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Abstract

Yubin, Z., Zhengying, W., Lei, Z., Qinyin, L., & Jun, D. 
(March-April, 2017). Improved online sequential extreme 
learning machine for simulation of daily reference 
evapotranspiration. Water Technology and Sciences (in 
Spanish), 8(2), 127-140.

The traditional extreme learning machine has significant 
disadvantages, including slow training, difficulty in 
selecting parameters, and difficulty in setting the singularity 
and the data sample. A prediction model of an improved 
Online Sequential Extreme Learning Machine (IOS-ELM) 
of daily reference crop evapotranspiration is therefore 
examined in this paper. The different manipulation of the 
inverse of the matrix is made according to the optimal 
solution and using a regularization factor at the same time in 
the model. The flexibility of the IOS-ELM in ET0 modeling 
was assessed using the original meteorological data (Tmax, 
Tm, Tmin, n, Uh, RHm, φ, Z) of the years 1971–2014 in 
Yulin, Ankang, Hanzhong, and Xi’an of Shaanxi, China. 
Those eight parameters were used as the input, while the 
reference evapotranspiration values were the output. In 
addition, the ELM, LSSVM, Hargreaves, Priestley-Taylor, Mc 
Cloud and IOS-ELM models were tested against the FAO-
56 PM model by the performance criteria. The experimental 
results demonstrate that the performance of IOS-ELM was 
better than the ELM and LSSVM and significantly better 
than the other empirical models. Furthermore, when the 
total ET0 estimation of the models was compared by the 
relative error, the results of the intelligent algorithms were 
better than empirical models at rates lower than 5%, but 
the gross ET0 empirical models mainly had 12% to 64.60% 
relative error. This research could provide a reference to 
accurate ET0 estimation by meteorological data and give 
accurate predictions of crop water requirements, resulting in 
intelligent irrigation decisions in Shaanxi. 

Keywords: Daily reference evapotranspiration, extreme 
learning machine, online learning, matrix singularity.
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Improved online sequential ex treme learning 
machine for simulation of daily reference 

evapotranspiration

Yubin, Z., Zhengying, W., Lei, Z., Qinyin, L.,& Jun, D. (marzo-
abril, 2017). Máquina de aprendizaje extremo secuencial en línea 
mejorada para la simulación de la evapotranspiración de referencia 
diaria. Tecnología y Ciencias del Agua, 8(2), 127-140.

La máquina de aprendizaje extremo tradicional tiene desventajas 
significativas, tales como entrenamiento lento, dificultad en la 
selección de parámetros y dificultad en establecer la singularidad y 
la muestra de datos. Por lo tanto, en el presente artículo se examina 
un modelo de predicción de una máquina de aprendizaje extremo 
secuencial en línea mejorada (IOS-ELM) de la evapotranspiración de 
referencia diaria de cultivos. La diferente manipulación de la inversa 
de la matriz se hace de acuerdo con la solución óptima y utilizando un 
factor de regularización al mismo tiempo en el modelo. La flexibilidad 
de la IOS-ELM en la modelación de la ET0 se evaluó empleando los 
datos meteorológicos originales (Tmax, Tm, Tmin, n, Uh, RHm, φ, 
Z) de los años 1971–2014 en Yulin, Ankang, Hanzhong, y Xi’an en 
Shaanxi, China. Estos ocho parámetros se usaron como insumos o 
datos de entrada, mientras que los valores de la evapotranspiración 
de referencia fueron los datos de salida o el producto. Asimismo, se 
probaron los modelos ELM, LSSVM, Hargreaves, Priestley-Taylor, 
Mc Cloud y IOS-ELM contra el modelo FAO-56 PM mediante los 
criterios de desempeño. Los resultados experimentales demuestran 
que el desempeño de IOS-ELM fue mejor que le de ELM y LSSVM 
y significativamente mejor que los demás modelos empíricos. Más 
aún, al comparar la estimación total de ET0 de los modelos mediante 
el error relativo, los resultados de los algoritmos inteligentes fueron 
mejores que los modelos empíricos a índices inferiores a 5%, pero 
los modelos empíricos de ET0 bruta tuvieron un error relativo de 
12 a 64.60%. Esta investigación podría proporcionar una referencia 
para la estimación precisa de ET0 mediante datos meteorológicos y 
proporcionar predicciones precisas de los requerimientos de agua de 
los cultivos, lo cual resultaría en decisiones de riego inteligentes en 
Shaanxi.

Palabras clave: evapotranspiración de referencia diaria, máquina 
de aprendizaje extremo, aprendizaje en línea, singularidad de la 
matriz.
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Introduction

The calculation of reference crop evapo-
transpiration is a key to intelligent irrigation 
systems. Therefore, accurate estimation of ET0 
becomes important in irrigation schedules for 
planning and optimizing the agriculture area. 
Numerous methods have been put forward to 
estimate ET0. Of these, the Penman-Monteith 
56 (PM) model has given the best results; it 
was officially recommended by the Food and 
Agriculture Organization of the United Nations 
(FAO) in 1998 (Allen et al., 1998). FAO selected 
the PM model as the standard equation for ET0 
estimation because it can provide the most ac-
curate results in the world. ET0 is also a key 
parameter in the design of intelligent irrigation 
for field crops. Engineers need to know the ir-
rigation water consumption requirements for 
each crop so that they can calculate or estimate 
the remaining components of the water balance. 
Also, agriculturists need to obtain the specific 
water requirements of a crop so that they can 
generate a satisfactory yield. It is also necessary 
to know whether these specific requirements are 
being met with ordinary irrigation.

As described by Kisi (2008) and (Yubin et al., 
2014), about 50 measures have been proposed 
for estimating evapotranspiration, which can be 
sorted into four types: radiation, temperature, 
synthetic and evaporating dish. FAO assumed 
the ET definition given by Smith, Allen and 
Pereira (1997), and adopted the FAO-56 PM as 
the sole equation for estimation of ET0. 

However, the PM model requires a lot of 
meteorological data as input, and the calculation 
process involves complex and nonlinear regres-
sion among these factors. So, a simpler and 
more accurate simulation model needs to seek 
ET0 in the case of lack of meteorological data. 
Thus, artificial intelligence algorithms (e.g., neu-
ral networks) for reference evapotranspiration 
(ET0) modeling have been given more attention 
in recent decades. Feng and Cui (2015) found 
that an ELM model gave better results than 
empirical models in the area of central Sichuan. 

Kisi (2007) estimated daily ET0 using the ANN 
method and compared their calculation results 
with the other models. Ozgur Kisiet (2013) pro-
posed a reference evapotranspiration model by 
LSSVM. Kisi (2011a) considered daily ET0 using 
wavelet regression model and compared this 
model to other empirical models. Kisi (2011b) 
modeled ET0 using evolutionary feed-forward 
neural networks. Marti, Gonzalez-Altozano and 
Gasque (2011) used ANN to estimate daily ET0 
without local climatic data. Kumar, Raghuwan-
shi and Singh (2011) researched the application 
of ANN in estimating evapotranspiration 
modeling. Shiri et al. (2012) established an ET0 
simulation model using GEP (gene expression 
programming) for Spanish Basque, and found 
that the GEP model performed better than the 
ANFIS, Hargreaves and Priestley-Taylor mod-
els. Wang, Traore and Kerh (2008), and Traore, 
Wang and Kerh (2010) estimated daily ET0 
using BP-ANN. However, BP-ANN has major 
disadvantages, such as its slow speed of training 
and difficulty in selecting parameters. In recent 
years, new intelligent algorithms have appeared 
in the industrial field, such as extreme learning 
machines (ELM) and support vector machine, 
among others. 

In the present study, ELM is proposed as 
an alternative to other models for predictive 
control. It can randomly choose hidden nodes 
and analytically determine the output weights 
of SLFNs. However, ELM cannot confirm the 
singularity of the output matrix of the hidden 
layer, and it also cannot make fine tuning ac-
cording to the characteristics of the data set, 
which will affect its efficiency and stability. 

The main purpose of this paper is to opti-
mize the ELM approach in the modeling of daily 
ET0 using the original meteorological data. All 
previous studies have indicated that intelligent 
models can input the factors of FAO-56 PM as 
they estimate ET0. In fact, these factors will be 
another complex computing project by meteoro-
logical raw data, to avoid creating more severe 
error during multistage formula calculation. 
Also, the manipulation of the inverse of the 
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matrix is adjusted with reference to the optimal 
solution and the regularization factor at the 
same time, which is motivated by the online 
learning method. In summary, an improved 
online sequential extreme learning machine 
(IOS-ELM) is designed, and the new algorithm 
can produce good generalization performance 
in a model of daily ET0 in an irrigation system.

Materials and case study

The study was conducted in Yulin (38.27° 
N, 109.78° E), Ankang (32.72° N, 109.03° E), 
Hanzhong (33.07°N, 107.7°E) and Xi’an (34.3° N, 
108.9° E) in Shaanxi province in China, shown 
in Fig. 1. The area has a hot and dry climate for 
the greater part of the year. 

Daily meteorological data used for this 
study was from the years 1971–2014. The fol-
lowing observed eight meteorological variables 
with daily temporal resolution were used: 
wind speed at 10m above the ground (Uh), 
mean temperature (T), mean relative humidity 
(RH), minimum temperature (Tmin), maximum 
temperature (Tmax), actual Sunshine duration 
(n), latitude (φ) and elevation (Z), which were 
downloaded from China meteorological data 
sharing service system (http://cdc.nmic.cn/
home.do). Data from the first 29 years (1971-
1999) was used to train the models. Data from 
the next ten years (2000-2009) was used for the 
test. The data from the remaining years was 
used for validation. It must be noted, however, 
that missing data was replaced by the average 
of the data from the day before and the day 
before. The regional climate characteristics are 
given in table 1.

Figure 1. The location of the cities.

Methodology 

Calculation models of reference crop 
evapotranspiration

The study focused on the comparison of the pro-
posed IOS-ELM model with the ELM, LSSVM, 

Table 1. Means of main variables.

Uh T RH T min T max n φ Z

Yulin 2.14 9.2 53.5 3.1 16.2 7.32 0.67 1157

An kang 1.35 15.9 74.1 12.1 21.4 4.58 0.57 290.8

Han zhong 1.15 15.1 78.5 11.5 19.8 4.03 0.58 509.5

Xi’an 1.60 14.6 64.3 9.7 19.6 4.54 0.60 397.5
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Hargreaves, Mc-Cloud, and Priestley-Taylor 
models. First, the ET0 values of four cities were 
calculated using the FAO-56 PM. Then, the stan-
dard formula evapotranspiration calculation for 
all empirical models is shown.

(1) FAO-56 Penman-Monteith: 

ET0 =
0.418 Rs G( ) + 900

T + 273
u2 es ea( )

+ 1+ 0.34u2( )
	 (1)

 

The original meteorological  data of Tmax, 
T, Tmin, n, Uh, RHm, φ and Z were used in the 
model:

(2) Hargreaves:

	 ET0 =
0.0023 Ra T +17.8( ) Tmax Tmin( )

1
2

	 (2)

Tmax, T, Tmin, n and φ were used in the model:

(3) Mc-Cloud:

	 ET0 = 0.254 1.07(1.8T)	 (3)
 
 Only T was referred to in the model:

(4) Priestley-Taylor

	 ET0 = 1.26
+

Rn G( )	 (4)

Tmax, T, Tmin, n and φ were used.

However, these variables are obtained 
directly or indirectly from the meteorological 
raw data (Uh, T, RH, Tmin, Tmax, n, φ and Z). 
Furthermore, the calculation formula for them 
did not have a precise formula by estimation or 
experience.

Therefore, the inputs Uh, T, RH, Tmin, Tmax, 
n, φ and Z, the ET0 output were calculated 

by the FAO-56 PM method and used for the 
calibration of the IOS-ELM models. The mean 
absolute error (MAE), the root mean square 
error (RMSE), effectiveness index of the model 
(EF) and self-correlation coefficient (R2) statistics 
were used for the assessment criteria of the 
models in this study. EF model efficiency mainly 
depends on the Nash coefficient EF values; as 
the values approach one, the efficiency of the 
model increases. The study adopted the calcula-
tion model of the validity index for EF by Nash 
and Sutcliffe.

Extreme learning machine (ELM)
 

For N random distinct samples (xi, ti) where xi 
= [xi1, xi2,..., xin]T ∈Rn, ti = [ti1, ti2,..., tin]T ∈Rm and 
for the standard SLFNs ( Ñ hidden nodes), the 
activation function g(x) is expressed as:

	

i
i =1

Ñ

g i xi( ) = i
i =1

Ñ

g wi xj + b i( ) = 0 j
j= 1,...,N 	 (5)

where wi = [wi1, wi2,..., win]T is the weight vector 
connecting the ith hidden node and the input 
nodes, bi = [bi1, bi2,..., bin]T is the weight vector 
connecting the ith hidden node and the output 
nodes and bi is the threshold of the ith hidden 
node.

	 i
i =1

Ñ

g w i xj + b i( ) = t j j= 1,...,N	 (6)

The above N equations can be written com-
pactly as

	 H b = T	 (7)

where

H w ,b ,x( ) =
g w 1 x1 + b 1( ) L g w Ñ x1 + bÑ( )

M L M
g w 1 xN + b 1( ) L g w Ñ xN + bÑ( )

N Ñ

	(8)

	 =
1
T

M

Ñ
T

Ñ m

, T =
t1
T

M
tN
T

N m

	 (9)
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where H is called the hidden layer output ma-
trix in the neural network, and the ith column of 
H is the ith hidden node output toward inputs 
x1, x2,..., xN.

The aim is to solve the above issues and 
put forward an extreme learning machine for 
SLFNs.

A training set was provided as:

= xi ,ti( ) xi Rn, ti Rm{ }
i=1

N
, the activation 

function g(x), and hidden node number Ñ.
Step 1: Randomly allocate input weight wi 

and bias bi, i = 1, 2,..., Ñ.
Step 2: Calculate the hidden layer output 

matrix H.
Step 3: Calculate the output weight b.

	 ˆ = H +Tβ 	 (10)

where T = [t1, ..., tN]T, H+ is a generalized inverse 
of MP.

Online sequential ELM (OS-ELM)

ELM is a relatively effective and simple al-
gorithm that is also able to learn quickly and 
generalize well. However, meteorological data 
are difficult to collect and the data set is large, 
which may cause a decline in the performance 
of the ET0 model. Thus, the online sequential 
extreme learning machine (OS-ELM) by Liang 
(2006) was referenced in the previous research.

The output weight matrix ˆ = H +Tβ  is a least-
squares solution of (7). Meanwhile, the matter 
where rank(H) = Ñ the number of hidden nodes 
(Ao, Xiao, & Mao, 2009) is considered. So, H+of 
(10) is given as:

	 H + = HTH( )
1
HT	 (11)

If HT H tends to become fantastic, it can also 
be made nonsingular by increasing the number 
of data or choosing a smaller network size. 
Substituting (11) into (10) gives:

	 ˆ = HTH( )
1
HTT	 (12)

Equation (12) is called the least-squares 
solution to Hb = T. Sequential implementation 
of the least-squares solution of (12) gives the OS-
ELM. However, the OS-ELM may have some 
deficiencies, especially the fact that solving the 
generalized inverse matrix MP of H may cost a 
huge amount of time in the training process. The 
general method of singular value decomposition 
is used to solve matrix H, but its computational 
complexity is O(4NÑ2 + 8Ñ3) (Brown, 2009).

Improved algorithm of OS-ELM (IOS-
ELM)

This paper proposes an improved OS - ELM 
called IOS-ELM. This new model was devel-
oped by modifying and improving the singu-
larity of the matrix. First, Equation Hb = T 
will be replaced by HTHb = HTT, which has at 
least one optimization solution. This reduces 
the computational complexity of solving the 
inverse, which results in a reduction of the train-
ing time. Second, the regular factor l/l is joined 
when calculating the output weights. Last, the 
subsequent online learning stage is added. In 
theory, this algorithm can provide good gen-
eralization performance at an extremely fast 
learning speed.

 Step (1): Allocate random input weights wi 
and bias bi, initialize network and calculate the 
initially hidden layer output matrix H0. 

 Step (2): Set r = rank(H), if r = N0, then cal-
culate the initial weight matrix b0 = P1H0

TT0.If 
r = N then calculate the initial weight 
b0 = H0

TP2T0.

Where P1 =
1
+H0H0

T
1

, P2 =
1
+H0

T
0H0

1

.

If r N0 and r Ñ, to solve the two optimiza-
tion models:

	 min
B g+

M B and min
B RN0

B* 0 c

Then, the optimization solution B* and b0 can 
be obtained.
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Where c = H0
TT0, M = H0

TH0, g+ = {g ∈ RN0 × N0}, 
g is a positive definite symmetric matrix.

Step (3) Set K = 0; then, present the (K + 1)th 
chunk of new observations:

	 K+1 = xi ,ti( ){ } Nj
j=1
i= K

j=1Nj

K+1

where NK+1 is the number of observations in the 
(K + 1)th chunk.

Step (4) Calculate the partially hidden layer 
output matrix HK+1 for the (K + 1)th chunk of 
data K+1, as shown in (17):

HK+1 =

g w1 x1 + b1( ) g w
N
~ x1+ bN~( )

g w1 xNK+1
+ b1( ) g w

N
~ xN + bN~( )

NK+1 N
~

	 (13)

Step (5) According to step (1), calculate the 
output weight bK + 1.

Step (6) Set k = k + 1. Go to Step (3).

Application and results

IOS -ELM model under lack of data 

The original eight meteorological parameters 
chose and combined with a different pattern 
in this section, which was taken as input 
values. Meanwhile, the calculation of FAO 
56 Penman-Montieth was put as the output 
value. By this method, the IOS-ELM model 
is established.  However, it needs to further 
consider the effectiveness of the combination 
pattern among the eight meteorological data. 

Therefore, the correlation between ET0 and the 
data was analyzed. In this way, ISO-ELM can 
choose reasonable meteorological parameters to 
complete the forecast even if there is a lack of 
meteorological data. This is shown in table 4.

It can be clearly seen from table 2 that the 
ET0 outperformed all eight meteorological pa-
rameters in terms of correlation. Although the 
data set is not similar for different cities, the cor-
relation behaved in the same way. Tmax is closely 
correlated with evapotranspiration for each city, 
followed by the average temperature, minimum 
temperature, the actual sunshine time and wind 
speed. The influence of the latitude and altitude 
were so small that they were negligible. Finally, 
the humidity is negative.

The simulation accuracy of the IOS-ELM 
model was discussed by referring to table 2 
under lack of meteorological data. It should 
be noted that the latitude and altitude were 
eliminated because they had virtually no effect 
on the results. Taking Yulin city as an example, 
the first 10-year (1971-1999) span of data was 
used to train the models. Then, using different 
combinations, the error was analyzed, as well 
as the correlation coefficient and effectiveness 
of the prediction. This is shown in table 3.

The ISO-ELM model was applied by com-
paring the different parameters shown in table 
3. It is immediately noticeable that the predic-
tion results were the same for eight-parameter 
and six-parameter inputs. That is because the 
latitude and altitude almost have no effect on 
the prediction for the same station. Secondly, 
the temperature had the largest influence on 
the prediction, particularly the maximum tem-
perature. As long as the temperature is one of 

Table 2. Correlation of data and ET0.

Uh T RHm Tmin Tmax n φ Z

Yulin 0.20 0.88 -0.36 0.79 0.92 0.50 -2e-15

NaNAnkang 0.15 0.85 -0.34 0.71 0.93 0.70 -7e-16

Hanzhong 0.21 0.85 -0.48 0.73 0.93 0.69 4e-15

Xi’an 0.30 0.80 -0.43 0.72 0.85 0.66 1e-16
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the parameters, the model is accurate. Thirdly, 
when only two temperatures were used as the 
inputs, it still performed better than RMSE, EF 
and R2 statistics. So, properly reducing some 
variables and adopting reasonable combina-
tions of variables can improve the accuracy of 
prediction.

Comparison with other calculation 
formulas

 
The IOS-ELM model was compared with the 
ELM and LSSVM, as well as conventional 

models including Hargreaves, Mc-Cloud and 
Priestley-Taylor methods in respect of RMSE 
and MAE statistics in different cities in tables 
4-5. There are six parameters as input variables 
in the model. 

Tables 4-5 show that IOS-ELM outperformed 
all other models by all performance criteria. 
Compared with the intelligent and empirical 
models, the ISO-ELM performed the best value 
of RMSE<0.46 and MAE<0.41, and the ELM 
and LSSVM models performed better than the 
others. A few differences appeared among the 
Mc Cloud and Priestley-Taylor models. It was 

Table 3. Influence of different meteorological data combinations on ET0.

Model inputs RMSE R2 EF%

All 0.4132 0.9696 95.72
Tmax, T, Tmin, n, Uh, RH 0.4132 0.9696 95.72
Tmax, T, Tmin, n, Uh 0.7865 0.9625 92.3
Tmax, T, Tmin, n, RH 0.6737 0.9619 94.3
Tmax, T, Tmin, Uh, RH 0.7868 0.9620 92.2
Tmax, T, n, Uh, RH 0.9021 0.9496 89.8
Tmax, Tmin, n, Uh, RH 0.9135 0.9490 89.6
T, Tmin, n, Uh, RH 0.9666 0.9423 88.3
Tmax, T, Tmin, n 0.8270 0.9591 91.4
Tmax, T, Tmin, Uh 0.7338 0.9673 93.2
Tmax, T, Tmin, RH 0.6368 0.9651 94.9
Tmin, n, Uh, RH 1.2321 0.9060 81.1
T, n, Uh, RH 1.0048 0.9377 87.4
Tmax, n, Uh, RH 0.8428 0.9560 91.1
Tmax, T, Tmin 0.8505 0.9566 90.9
n, Uh, RH 2.2612 0.6222 36.3
Tmax, T, RH 0.6480 0.9753 94.7
Tmax, Tmin, n 0.8580 0.9548 90.8
Tmax, Tmin, Uh 0.7942 0.9616 92.1
Tmax, Uh, RH 0.7436 0.9668 93.1
Tmax, n, RH 0.6298 0.9664 95.06
Tmax, n, Uh 0.8786 0.9513 90.3
Tmax, T 0.9464 0.9432 88.8
T, Tmin 0.9119 0.9502 89.64
Tmax, RH 0.6258 0.9670 95.12
Tmax, n 0.9012 0.9483 89.89
Tmax, Uh 0.9999 93.59 87.55
n, RH 2.1127 0.6694 44.42
n, Uh 2.1611 0.6543 41.85
Uh, RH 2.6964 0.3395 9.47
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also discovered that the Hargreaves method 
provided better accuracy than other methods 
among the empirical models.

Although IOS-ELM, ELM and LSSVM mod-
els had better simulation effects, the running 
time is distinguishing, as shown in table 6.

It is clear from table 6 that the IOS-ELM 
model runs faster than ELM and LSSVM in the 
process of calculating by at least 24.8%.

In order to consider the portability and error 
causes of the IOS - ELM model, the estimates of 
each model for four cities are shown in figures 
2-5 in the form of scatter plots in the validation 
period. It is generally clear from the scatter 
plots that the six input ISO-ELM estimates are 
closer to the corresponding FAO-56 PM ET0 

values than other models. The fit line equations 
y = ax + b and R2 values indicate that the ISO-
ELM model performed with better accuracy. 
Meanwhile, the a and b coefficients of the six-
input ISO-ELM model were closer to 1 and 0, 
respectively, with a higher R2 value than those 
of the other models.

For Yulin, ISO-ELM and ELM estimates were 
closer to the FAO-56 PM ET0 values than those 
of the other models (R2 > 0.96). A slight differ-
ence exists between LSSVM, and Hargreaves 
was better than the surplus models. The Mc 
Cloud estimate had the least accuracy. It can be 
concluded that the ISO-ELM and ELM models 
are the best methods to use for daily ET0 estima-
tion in Yulin.

Table 4. RMSE of the models in the test period.

Models
RMSE (mm/day)

Yulin A kang Hanzhong Xi’an

IOS-ELM 041 0.45 0.45 0.41

ELM 0.86 0.72 0.88 0.78

LSSVM 0.96 1.38 1.30 1.05

Hargreaves 2.18 1.38 1.27 0.79

Mc Cloud 3.53 2.20 1.98 1.70

Priestley-Taylor 2.43 1.73 1.59 0.71

Table 5. MAE of the models in the test period.

Models
MAE (mm/day)

Yulin Ankang Hanzhong Xi’an

IOS-ELM 0.40 0.35 0.33 0.31

ELM 0.52 0.68 0.62 0.55

LSSVM 0.77 1.20 1.13 0.93

Hargreaves 1.97 1.25 1.19 0.58

Mc Cloud 3.15 1.86 1.66 1.36

Priestley-Taylor 2.13 1.56 1.40 0.51

Table 6. Running time of different models.

Model
Running time (S)

Yulin Ankang Hangzhong Xi’an

IOS-ELM 16.5 17.9 13.8 17.1

ELM 28.8 23.8 21.2 25.8

LSSVM 22.4 30.5 19.9 36.5
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Figure 2. The FAO-56 PM ET0 and estimated ET0 values of Yulin.

For Ankang, ISO-ELM and Hargreaves were 
closer to the FAO-56 PM ET0 values, a slight 
difference exists between LSSVM, and ELM was 
better than the Mc Cloud model. In this city, the 

Mc Cloud estimate was also the least accurate 
(R2 = 0.6141). This leads to the conclusion that in 
this city, the ISO-ELM and empirical Hargreaves 
models were the best. 
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For Hanzhong, ISO-ELM was closer to the 
FAO-56 PM ET0 of R2 = 0.9911, followed by the 
Hargreaves, ELM, and LSSVM models. The Mc 
Cloud and Priestley-Taylor estimates were the 
least accurate.

For Hanzhong, ISO-ELM was closer to the 
FAO-56 PM ET0 with R2 = 0.9905, followed by the 
ELM, LSSVM, Priestley-Taylor, Hargreaves and 
Mc Cloud models, which had R2 values of 0.9547, 
0.9488, 0.8804, 0.8335 and 0.5577, respectively.

Figure 3. The FAO-56 PM ET0 and estimated ET0 values of Ankang. 
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Figure 4. The FAO-56 PM ET0 and estimated ET0 values of Hanzhong. 

The total ET0 estimation of every model is 
compared in table 7 because of its importance 
in irrigation management. The ISO-ELM clearly 
performed better than the other models from 
the relative error, which was 4.76, 0.23, 0.02 and 

0.54%, respectively. In four of the cities, it gave 
the closest estimate to the total FAO-56 PM ET0 
during the validation period. 

For Yulin, the ELM and LSSVM had the 
same accuracy, which was the second best, and 
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Figure 5. The FAO-56 PM ET0 and estimated ET0 values of Xi’an. 

had 5274 and 5488 estimates lower than the 
10% error, respectively. They were followed 
by Hargreaves, Priestley-Taylor and, lastly, 
McCloud (1955), which had the highest error 
at 64.60%. For Ankang, the LSSVM was ranked 

as the second best, followed by the ELM, Mc 
Cloud, Hargreaves and, finally, Priestley-Taylor. 
For Hangzhong, the LSSVM was ranked as the 
second best, followed by ELM, Hargreaves, Mc 
Cloud, and Priestley-Taylor, which had 28.49, 
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30.37 and 33.50% error, respectively. For Xi’an, 
the ELM, LSSVM, and Hargreaves were ranked 
the second best, followed Priestley-Taylor and, 
finally, Mc Cloud.

In short, for the different cities, the ISO-ELM 
performed better than the other models, and the 
other models had different degrees to adapt to 
the application.

Conclusion

The improved sequential extreme learning ma-
chine (IOS-ELM) is designed and applied for 
simulation of daily reference evapotranspiration 
through different manipulation of the inverse of 
the matrix and using the regularization factor 
and online learning method at the same time 
Experimental results demonstrated that the 
IOS-ELM can learn faster and achieve better 
performance than traditional ELM. 

First, the IOS-ELM model effectively over-
comes the defects of traditional ELM, such as 
slow training speed, difficult parameter deci-
sions, difficulty in setting the singularity and 
effect of data samples. 

Second, the potential of the ISO-ELM 
technique for the estimation of reference 
evapotranspiration was investigated for four 
areas in Shaanxi of China; particularly, eight 
meteorological data were used as inputs.

Third, it was demonstrated that intelligent 
algorithm models (IOS-ELM, ELM, and LSSVM) 
are widely applicable to different areas, but em-

Table 7. Performance statistics of the models in the validation period.

Models
Total ET0(mm) Relative error (%)

Yulin Ankang Hanzhong Xi’an Yulin Ankang Hanzhong Xi’an

Observed 5 039 4 661 4 307 3 134 - - - -

ISO-ELM 5 279 4 650 4 306 3 117 4.76 0.23 0.02 0.54

ELM 5 274 4 636 4 413 3 207 4.66 0.54 2.46 2.33

LSSVM 5 488 4 639 4 408 3 226 8.91 0.47 2.35 2.94

Hargreaves 3 003 3 362 3 080 3 276 40.40 27.87 28.49 4.53

Mc Cloud 1 784 3 672 2 999 2 436 64.60 21.22 30.37 22.27

Priestley-Taylor 2 844 3 051 2 864 2 727 43.56 34.54 33.50 12.99

pirical models were limited to specific regions 
and required modification. 

Fourth, in the different meteorological data 
combinations for ET0 estimation, as long as 
there was a temperature-related parameter 
calculation, the calculation accuracy of ET0 was 
over 94%, and Tmax was especially effective. 
These accurate calculations can be a valuable 
reference for the development of intelligent ir-
rigation in water decision-making systems. 
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Notation

The following symbols are used in this paper:

ET0	 =	 reference evapotranspiration (mm day-1).
D	 =	 slope of the saturation vapor pressure 

function (kPaC-1).
Rn	 =	 net radiation (MJ m-2 day-1).
G	 =	 soil heat flux density (MJ m-2 day-1).
c	 =	 psychometric constant (kPa C-1). 
T	 =	 mean air temperature (°C). 
U2	 =	 average24-h wind speed at 2 m height 

(ms-1). 
Rs	 =	 solar radiation (MJ m-2 day-1).
es	 =	 the saturation vapor pressure (kPa).
ea	 =	 the actual vapor pressure (kPa).
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