that full three-dimension (3-D) Computational Fluid
Dynamics (CFD) simulation software is specialized for mul-
tiphase flow modelling; however, it seems impossible to sim-
ulate the 3-D dynamics of large pipeline networks (e.g.
100 km), which is under studied in these works (Kharoua
et al., 2015, 2017). Filali et al. (2016) proposed a 1-D
approach for modelling transport and deposition of BP

particles in gas transmission network, where the authors
discussed behaviors of particles with different diameters.
Moreover, two different deposition models (Fan and
Ahmadi, 1993; Wood, 1981) were compared to calculate
the bed height, which was validated by Discrete Phase
Model (DPM) based on CFD software.

The main contribution of this work is to develop a tool
to identify the BP source in gas pipeline network, which is
modeled as tree-shaped gas transmission network with BP
dynamics of motion and distribution along each pipe. BP
source identification is formulated as a constrained opti-
mization problem, which is solved by the Particle Swarm
Optimization (PSO) techniques (Delice et al., 2017; Eber-
hart and Shi, 1998; Kennedy and Eberhart, 1995; Min
et al., 2017). PSO is a popular stochastic optimization tech-
nique with some features and advantages compared to
other optimization algorithms such as Ant Colony Opti-
mization (ATO) and Genetic Algorithm (GA) (Wiak
et al., 2008; Saravanan, 2006). These features and advan-
tages include (1) taking real numbers as particles; (2) few
parameters need to be tuned and (3) simple implementation
and effective global search capability, hence it could be a
good candidate. In fact, PSO technique has been widely
used in oil and gas industry, for example, Wu et al.
(2014) optimized the operation of trunk natural gas pipeli-
nes via PSO based algorithm, and Madoliat et al. (2017)
also successfully applied PSO to the transient analysis of
natural gas pipeline. The PSO algorithm is used to solve
a formulated optimization problem for similar applications.
In particular, the basic PSO algorithm has been improved
by incorporating the inertia-adaption technique to solve a
constrained nonlinear optimization problem in Wu et al.
(2014). Then, it was used to solve a more complex problem
in Madoliat et al. (2017), where the solution of nonlinear
PDE flow equations could be obtained simultaneously.

The paper is structured as follows. Section 2 will briefly
discuss the 1-D approach for modelling BP particles in gas
networks, which is detailed in Filali et al. (2016). A general
structure of tree-shaped model of gas transmission pipeline
network is given. In Section 3, PSO-based optimization
algorithm for BP identification is presented. In Section 4,
extensive simulation results and discussions of the optimiza-
tion algorithm for BP source identification are presented.
Finally, conclusions are given in Section 5.

2 Modelling for dynamics of BP particles in
gas transmission pipeline

In this section, a schematic of tree-shaped gas transmission
pipeline network will be built based on a set of pipeline con-
nection rules. In addition, the methodology of a 1-D
approach for modelling the dynamics of transport and
deposition of BP particles in the gas pipeline network will
be explained (Filali et al., 2016).

2.1 A tree-shaped model of gas network

In gas industry, the natural gas pipeline network is a highly
integrated transmission and distribution grid that could
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transport natural gas from its origin to any position of high
gas consumption demand. In many cases, the natural gas
produced from a well has to be transported on a very long
distance to the point of use. In order to maintain effective
distribution of natural gas, the gas transmission system is
extensive, consisting of complex pipeline topology. How-
ever, the entire gas transmission network could be sepa-
rated into several sub-network with single gas well. This
simplification also contributes to the investigation of BP
identification, which will be included in following sections
of this paper. In this case, the gas transmission pipeline net-
work is properly generalized as tree-shaped model (Babon-
neau et al., 2012; Shiono and Suzuki, 2016), which could be
built based on following rules for pipe connection:

1. Gas transmission pipeline network without loop;
2. Junction connected with three pipes;
3. One-way flow of gas stream.

Based on these connection rules, a schematic of tree-
shaped gas pipeline transmission network is given in Fig-
ure 1. There is only one source for gas supply, and each
junction has three pipe connection, including two main
pipes and one branch pipe. The arrow on the pipe shows
the flow direction of gas stream. The customer is located
at the end of each branch pipe. The sources, main pipes,
branch pipes and customers are denoted as S, P, B, and
M respectively.

2.2 One-D approach of modelling BP particle dynamics

In this section, the 1-D approach for modelling dynamics of
BP particles in gas pipeline (Filali et al., 2016) is described.
It is well known that the CFD software is popular to simu-
late the dynamics of multi-phase flow, which could give a
solution to the simulation of BP particles in the gas stream.
However, the computation load of CEFD is extremely heavy
for gas pipeline network, which could extend to hundreds of
kilometers. In this case, Filali et al. (2016) proposed a sim-
plified 1-D approach of modelling, where the flow of gas is
continuously mixed with BP particles, and the behavior
of particle movement is modelled based on the dusty gas
assumption and the usage of analytical solutions of steady
scalar advection/reaction equation.

The governing equation for gas stream mixed with solid
particles is given by the following one-dimensional advec-
tion—diffusion-reaction equation:

oo
diff 6%2

ac aC
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where C'is the particle concentration in the gas flow, Uis
the average velocity of gas flow inside the pipeline, Dy is
the diffusion coefficient, S is a term to describe the depo-
sition, pickup or generation of solid particles. For fully
developed turbulent flow, the axial diffusion term
Dgige %Tfis negligible compared to the dominant advection
term U 3—5 and the following expression is valid,

>C ocC

Dy — < U—. 2

92 < 0z @)

For steady state solution, equation (1) could be simpli-
fied as:

ocC

U% = _Bdepc + égcm (3)

where, faep is the deposition rate and it could be calcu-
lated based on two methods, for example, Wood (1981),
Fan and Ahmadi (1993), and &, is the generation rate
of the BP inside the pipeline and it is considered as an
unknown parameter.

3 PSO-based optimization algorithm
for BP identification

In this section, the objective of BP identification is pre-
sented as a constrained optimization problem, which will
be solved by a PSO-based optimization algorithm. The
PSO algorithm is a population-based evolutionary search
algorithm inspired by social behavior of animals such as
bird flocking. Basically, each particle in the swarm has a
position and velocity, with its position representing a candi-
date solution in the multi-dimensional solution space and
velocity indicating moves from one position to another.
A fitness function is defined to evaluate each particle until
certain convergence criteria is satisfied. During the search-
ing process, the particle with fitness value will be selected
as local/global best particle. The updated equations of
position and velocity are given in the literature (Marini
and Walczak, 2015) as follows:

zi(t+1) = z(8) + vy (£ + 1), (4)

vt 4+ 1) = v(8) 4+ cary (8) [ (1) — ()]

+ eoryy (1) [B5(8) — 25(8)] (5)
where, 2;;(t) denotes the position of particle i in dimension
jat time ¢, with j=1, 2, 3, ..., n,, and n, is the dimension

of the solution space. The updating of position is
calculated by adding the velocity v;(¢) to current position.
y;(f) is the personal best solution in dimension j for
particle ¢, while ¢;(¢) represents the best solution
found so far. ¢; and ¢y, are positive acceleration factors
used to scale the contribution of cognitive and social com-
ponent. ry;, ro; € [0, 1] are random variables with normal
distribution.

The structure of this section is outlined as follows:
firstly, the objective of BP identification is formulated,
which is developed based on the 1-D model of BP particles
transport and deposition. Secondly, the BP source could be
identified and quantified by sole running of the PSO-based
optimization algorithm. Finally, a proof will be provided to
support the uniqueness of the formulated optimization
problem.
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Fig. 1. Schematic of gas transmission pipeline network.

3.1 Formulation of BP identification problem

It is noted that additional unknown sources of BP genera-
tion are considered in this study. Along with that, the
objective of this paper is to identify the BP sources and
quantify the generated BP concentration using several mea-
surements of BP concentration at the end node of each
branch pipe, which is a point of natural gas use (client).
As most of the gas transmission pipeline network is buried
underground, therefore the sensor used for BP concentra-
tion measurement is only installed at each client (Abou-
Khousa et al., 2015). The presence of an optimization algo-
rithm for BP source identification is developed based on a 1-
D model, which has several assumptions (Filali et al., 2016),
such as, one-way flow of gas stream, constant velocity of gas
flow at each pipe, average mixture of solid particles and gas
stream, fixed size/diameter of solid particle, etc., but some
additional assumptions should be also taken into considera-
tion. The accuracy of BP source identification is largely
restricted because of limited measurement of BP concentra-
tion along the pipe, which mainly results from two aspects:
(1) lack of reliable measuring device that can be installed
underground; (2) the “additional” BP generation from the
internal walls is unpredictable, that is, the occurrence of
chemical corrosion is highly random and the location is dif-
ficult to be identified. Therefore, the gas supply station is
assumed in this paper as the main BP generation source,
while the junctions stand for additional source, which essen-
tially represent the amount of BP generated along its down-
stream. Herein, two assumptions are given for the problem
formulation of BP identification:

(a) BP source is located in junction only.
(b) Additional BP particle generation occurs in the main
pipe only.

According to Figure 1, there is one main BP particle
source and several unknown additional sources located at
each junction, which are the connection points for every
two main pipes and one branch pipe. Let us consider the
gas transmission pipeline network as the system. Measure-
ments of BP concentration at each client are the system
inputs and estimations of BP concentration at each source
are the system outputs. Therefore, the following
constrained optimization problem (Aguirre et al., 2007;
Cagnina et al., 2008; Hu and Eberhart, 2002; Liu, 2008;
Parsopoulos and Vrahatis, 2002) can be formulated with

weighted sum of errors (e.g. absolute error) as its cost
function.

S.ansldn s, Zk:l lk‘Mk —M(S1, S, S5, ..., Si)|, (6)

{Sn>0, n=1,2,3,...,1
s.t. ,
A >0

where, Sy, So, S3, ..., S; represent the estimation of BP
concentration at sources (\5) is the main source, and Sy,
S3, ..., S; are the additional source). m is the number of
clients and BP measurement points. M;, is the measure-
ment of BP concentration at the client k, which is mea-
sured by BP concentration sensor located at the end of
each branch pipe and it is simulated using the 1-D model
presented in the previous section. M, is the estimated
value of BP concentration, 4, is the weighting parame-
ters for each system input, which could be selected as
inverse of each measurement of BP concentration at cor-
responding client. The optimization algorithm for BP
source identification is presented as a flowchart in
Figure 2.

3.2 Discussion on unique solution of
BP optimization problem

Proposition 3.1 Based on the given assumptions in
Section 3.1, the solution of the formulated optimization
problem is unique if and only if the number of measurement
is equal to the number of unknoun BP source.

The proof is referred to the Appendix A.

4 Simulation studies

In this section, the optimization algorithm for BP source
identification is applied to a real gas transmission pipeline
network, including 15 pipes, 16 nodes, and 8 junctions.
The geometric parameters of this gas pipeline network are
practical data from an existing network. The topology of
this network is given in Figure 1, as well as its geometric
parameters in Table 1. The remaining parts are extensive
simulation studies, including BP identification algorithm
applied on gas network with perfect measurements, and
sensitivity studies on this algorithm. The sensitivity studies
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Fig. 2. (a) PSO based BP source optimization algorithm.
(b) Flowchart of One-D model running.

are divided into two aspects, including investigations on
disturbed measurements and model parameter mismatch.
Finally, some discussions are presented.

4.1 ldeal situations

In this section, the optimization algorithm for BP identifica-
tion is validated on the gas network given in Table 1. It is
noted that, initially, the measurements of BP concentration

Table 1. Geometric parameters and flow conditions for
gas network.

Pipe Pipe Pipe Mass flow Gas Start FEnd
No. length diameter rate, Q density node node
(m)  (inch)  (kg/s) (kg/m’)

Py 10 000 36 130.092 26.3 S So
B, 3000 10 13.364 25 So M,
P, 13 000 36 116.728 23 So S;
B, 11 000 24 14.5 26 S; M,
Py 12 000 36 102.228 25 S3 Sy
B; 3000 10 13.364 26.3 Sy My
P, 3000 36 88.864 25 Sy S
B, 11 000 24 14.5 23 S M,
Ps 11 000 36 74.364 26 Ss Se

Bs 10 000 24 13.364 25 Se M;

Ps 10000 36 61 263 S5 S
Bs 3000 10 14.5 25 S, Mg
P, 13000 36 46.5 23 S; Sy
B, 11000 24 15.5 26 S M,
By 12000 24 31 25 S M

Table 2. Real value of BP concentration at each source.

Source No. Sl SQ Sg S4 S5 S@ S7 Sg
75 5 45 8 55 05

BP concentration 9.5 6
(kg/m?)

at the end node of each branch pipe (client) are simulated
based a sequence of BP sources given as follows.

By sole running of the 1-D model, the measurements of
BP concentration at each client could be generated accord-
ing to the BP concentration at each source given in Table 2.
Then these measurements shown in Table 3, will be saved
and assumed as known parameters, i.e. BP concentration
measurements. This is the first step for following simulation
studies. The second step is the estimation of BP concentra-
tion at each source using the measurements of BP concen-
tration. It is noticeable that the aim of BP optimization
problem is the reverse process, where the BP concentration
at each source will be estimated by application of the opti-
mization algorithm.

Simulation results of identification for BP concentration
at sources are given in Figure 4. In this simulation study,
the parameters of PSO are selected as: A, = Mik, n = 300,
m =50, ¢c; = 2, co = 2, where, 4;is the weighting parameter
in equation (6), n is the quantity of particles, m is the max-
imum number of iteration (termination condition), and ¢,
¢y are the acceleration constants. It is noticeable that the
PSO parameters are tuned by trial and error, which can
ensure satisfactory performance with acceptable computa-
tional load. PSO is a stochastic optimization technique,
therefore the algorithm is repeated three times (blue, red
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Table 3. Measurements of BP concentration at each client.

Client No. M, M, M, M, M; M; M Mg
BP concentration (kg/m?) 0.3802  0.1404  0.4831  0.2604  0.1753 1.3014  0.2888  1.3857
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Fig. 4. Estimations of BP concentration at each source, figures (a)—(h) represent sources 1-8.

and green curves in each figure) to show/compare the 4.2 Sensitivity studies
stability of the optimization results. The dotted line in each
figure represents the real value of BP concentration at each
source, which is corresponding to Table 3. In addition, the
statistic results of each test are summarized in Table 4. The
estimation value and absolute error are given for each test
and source, and an overall average with the Standard
Derivation (SD) are given for all sources. It could be
concluded that the optimization algorithm for BP source
identification is satisfactory and able to achieve small esti-
mation errors with perfect measurements of BP concentra-
tion at clients.

As stated in Section 4.1, the BP concentration at sources
can be well estimated/reproduced by the PSO algorithm
when the model is completely known and there are no
uncertainties in measurements. However, the efficacy of this
approach is still questionable in practice, because all the
models are at best only approximations for reality due to
various model errors or parametric uncertainties. This prob-
lem can be formulated as follows:

M(0) = M(0,5") +e, (7)
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Fig. 4. Continued.

with 6 the vector of geometric and flow conditions param-
eters, € the measurement error, M, the real measurements,
M, the 1-D model approximation and S* the vector of BP
concentration at sources which are unknown. The aim is
to effectively recover S* wvia PSO algorithm relying on
M;, regardless of the presence of uncertainties in 6 and
€. A good approach to solve this problem is associated
to robust model calibration and inverse problem theory
(Tarantola, 1987; Kaipio, 2008).

As a preliminary study, three case studies are simulated
in this section. Firstly, the measurement error on M5 and
M, are simulated. Secondly, the disturbances in flow mea-
surements are considered. Thirdly, parametric uncertainties
are simulated for pipeline roughness. It is noted that each
case study is repeated three times with same parameters
to prove the algorithm’s stability and reliability.

4.2.1 Black Powder measurement uncertainty

In this section, the optimization algorithm for BP source
identification is tested under the situations of measurement

uncertainty, where Ms and Ms are increased by 5% respec-
tively. Basically, € is regarded as an additive nonzero noise
and no variations in 0 in this scenario. The tuned parame-
ters for the algorithm are the same with ideal situations.
Some figures and statistic data are presented as preliminary
results. It is noted that the problem formulation in equation
(7) is a deterministic case, which will be generalized in the
next stage of experimental validations and tackled by the
likelihood approaches (Tarantola, 1987), where measure-
ment errors can be modelled with a probabilistic distribu-
tion and confidence intervals will be computed for
estimated BP concentration at sources within Bayesian
framework.

4.2.1.1 Uncertainty in M3 measurement

In this case, the BP concentration measurement M; is
increased by 5%. The performance of identification is shown
in Figure 5, and also the corresponding statistic data is
presented in Table 5. It can be seen from Figures 5¢ and
5d, 10% and 5% estimation error for sources 3 and 4
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Table 4. Simulation results of optimization algorithm under ideal situations.

BP source Data set
Simulation results Statistic data
Test 1 Test 2 Test 3
Estimation Abs. Error FEstimation Abs. Error Estimation Abs. Error Real — Avg. SD

St 9.4994 0.0006 9.4996 0.0004 9.5007 0.0007 9.5000 9.4999 0.0006
So 6.0004 0.0004 6.0003 0.0003 5.9997 0.0003 6.0000 6.0001 0.0003
Sa 7.5000 0.0000 7.4998 0.0002 7.5036 0.0036 7.5000 7.5011 0.0017
Sy 5.0005 0.0005 5.0001 0.0001 5.0133 0.0133 5.0000 5.0046 0.0061
Ss 4.4994 0.0006 4.4995 0.0005 4.4521 0.0479 4.5000 4.4837 0.0223
Se 8.0001 0.0001 8.0004 0.0004 8.0283 0.0283 8.0000 8.0096 0.0132
Sy 5.5000 0.0000 5.5000 0.0000 5.4950 0.0050 5.5000 5.4983 0.0024
S 0.5000 0.0000 0.5000 0.0000 0.5041 0.0041 0.5000 0.5014 0.0019
Cost function 0.0001 0.0001 0.0037 0.0000 0.0013 0.0017
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Fig. 5. Estimations of BP concentration at sources for 5% increase in M3 BP measurements; figures (a)—(h) represent sources 1-8.
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Fig. 5. Continued.

Table 5. Simulation results of optimization algorithm under situation for 5% increase in Ms.

BP source Data set
Simulation results Statistic data
Test 1 Test 2 Test 3
Estimation Abs. Error Estimation Abs. Error Estimation Abs. Error Real — Avg. SD

S1 9.4999 0.0001 9.5000 0.0000 9.4963 0.0037 9.5000 9.4987 0.0017
So 6.0000 0.0000 6.0000 0.0000 6.0000 0.0000 6.0000 6.0000 0.0000
S3 8.2524 0.7524 8.2523 0.7523 8.2519 0.7519 7.5000 8.2522 0.0002
Sy 4.4748 0.5252 4.4704 0.5296 4.4768 0.5232 5.0000 4.4740 0.0027
S 4.5000 0.0000 4.5038 0.0038 4.5001 0.0001 4.5000 4.5013 0.0017
Se 8.0266 0.0266 8.0006 0.0006 7.9997 0.0003 8.0000 8.0090 0.0125
Sy 5.4831 0.0169 5.5508 0.0508 5.4971 0.0029 5.5000 5.5103 0.0292
Sg 0.5000 0.0000 0.4678 0.0322 0.5100 0.0100 0.5000 0.4926 0.0180
Cost function 0.0012 0.0030 0.0016 0.0000 0.0019 0.0008
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Table 6. Simulation results of optimization algorithm under situation for 5% increase in Ms.

BP source Data set
Simulation results Statistic data
Test 1 Test 2 Test 3
Estimation Abs. Error FEstimation Abs. Error Estimation Abs. Error Real — Avg. SD

S 9.4961 0.0039 9.5000 0.0000 9.5000 0.0000 9.5000 9.4987 0.0018
So 6.0037 0.0037 5.9952 0.0048 6.0000 0.0000 6.0000 5.9996 0.0035
Sa 7.4992 0.0008 7.5030 0.0030 7.5001 0.0001 7.5000 7.5007 0.0016
Sy 4.9988 0.0012 5.0000 0.0000 4.9999 0.0001 5.0000 4.9996 0.0006
Ss 5.3850 0.8850 5.3828 0.8828 5.3829 0.8829 4.5000 5.3836 0.0010
Se 7.2908 0.7092 7.3189 0.6811 7.3133 0.6867 8.0000 7.3077 0.0121
Sy 5.5141 0.0141 5.4965 0.0035 5.4778 0.0222 5.5000 5.4961 0.0148
S 0.5030 0.0030 0.5002 0.0002 0.5140 0.0140 0.5000 0.5057 0.0060
Cost function 0.0019 0.0007 0.0012 0.0000 0.0012 0.0005
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Fig. 6. Estimations of BP concentration at sources for 10% increase in @3, figures (a)—(h) represent sources 1-8.
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Fig. 6. Continued.

Table 7. Simulation results of optimization algorithm under situation for 10% increase in Qs.

11

BP source Data set
Simulation results Statistic data
Test 1 Test 2 Test 3
Estimation Abs. Error Estimation Abs. Error Estimation Abs. Error Real — Avg. SD

Si 9.5730 0.0730 9.5730 0.0730 9.5728 0.0728 9.5000 9.5730 0.0001
So 6.1084 0.1084 6.1086 0.1086 6.1237 0.1237 6.0000 6.1136 0.0072
Sa 7.5472 0.0472 7.5485 0.0485 7.5379 0.0379 7.5000 7.5445 0.0047
Sy 5.0310 0.0310 5.0304 0.0304 5.0310 0.0310 5.0000 5.0308 0.0003
Ss 4.5004 0.0004 4.4997 0.0003 4.5003 0.0003 4.5000 4.5001 0.0003
Se 8.0002 0.0002 8.0010 0.0010 8.0895 0.0895 8.0000 8.0302 0.0419
Sy 5.5001 0.0001 5.4993 0.0007 5.4441 0.0559 5.5000 5.4812 0.0262
S 0.5000 0.0000 0.5003 0.0003 0.4994 0.0006 0.5000 0.4999 0.0004
Cost function 0.0002 0.0055 0.0000 0.0019 0.0025
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BP source Data set
Simulation results Statistic data
Test 1 Test 2
Estimation Abs. Error Estimation Abs. Error Estimation Abs. Error Real Avg. SD
S1 9.5364 0.0364 9.5352 0.0352 9.5481 0.0481 9.5000 9.5399 0.0058
S 6.0551 0.0551 6.0547 0.0547 6.0356 0.0356 6.0000 6.0485 0.0091
S 7.5437 0.0437 7.5457 0.0457 7.4902 0.0098 7.5000 7.5265 0.0257
Sy 5.0098 0.0098 5.0114 0.0114 5.0440 0.0440 5.0000 5.0217 0.0158
Ss 4.4390 0.0610 4.4366 0.0634 4.4514 0.0486 4.5000 4.4424 0.0065
Se 8.0688 0.0688 8.0671 0.0671 8.0619 0.0619 8.0000 8.0659 0.0029
Sy 5.4989 0.0011 5.4969 0.0031 5.6637 0.1637 5.5000 5.5532 0.0782
S 0.5009 0.0009 0.5027 0.0027 0.3986 0.1014 0.5000 0.4674 0.0487
Cost function 0.0003 0.0006 0.0000 0.0055 0.0072
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Fig. 7. Estimations of BP concentration at sources for 5% increase in roughness, figures (a)—(h) represent sources 1-8.
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Fig. 7. Continued.

respectively, which are expected and acceptable. Although
the inaccurate measurement occurring at Mz affects the
BP concentration estimation at sources 3 and 4, and it
has negligible influence on the BP concentration estimation
at sources 5, 6, and the downward sources.

4.2.1.2 Uncertainty in Ms measurement

In this case study, Ms is increased by 5% and the perfor-
mance of the optimization algorithm is presented in Table 6.
It is noted that the estimation errors of sources 5 and 6 are
15% and 10% respectively, which are high relatively com-
pared with their downward sources. The estimation error
of sources 7 and 8 could be negligible.

4.2.2 Mass flow rate measurement uncertainty

Similarly, variations in 0 are simulated in this section,
where the mass flow rate in pipe 3 (Q3) and pipe 5 (Qs)
are increased by 10% and 5% respectively. The tuned
parameters for PSO are same with the ideal situations.
One objective of this paper is to study the robustness of

the model fidelity to measurement data given parametric
uncertainties. Although these simulation tests are not rep-
resentative in practice where noise/uncertainties always
exist in a stochastic way, they can provide some preliminary
results at this stage.

4.2.2.1 Uncertainty in Q3 measurement

In this case study, the mass flow rate measurement of
Qs is increased by 10%. The simulation results are
shown in Figure 6, along with its statistic data in Table 7.
It can be seen in Figure 6, the variation of flow rate Qs
has a very small influence on the optimization, which proves
the robustness of the optimization algorithm under
uncertainty.

4.2.2.2 Uncertainty in Qs measurement

In this case study, the mass flow rate measurement of
()5 is increased by 5%. The simulation results are
shown in Table 8. The estimation error is less than 2%
for each source, which is acceptance and negligible for this
work.
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Table 9. Simulation results of optimization algorithm under situation for 5% increase in roughness.

Data set
BP source Simulation results Statistic data
Test 1 Test 2 Test 3
Estimation Abs. Error Estimation Abs. Error Estimation Abs. Error Real — Avg. SD

St 9.6425 0.1425 9.6367 0.1367 9.6235 0.1235 9.5000 9.6342 0.0097
So 6.1501 0.1501 6.1489 0.1489 6.1427 0.1427 6.0000 6.1472 0.0040
Sa 7.6425 0.1425 7.6349 0.1349 7.6429 0.1429 7.5000 7.6401 0.0045
Sy 5.1102 0.1102 5.1045 0.1045 5.1049 0.1049 5.0000 5.1065 0.0032
Ss 4.5810 0.0810 4.5727 0.0727 4.5829 0.0829 4.5000 4.5789 0.0054
Se 8.1640 0.1640 8.1594 0.1594 8.1587 0.1587 8.0000 8.1607 0.0029
Sy 5.6188 0.1188 5.6037 0.1037 5.6134 0.1134 5.5000 5.6120 0.0077
S 0.5109 0.0109 0.5107 0.0107 0.5106 0.0106 0.5000 0.5107 1.5e-4
Cost function 0.0023 0.0046 0.0032 0.0000

4.2.3 Deposition rate uncertainty

In this case study, the pipeline roughness is increased by
5%. The parameter for the algorithm is same with the ideal
case and some simulation results are shown above:

It can be seen in Figure 7 that the estimation of BP con-
centration for each client is always higher than the expected
value, and the estimation error is shown in Table 9. This is
reasonable because the increase of roughness will result in
more BP deposition, in other words, more BP should be
generated in order to achieve the same measured BP con-
centration as expected. However, the average estimation
error is nearly 2%, which is still acceptable in the practical
situation.

5 Conclusion

In this paper, the problem of BP source identification is
studied by applying a PSO-based optimization algorithm,
which is developed upon a 1-D model of BP transport
and deposition. The 1-D model is a simplified approach
for modelling the dynamics of BP particles in gas transmis-
sion pipeline network. A schematic of tree-shaped gas
network is proposed, which is generalized with a set of
connection rules. Through some preliminary simulation
studies, the PSO-based algorithm is validated to be a useful
technique for BP source identification. At this stage, the
model errors and uncertainties are assumed deterministic
though they are not representative in practice. The main
purpose of this paper is to discuss the application of PSO
techniques on BP source identification. More work will be
done together with the experimental studies in the next
stage, including (1) analysis of likelihood approach which
has specified probabilistic distribution to model error;
(2) improvement of the 1-D model by considering pickup
case and various particle sizes.
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Appendix A
Proof for the Proposition 3.1

1) Sufficiency: To prove the uniqueness of the optimal solu-
tion, let us consider the general structure of tree-shaped gas
pipeline network, as shown in Figure 3. The network con-
sists of N pipes, N + 1 nodes and (N — 1)/2 junctions.
According to the 1-D model, the concentration at the

end node of each branch pipe is given as a function of BP
w-1

sources, where we have + 1 unknown BP source to
be identified. The following equations can be easily found
if we split the influence of each source on each measurement.

M, = f(Sy), (Ala)

My = f(S1,82) = fu(S1) + f2(52), (ALb)

My = f(S1, 82, 95) = f(S1) + f2(S2) + f33(53), (AL
The compact form of above equations is

M = Zf“ Fu(S)). (A2)

It is noted that the functions involved must be invert-
ible, which are determined by the physical properties of
the gas transmission pipelines. Although there is not expli-
cit mathematical function describing the mapping between
S and M, this function must be invertible at a particular
time instant because the physical properties of pipeline do
not change. Let us start with the first source S; in equation
(Al.a), the concentration could be determined by the first
measurement M; only. Based on equation (Al.b), the
second measurement M, is represented as a function of
(S1) and (S5). Then, f5; (1) can be obtained according to
Sy, which has been calculated from equation (Al.a). There-
fore, f52(S3), the remaining term of My, could be used to
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Fig. 3. Generalized tree-shaped gas transmission pipeline network with additional BP source.

determine the concentration at source S,. Consequently,

the remaining sources Sy, can be determined step by step.
2) Necessity: If the number of client node measurements

is less than the number of unknown BP source, for example,

M,(1<j< % + 1) is not available, ¢.e. is not measured
due to fault.
Let us consider equation M;,q:

M1 = Z:fm,f(si) +f15(85) + fr101(Si), (A3)

where, Zg;i.}nglz(Sl) represents the influence of source S;
to Sj_1 on M. fj14S;) and f;1;11(S;:1) represent the
influence of S; and S;.; on M, respectively. Therefore,
S; is a preliminary condition to identify S;,,. However,
S; cannot be identified because M; is not available. In
other word, unique solution of §; and S;;; cannot be
achieved in this situation.
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