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Abstract

Stella, J. M., & Warner, G. S. (January-February, 
2018). Modelling a hydrologic Black-Box. Water 
Technology and Sciences (in Spanish), 9(1), 101-112, DOI: 
10.24850/j-tyca-2018-01-07.

Hydrologic simulation models have become an essential tool 
in the modern world of water management; they are used 
extensively and play an important auxiliary role in fulfilling 
the core tasks of water management, in policy preparation, 
operational water management and research. A physical 
based hydrologic Black-Box model was created to simulate 
the water inflows and outflows of the system that could 
be used for an educational purpose. Then a mathematical 
model using Stella® software was created to simulate the 
Black-Box model. The results of the simulations show that 
the combination of a physical hydrologic Black-Box model 
and the mathematical model using the Stella® software can 
helps students understand the basic hydrologic processes.
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Resumen

Stella, J. M., & Warner, G. S. (enero-febrero, 2018). Modelando 
una caja-negra aplicada a la hidrología. Tecnología y Ciencias del 
Agua, 9(1), 101-112, DOI: 10.24850/j-tyca-2018-01-07.

Los modelos de simulación hidrológicos se han convertido en una 
herramienta esencial en el mundo moderno para la gestión de los 
recursos hídricos. Se utilizan ampliamente y juegan un papel 
importante en el cumplimiento de las tareas principales de la 
gestión del agua, la preparación de políticas, la gestión operativa y la 
investigación de los recursos hídricos. Un modelo hidrológico de base 
física de caja-negra fue creado para simular las entradas y salidas de 
agua de un sistema y puede servir para fines educativos. El modelo 
matemático utilizando el software Stella® se desarrolló para 
simular el modelo de la caja-negra. Los resultados de las simulaciones 
muestran que la combinación de un modelo hidrológico de base física 
de caja-negra, apoyado por un modelo matemático utilizando el 
software Stella®, podría ser de ayuda con los estudiantes, a fin de 
que entiendan de mejor manera los procesos hidrológicos básicos.

Palabras clave: modelo, caja negra, Stella® software.
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Introduction

Pollak (2012) considered that mathematicians 
usually divide the universe between mathemat-
ics, and the rest of the world, but the truth is that 
mathematics is needed to understand a situation 
in the real world, and then maybe to be used to 
take action or sometimes to forecast the future. 
It does not matter if the problem is important or 

not, the real world and mathematics have to be 
taken seriously. The relationship between math-
ematics and the real world usually is the same. 
The situation in the real world is so diverse and 
complex that it is not possible to take everything 
into consideration, so it is necessary to simplify 
and decide which aspects are most important, 
that means we have an idealized version of a 
situation in the real world, a system, which then 
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can be translated into mathematical terms, this 
entire process is called mathematical modeling 
(Pollak, 2012).

Eykhoff (1974) considered that a math-
ematical model is the representation of the most 
important aspects of a system, with enough 
knowledge of that system in usable form. 
Therefore, modeling is an activity representing 
how systems, objects or even nature behave 
under some theoretical assumptions. These 
systems can be described by words, drawings, 
sketches, physical models, computer programs, 
or mathematical formulas, therefore, the model-
ing activity can be done in several languages, 
usually simultaneously, and here we are focused 
in the physical and mathematical language to 
build models (Quarteroni, 2009). 

Figure 1 shows a simplified version of the 
modeling process from a problem to its solution 
applying the scientific method (Dym & Ivey, 
1980).

In the other side, Pollak (2012) stated the 
difference between mathematical modeling and 
problem-solving. A problem solving may not re-
fer to the outside world at all. Even when it does, 
problem-solving usually begins with the ideal-
ized situation in the real world in mathematical 
language, and finish with a mathematical solu-
tion or result. Mathematical modeling on the 
other hand, begins with a system and requires 
problem formulating before problem-solving, 
and once the problem is solved, moves back into 
the system where the results are considered in 
their original context (Pollak, 2012). 

For Quarteroni (2009), mathematical model-
ing goal is to describe the different aspects of a 
system in the real world following the scientific 
method (figure 2), the interaction between ob-
servations, phenomena, predictions, and their 
dynamics through mathematics. 

For Carson and Cobelli (2001) the necessary 
questions for a successful creation of a model 
are the following: Why? Identify the need for 
the model. Find? List the data we are seeking. 
Given? Identify the available relevant data. 
Assume? Identify the circumstances that apply. 
How? Identify the governing physical prin-
ciples. Predict? Identify the equations that will 
be used, the calculations that will be made, and 
the answers that will result. Valid? Identify tests 
that can be made to validate the model and if 
the results are consistent with its principles and 
assumptions. Verified? Identify tests that can be 
made to verify the model.

Mathematical models (Quarteroni, 2009) also 
offer new possibilities to manage the increase 
complexity of technology, which is at the basis 
of modern industrial production due that mod-
els can save time and money in the development 
and validation phases, besides that models can 
explore new solutions in a very short period. 

Models can be distinguished by the reason 
for their application, it can be dynamic if it has 
changed over time or stationary/static if it does 
not. Models can vary from policy analytical to 
scientific research models, operational models 
for real-time control of structures, calamity 
models and also overlap field of studies. But 

Figure 1. Simplified version of the modeling process from a problem to its solution applying the scientific method 
(Dym & Ivey, 1980).
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a mathematical model must be able to address 
universal scientific concepts, and it is neces-
sary to define which level of detail must be 
introduced in the different parts of a model 
(Quarteroni, 2009).

Hydrology was defined by Penman (1961) 
as the science that attempts to answer the ques-
tion: What happens to the rain? This could be a 
simple question, but experience has shown that 
quantitative descriptions of the land phase of 
the hydrologic cycle is very complicated and has 
a great deal of uncertainty. One-step forward to 
answer this question is the simplification of the 
hydrologic system, not just what happens with 
the rain in general, but what happens with the 
rain in a watershed. As Zin (2002) says, actual 
watershed theories cannot be generalized for 
all the processes and their interactions, due to 
the spatial and temporal heterogeneity of the 
watersheds. 

Watershed hydrology is defined as the 
branch of hydrology that works with the hy-
drologic processes at the watershed scale to 
determine and understand the laws that rules 
the watershed (Singh & Woolhiser, 2002). A 
watershed may be as small as a backyard or 
large with hundreds of thousands of square 
 kilometers, therefore hydrologic processes and 

their spatial non uniformity are defined by 
climate, topography, geology, soils, vegetation, 
and land use and all of them are related to the 
size of the watershed (Singh & Woolhiser, 2002), 
but due to the complexity and large variability 
of the watersheds, they cannot be globally de-
scribed and studied; modelling is necessary to 
analyze and predict their dynamics (Zin, 2002). 

Watershed models are fundamental to water 
resources assessment, development, manage-
ment, planning, design, and operation of proj-
ects, to conserve water and soil resources and to 
protect their quality and to understand dynamic 
interactions between climate and land-surface 
hydrology, for example, vegetation, snow cover, 
active permafrost layer, etc. are quite sensitive to 
the lower boundary of the atmospheric system 
(Singh & Woolhiser, 2002). Also, they are used 
to analyze the quantity and quality of stream-
flow, reservoir system operations, groundwater 
development and environmental protection, 
surface water and groundwater management, 
water distribution systems (Wurbs, 1998) and 
to quantify the impacts of watershed manage-
ment strategies, linking human activities within 
the watershed to water quantity and quality of 
the receiving stream or lake (Rudra, Dickinson, 
Abedini & Wall, 1999), for environmental and 

Object/system

Model

Model predictions

Valid accepted predictions

Variables and parameters

Given? What do we know?

Assume? What can we assume?

Predict? What will our model predict?

Why? What are we looking for?

Find? What do we want to know?

How? How should we look at this model?

Improve? How can we improve the model?

Valid? Are the prdictions valid?

Verified? Are the predictions good?

Test

Figure 2. Interaction between observations, phenomena, predictions, and their dynamics through mathematics inspired by 
Carson and Cobelli (2001).
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water resource protection and the integration 
this watershed models with models of physical 
habitat, biological populations, and economic 
response (Singh & Woolhiser, 2002; Hickey & 
Diaz, 1999).

Mathematical models for watershed hydrol-
ogy are designed to answer Penman’s question 
at a level of detail depending on the problem 
and are employed in a wide field of areas, from 
watershed management and environmental 
protection to engineering design (Singh, 1995). 
At the field scale, models are used for varied 
purposes, such as planning and designing soil 
conservation practices, irrigation water manage-
ment, wetland restoration, stream restoration, 
and water-table management. On a large scale, 
simulation models are used for flood protection 
projects, rehabilitation of aging dams, flood-
plain management, water-quality evaluation, 
and water-supply forecasting (Singh & Wool-
hiser, 2002), even though there is not a simple or 
universal solution to all modelling and simula-
tion problems as Van Waveren et al. (2000) has 
taken us to attention. 

Klemeš´s (1986) opinion is that, at the present 
stage of hydrologic sciences, hydrologic model-
ing is most credible when it does not pretend to 
be too sophisticated and all-inclusive, and re-
mains confined to those simple situations whose 
physics is relatively well understood. For Kirch-
ner (2006), advancing the science of hydrology 
will require new hydrologic measurements, 
new methods for analyzing hydrologic data, 
and new approaches to modeling hydrologic 
systems rather than models with a huge number 
of parameters, besides Kirchner (2006), is not 
the first to mention such approach, others like 
Klemeš (1986, 1988); Grayson et al. (1992); and 
Beven (2002), they did before. 

Some promising research directions in the 
study of hydrology, in Kirchner´s (2006) opin-
ion, include (1) designing new data networks, 
field observations, and field experiments, rec-
ognizing the spatiotemporal heterogeneity of 
hydrologic processes, (2) developing gray box 
data analysis methods that are more compatible 
with the nonlinear and non-additive character 

of hydrologic systems, (3) developing physically 
based ruling equations for hydrologic process 
at hill/slope scale and understanding that they 
could look different from the equations that 
describe the small-scale physics, (4) develop-
ing models that are minimally parameterized, 
and therefore stand some chance of failing the 
tests that they are subjected to, (5) developing 
ways to test models more comprehensively and 
incisively (Kirchner, 2006).

One type of mathematical models are the 
Black-Box models (Brooks, Folliott, Greggersen, 
& Thames, 1991). These models are based solely 
on empirical relationships between one or more 
inputs and outputs. The internal processes in 
the system being modeled are unknown and 
not represented in the form of a conservation 
of mass, momentum or energy approach. Typi-
cally, the input-output relationships are based 
on statistics such as a regression equation. 
Frequently, the regression constants are given 
as coefficients with little or no information re-
garding the variability. Examples in the field of 
hydrology include the Rational Equation and 
the Unit Hydrograph (Brooks et al., 1991). An-
other type of mathematical models commonly 
used in science and engineering is the physical 
or process-based model. In this type of models, 
the underlying relationships among inflows, 
storages and outflows are represented through 
physics and basic principles of conservation of 
mass, momentum and/or energy and can be 
classified as follows (Sjöberg et al., 1995):

1. White-Box models. This is the case when 
a model is perfectly known; it has been 
possible to construct it entirely from prior 
knowledge and physical insight.

2. Grey-Box models. This is the case when some 
physical insight is available, but several 
parameters remain to be determined from 
observed data. Considering two subcases is 
useful.

3. Physical modeling. A model structure can 
be built on physical grounds, which has a 
certain number of parameters to be estimated 
from data. This could, for example, be a state-
space model of given order and structure.
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4. Semi-physical modeling. Physical insights 
used to suggest certain nonlinear combina-
tions of measured data signal. These new 
signals are then subjected to model structu-
res of Black-Box character.

5. Black-Box models. No physical insight is 
available or used, but the chosen model 
structure belongs to families that are known.

For Black-Box models (Sjöberg et al., 1995) 
the area is quite diverse, and covers topics from 
mathematical approximation theory, via estima-
tion theory and non-parametric regression, to 
algorithms and currently much-discussed con-
cepts like neural networks, wavelets and fuzzy 
models. There are important links to classical 
statistical approaches in non-parametric regres-
sion and density estimation, with kernel meth-
ods and nearest-neighbor techniques such as 
Kung (1993), and Haykin (1994), fuzzy models, 
like Brown and Harris (1994) and Wang (1994), 
non-parametric regression and density estima-
tion, like Stone (1982), Silverman (1986) and 
Devroye and Gyorfi (1985), and wavelets and 
multiresolution techniques, like Meyer (1990), 
Daubechies (1992) Chui (1992) and Ruskai et al. 
(1992).

The key problem in system identification for 
Black-Box modeling is to find a suitable model 
structure within which a good model is to be 
found. Fitting a model by parameter estima-
tion is in most cases not difficult. A basic rule in 
estimation is not to estimate what you already 
know. In other words, one should utilize prior 
knowledge and physical insight about the sys-
tem when selecting the model structure. 

For Sjöberg et al. (1995) the problem we are 
addressing in this research related to the appli-
cation of a Black-Box model in hydrology is how 
to infer relationships between past input-output 
data and present-future outputs of a system 
when very little a priori knowledge is available, 
this is known as Black-Box modeling. There is a 
rich and well-established theory for Black-Box 
modeling of linear systems (e.g., Ljung, 1987; 
Soderstrom & Stoica, 1989). It was not until the 
last few years that modeling and identification 
of nonlinear systems attracted wide interest 

in the control community. So far, almost all 
attention has been concentrated on one single 
structure-neural networks. However, nonlinear 
modeling has been studied for a long time in the 
statistics community, where it is known under 
the label non-parametric regression (Sjöberg et 
al., 1995).

The task of Black-Box linear models has, is 
to describe the systems frequency response or 
impulse response, just a mapping the number 
of inputs and outputs, but the nonlinear Black-
Box situation is much more difficult. The main 
reason is that nothing is excluded, and a very 
rich spectrum of possible model descriptions 
must be handled. In this document, we shall 
discuss the possibilities and limitations with 
such nonlinear Black-Boxidentification (Sjöberg 
et al., 1995).

This paper describes the concepts and limita-
tions of a Black-Box model as compared to a 
process-based model. The exercise starts with 
a physical Black-Box, known amounts of water 
are added to the vertical cylinder in the top of 
the box, while outflows are measured from the 
spout on one end, the two parameters inflow 
and outflow are then related statistically. Once 
the results of the Black-Box approach are com-
pleted, the top is removed from the box to reveal 
the internal structure and physical processes 
involved in the system. A process-based model 
is then constructed that includes the physics of 
flow based on the size and shape of the differ-
ent storages and flow conveyances using Stella® 
(Systems Thinking, Experiential Learning Labo-
ratory, with Animation) software to replicate 
the Black-Box model and develop a dynamic 
model to predict outflows for given inflows. 
This will help students to understand some of 
the limitations and uses of the mathematical and 
Black-Box models and understand some basic 
laws that rule the hydrologic.

Methods

Black-Box model

By definition a Black-Box model is a fitted math-
ematical representation of a system without 
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 regard to processes, the characteristics of such 
device usually are developed from observa-
tion of inputs/outputs, they don´t identify or 
simulate processes involved, usually they are 
statistically based, e.g. regression, and in hy-
drology, rainfall is input and runoff or discharge 
is output and as examples we can include the 
Rational equation and the Unit Hydrograph.

The Black-Box used for this experiment 
(figure 3), has a vertical input cylinder above 
the Black-Box that represents a vertical section 
of soil on which precipitation might fall as show 
figure 3a. Figure 3b shows a horizontal spigot 
with invert height of 7.5 cm permits runoff to 
occur to a second storage once the cylinder is 
filled to that height. This second storage rep-
resents a temporary pond or lake or wetland 
with a controlled outflow from the system via 
a V notch weir. Water can also exit the second 
storage as vertical flow through a small metal 
pipe to a third, enclosed storage that represents 
a groundwater aquifer. In this model, there is 
no groundwater discharge, however, one could 
easily be added. There is a slow discharge 
directly from the simulated soil cylinder to 
the groundwater storage through a small tube 
with an adjustable clamp to control the seepage 
rate from the soil, all this system is represented 
by the picture in figure 3b. The soil porosity 
and/or infiltration capacity can be changed by 
adding materials such as marbles with high or 
infiltration capacity or small glass beads with 
low or infiltration capacity. Figure 3c shows the 
application of a Black-Box simulation, throwing 
water over the vertical cylinder as representa-
tion of precipitation. 

Stella® Software model

Stella® software from ISEE Systems Inc. (2003) 
is an icon-based dynamic simulation software 
which permits the user to build dynamic models 
by connecting components in a diagram based 
on their concepts and ideas of how a system 
works. Equations that describe the conservation 
of mass, energy or momentum are automatically 
developed within Stella® as the icons for fluxes 
and storages are connected on the desktop. A 

user with limited programming skills can there-
fore easily build and run a model, and explore 
the influence of varied inputs and parameter 
values on the outputs. The icon-based software 
has boxes called stocks and are the storages 
of either mass or energy for a given reach of 
a stream, large arrows with valves represent 
fluxes of mass or energy into or out of the stock 
and the small thin arrows are connectors that 
indicate the dependence of one component 
another (Ford, 1999). The Stella® software 
automatically maintains conservation of mass 
based on the created diagram or flowchart, the 
mathematics of balance and conservation laws 
are straightforward at this level of abstraction 
and the solution to the underlying differential 
equations are solved by finite difference tech-
niques behind the scenes with outputs in form 
of tables and graphs (Ford, 1999).

Figure 4 illustrates the Stella® diagram 
for the physical hydrologic Black-Box. The 
rectangles are stocks which represent the three 
different storages at a given instant of time. The 
pipe and valve icons are used to represent fluxes 
into or out of the storages; their units are vol-
ume per time. The circles are converters, which 
give parameter values or relationships between 
other components of the system in the form of 
equations or graphs. The arrows are connectors 
that the program uses to link the components. 
Built-in functions are readily available and 
conditional statements are easily incorporated.

The ruling equations to represent the Black-
Box model using Stella® software are the stan-
dard hydraulic equations (Chow, 1964) for the 
size and shape of the different pipes, storages 
and flow conveyances.

Velocity:

 v = q
A

 (1)

Where:
v = Average velocity [cm/s]
q =  Flow rate [cm3/s]
A = Surface area [cm2]
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Figure 3. Photos of Physical Hydrologic Black-Box Model, a) External view of Black-Box, b) Internal components of the physical 
model with three reservoirs or storages, flow connectors from Soil to wetland and groundwater aquifer and c) Application of a 

Black-Box simulation throwing water over the vertical cylinder.

Reynolds number:

 Re = 4 *Vk *R
v

 (2)

Where:
Re = Reynolds number [-]
v = Average velocity [cm/s]
Vk = Kinematic velocitye [cm2/s]
R = Hydraulic radius [cm]

Energy Equation:

 p1
+ z1+ v1

2

2 * g
+Hg = p2 + z2+ v2

2

2 * g
+Hl (3)

Where:
P = Pressure [Kg/cm2]
g = Specific weight [Kg/cm3]
z = Elevation [cm]
v = Fluid Velocity [cm/s]
g = Gravitational acceleration [cm/s2]
Hg = Head gain [cm]
Hl = Combined head loss [cm]

V notch weir:

 q = 8
15

* 2 * g * tn H
2

3
2
 (4)
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Figure 4. Model of the Hydrologic Black-Box, illustrating the Stella® model diagram. 

Where:
q = Discharge [cm3/s]
q = Angle [degrees]
C = Coefficient of discharge [-]
H = Head [cm]
R = Hydraulic radius [cm]

The model was calibrated to determine the 
best values of coefficients (e.g. orifice coefficients 
and friction factor) to use in the model (table 
1). This parameter evaluation step is a necessity 
in all mathematical models and illustrates the 
value in coupling measurements of the physical 
system with mathematical modeling. 

Results and discussion

Three simulated storms were applied to the 
Black-Box (table 2) of 75, 40 and 30 cm3/s 

separated by short intervals, and the outflows 
for the three storms were 2, 10 and 11 cm3/s, 
respectively. 

Latter two more storms were added of 20 
and 50 cm3/s separated by short intervals, and 
the outflows for the two storms were 19 and 45 
cm3/s, respectively (table 3).

Figure 5 shows results of the Stella® Model 
in the form of rates of inflow versus V notch weir 
outflow. 

Figure 6 shows results of the Stella® Model 
in the form of rates of inflow versus outflow 
(figure 6a) and adding two more storms of 20 
and 50 cm3/s with outflows of 19 and 45 cm3/s, 
respectively (figure 6b). 

The good fit between the inflow and outflow 
is shown by the high Square-R of 0.89 were the 
total volume of inflow versus total volume 
of outflow values predicted by the model are 
similar to the measured values for the differ-
ent storms. However, critical analysis of the 
relationship reveals a logic error. Outflow 
decreases as inflow increases, in contrast to the 
established, logical relationship. Acquisition of 
additional data by applying more storms reveals 
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Table 1. Parameters of the Hydrologic Black-Box model applied with Stella®.

Name Units Value

Inflow Cylinder Diameter cm 6.25

Outlet Elevation cm 10

Pipe diameter cm 2.54

Orifice coefficient - 0.8

Pan diameter cm 10

V notch weir outflow angle degrees 90

Invert elevation cm 2

Small Drain Friction factor - 0.1

Small Drain tube diameter cm 0.5

Small Drain tube length cm 50

Drainage pipe diameter cm 1.25

Drainage pipe depth cm 5

Subpan diameter cm 12.5

Soil porosity Percent 0.05

Reynolds number - 1603

Table 2. First simulated storms.

Storm
#

Inflow
(cm3/s)

Outflow 
(cm3/s)

1 75 2

2 40 10

3 30 11

Table 3. Two added simulated storms.

Storm
#

Inflow
(cm3/s)

Outflow 
(cm3/s)

1 20 19

2 50 45

that the three initial points, although physically 
and empirically correct, only represent a small 
part of the complex relationships between in-
flow and outflow. It is clear that the Black-Box 
model cannot accurately predict inflow-outflow 
relationships without much more data, includ-
ing additional parameters such as the initial 
conditions at the start of a storm.

Conclusions

Black-Box models are limited due to their in-
ability to model basic governing processes 
such as conservation of mass and momentum 
in a system. Process-based models help in the 
analysis of a system under varied initial and 
boundary conditions. The combination of 
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Figure 5. Results of the inflows and simulated V notch weir outflow from the Stella® model.

Figure 6. Results of Storms applied to Physical Black-Box Model, a) for three initial storms and b) for the total five storms.

physical measurements and a process-based 
mathematical model such as Stella® could help 
students to understand some of the limitations 
and uses of each approach. An understanding 
of the basic laws that rule the hydrologic pro-
cesses in a system is usually critical to the proper 

modeling and prediction of results under a vari-
ety of initial and boundary conditions. The typi-
cal Black-Box type of model is inherently limited 
due to a lack of understanding of the governing 
processes and inability to assess initial condi-
tions which can lead to erroneous conclusions.
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