
Revista Brasileira de Computação Aplicada, April, 2019

DOI: 10.5335/rbca.v11i1.8784
Vol. 11, No 1, pp. 48–58
Homepage: seer.upf.br/index.php/rbca/index

OR I G INAL PAPER

Towards optimisation of the number of threads in the
integration platform engines using simulation models

based on queueing theory

Igor G. Haugg1, Rafael Z. Frantz1, Fabricia Roos-Frantz1, Sandro
Sawicki1 e Benjamim Zucolotto1

1Universidade Regional do Noroeste do Estado do Rio Grande do Sul
*{ihaugg,rzfrantz,frfrantz,sawicki,benjamim.zucolotto}@unijui.edu.br

Received: 2018-10-23. Revised: 2019-02-27. Accepted: 2019-03-05.

Abstract
The use of applications is important to support the business processes of companies. However, most of theseapplications are not designed to function collaboratively. An integration solution orchestrates a group ofapplications, allowing data and functionality reuse. The performance of an integration solution dependson the optimum con�guration of the number of threads in the runtime engine provided by the integrationplatforms. It is common that this con�guration relies on the empirical knowledge of the software engineers,and it has a direct impact on the performance of integration solutions. The optimum number of threads maybe found by means of simulation models. This article presents a methodology and a tool to assist with thegeneration of simulation models based on queuing theory, in order to �nd the optimum number of threadsto execute an integration solution focusing on performance improvement. We introduce a case of study todemonstrate and experiments to evaluate our proposal.
Key words: Simulation; Queueing Theory; Enterprise Application Integration; Integration Platforms; BusinessProcess Simulation.
Resumo
O uso de aplicativos é importante para suportar os processos de negócios das empresas. No entanto, a maioriadesses aplicativos não foi projetada para funcionar de maneira colaborativa. Uma solução de integraçãoorquestra um grupo de aplicativos, permitindo a reutilização de dados e funcionalidades. O desempenho deuma solução de integração depende da con�guração ideal do número de threads no motor de execução dasplataformas de integração. Atualmente essa con�guração depende do conhecimento empírico dos engenheirosde software e portanto tem um impacto direto no desempenho das soluções de integração. O número ideal dethreads pode ser encontrado por meio de modelos de simulação. Este artigo apresenta uma metodologia e umaferramenta para auxiliar na geração de modelos de simulação baseados na teoria das �las a �m de encontraro número ideal de threads para executar uma solução de integração com foco na melhoria do desempenho.Apresentamos um caso de estudo para demonstrar e experimentos para avaliar nossa proposta.
Palavras-Chave: Integração de aplicativos corporativos; Plataformas de integração; Simulação; Simulação deProcessos de Negócios; Teoria das �las.

48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200899828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.5335/rbca.v11i1.8784
http://seer.upf.br/index.php/rbca/index

Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58 | 49

1 Introduction
The use of applications is important to supportthe business processes of companies. Companiesusually have various applications in their softwareecosystem, which are developed in-house oracquired from third parties. This way, the softwareecosystem becomes heterogeneous, with applicationsthat have possibly been developed using di�erentprogramming languages and data models, runningon di�erent operating systems, and, generally,have not been designed to work in a collaborativeform. It is common that the business processesinvolve data and functionality present in distinctapplications, what requires collaboration amongstthese applications. Enterprise application integration(EAI) is a research �eld that concerns with thedevelopment of methodologies, techniques and toolsto make di�erent applications, which were notdeveloped with the purpose of working together, tocollaborate (Hohpe and Woolf; 2012). An integrationsolution orchestrates a group of applications, withoutthe perception that they are being integrated, andwithout causing dependency in the applicationswith the solution, allowing data and functionalityreuse (Ritter et al.; 2017).
There are several message-based integrationplatforms available in themarket for the developmentof integration solutions. Amongst the platformsthat represent the state-of-the-art technologyare Camel (Ibsen and Anstey; 2017), SpringIntegration (Pandey; 2015), Mule (Dossot et al.;2014), Petals (Surhone et al.; 2010), ApacheFlume (FLU; 2017), Apache Ni� (NIF; 2017) andGuaraná (Frantz et al.; 2016). These platformssupport the integration patterns documented by Hohpeand Woolf (2012), which have consolidated as areference in the integration market when creatingintegration platforms, and follow the architecturalstyle of pipes-and-�lters (Hohpe and Woolf; 2012).In an integration solution, pipes represent messagechannels, and �lters represent atomic tasks thatimplement a concrete integration pattern to processencapsulated data in messages. The adoption of thisarchitecture allows to desynchronising the tasks thatmake up the integration solution.
Usually, these integration platforms provide adomain-speci�c language, a development toolkit,an environment for testing, a monitoring system,and a runtime engine (Freire, Frantz, Roos-Frantzand Sawicki; 2019). The domain-speci�c language isfocused on the elaboration of conceptual models withan abstraction level close to the problem domain. Thedevelopment toolkit is a set of software tools thatallows the transformation of the conceptual modelinto an executable code. The environment for testingallows trying individual parts or all the integrationsolution. The monitoring tool is used to follow,at execution time, the operation of the integrationsolution and to detect errors that may occur duringthe processing of messages. The runtime engineprovides all the support necessary to execute theseintegration solutions. Therefore, its performance isdirectly related to the performance of the integrationsolutions.
These message-based integration platforms havebeen constructed using Java Technology (Schildt;

2017) and their runtime engine is organised around a�rst-in-�rst-out (FIFO) queue and a set of threads.The queue is used to store tasks that are ready tobe executed in an integration solution, and theexecution of these tasks depends on the availabilityof threads in the runtime engine. Threads representcomputational resources within the instance ofthe Java Virtual Machine (Lindholm et al.; 2014)in which the runtime engine executes. They aremanaged by a mechanism provided in Java calledExecutor (Lindholm et al.; 2014), which allows tocreate and allocate threads and pools of threadswithin the runtime engine to execute an speci�cintegration solution. The con�guration of these poolsis an important activity involved in the deploymentand execution of integration solutions and iscommonly performed by software engineers Freire,Frantz and Roos-Frantz (2019). In a simpli�ed way,it means to de�ne the size of the pool, i.e., thenumber of threads that must be used by the runtimeengine to execute an integration solution. Currently,this con�guration relies on the empirical knowledgeof software engineers, which brings risks becausea low number of threads causes the accumulationof tasks to be executed in the queue, leading to apoor performance. An over dimensioned number ofthreads increases computational costs with memoryand CPU time involved in the process of contextswitching of these threads and leads to a negativeimpact on the performance as well (Pusukuri et al.;2011).
In this article, we introduce a methodology thatcan be used to estimate the optimum number ofthreads that must be con�gured at the runtimeengine to execute an integration solution seeking atbest performance. This methodology is supported bya software tool namedModelGen, which allows for theanalysis of an integration solution taking as input itsconceptual model and generates a simulation modelbased on Queuing Theory (Klcinrock; 1975). Thissimulationmodel can be run on Simulink (Chaturvedi;2017) to provide the optimum number of threads. Wedemonstrate our methodology andModelGen in actionthrough a case of study called Café (Hohpe; 2005).Café has become a benchmark in the studies andevaluation of integration platforms and it describeshow customer orders are processed in a co�ee shop.We have used Guaraná as the target integrationplatform, which means we have considered theconceptual model of Café designed in this platformand data from its runtime engine was used as inputto ModelGen. Then, the simulation model generatedand the number of threads found is tightly dependentto this integration platform. We have simulated thisintegration solution under di�erent input rates forinbound messages to analyse its performance withvariation on the number of threads and reported ourexperiments in a dedicated section.
The rest of this article has its structure organisedas follows. In Section 2 we present our review onthe literature for related works. Then, in Section 3we provide a brief background on Queuing Theory,the theoretical model that abstracts the runtimeengine of the message-based integration platformsconsidered in this article, and on the Guaranáintegration platform. We then present in Section 4our methodology and in Section 5 the supporting

50 | Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58

tool names ModelGen to automate the generation ofsimulation models, followed by the demonstrationof our proposal in a case of study in Section 6. Next,in Section 7 we present the experiments we haveconducted; and, �nally, in Section 8 we discuss ourmain conclusions.

2 Related Work

Our literature review has identi�ed some worksthat look to provide an estimate on the optimumnumber of threads in pools, aiming at achieving bestperformance, without depending on the empiricalknowledge of the software engineers. Muñoz andRuspini (2014) propose a simulation method basedon queuing theory an fuzzy logic to estimate thenumber of threads and to estimate the entrance inthe queue and the service time, with values providedby software engineers. Our proposal di�ers fromtheirs in the type of queuing theory used, and in theapproach to collect the entrance and service time,this values are taken as an input in our tool. Thework by Ju et al. (2015) sought, through a predictionmodel, to determine the optimum number of threadsto execute applications in heterogeneous systemsand with multiple processors. The predictionmodel developed seeks to optimise the numberof threads considering the behaviour and thecharacteristics of the architecture of the application.With the optimisation, the authors sought to adjustdynamically the process of mapping threads to manycores. Our proposal di�ers from theirs in that theysought to contribute for optimising the performanceof multiple processors systems, while the presentwork seeks to optimise the runtime engine. Son andWysk (2001) present a structure and an architecturefor the automatic generation of simulation models,intended to be used for real-time simulation offactories control. This work di�ers from ours inthat the architecture used by these authors wasnot based on a queue, and the models are builtaiming only at the factories. Dancheva et al. (2016)describe the implementation of a tool for settingdynamically the number of threads in the OpenMPenvironment, based on the current state of theruntime. Machine learning techniques are used to�nd the number of threads and the decision of whichnumber of threads will be used is de�ned at the timeof execution. This work di�ers from ours in that ituses the machine learning technique to predict theoptimum number of threads, while in our work itis necessary to create di�erent simulation models,each simulation model with a speci�c number ofthreads and then execute the simulation models inthe Simulink software. Jung et al. (2005) soughtto maximise the performance of simultaneousmulti-threaded execution (SMT) processors by usingadaptive execution techniques in order to �nd theoptimum number of threads automatically duringthe execution. To �nd the optimum number ofthreads, a build preprocessor generates a code that,based on dynamic feedback, determines the optimumnumber of threads at runtime. This work di�ersfrom ours because it seeks to maximise performancefor only SMT processors, and uses dynamic executiontechniques with dynamic feedback to automate

the process of discovering the optimum number ofthreads. However, in our proposal, we try to �ndthe optimum number of threads for the runtimeengine, without considering the type of processorand to discover the number of threads it is necessaryto execute computational simulations. Lee et al.(2010) present a dynamic system that automaticallyadjusts the number of threads in an application,in order to optimise the e�ciency of the system.Using the dynamic compilation system, the authorsdeveloped a software called Thread Tailor, whichcombines threads by communication patterns toreduce synchronization overhead. Thread Tailor useso�-line analysis to predict the type of topics thatexist at runtime and the communication patternsbetween them, based on the architecture, thedynamic state of the system, and the communicationand synchronization relationships between threads.This work di�ers from ours in that the softwaredeveloped by the authors seeks to reduce theoverhead of thread synchronization, whereas in ourproposal, we seek to �nd the number of threadsusing computational simulations.

3 Background

This section provides background information on keytopics to understand our proposal.

3.1 Queuing Theory

In system modelling studies, it is common to havedimensioning problems in which the solution iscomplex. Usually, the objective is to dimensionthe correct quantity of equipment or resources,and also to optimise the system being studied.In computing systems, when there is a largeaccumulation of processes waiting to run in thequeue, performance bottlenecks may arise. Inthis case, the scaling of the system is required.To assist with this process, the area of QueuingTheory arises (Klcinrock; 1975).Queues are expensiveand when they become too large, performancebottlenecks may arise. A common approach tominimise performance problems generated byqueues is to increase computational resources to runsoftware systems. However, it brings costs for acompany and so queue theory is an important toolto help understand and optimise the system mostoften avoiding this cost. A queue system consists ofcustomers, arrival process, service process, numberof servers, queue and queue discipline. Customerscome from a population. The arrival process isde�ned by the behaviour of the customers arrivals inthe system, which can be deterministic or stochastic.Service process follows the same concept as arrivalprocess; it can be deterministic or stochastic. Theserver number represents the servers available toserve the customers that are waiting in queue. Thequeue is where customers wait until some server isavailable. The queue discipline de�nes the order inwhich customers are selected from the queue to theservice (Prado; 2014).

Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58 | 51

3.2 Runtime Engine

The runtime engine is responsible for runningintegration solutions. Its core element is theScheduler, which is responsible for coordinating allactivities present in an execution. The Schedulerhas a queue of tasks, a pool of threads, monitorsand its own logging system. The queue is used tostore tasks waiting to be processed and followsthe FIFO discipline. The pool of threads representa set of servers on the task queue. In this way,whenever new tasks enter in the queue, all thethreads are noti�ed, and then the competition to polla task from the queue starts. The Scheduler mustbe provided with a con�guration XML �le, whichincludes information about the number of threads tobe allocated to its pool, the type of monitors to beactive to capture statistical data and the periodicityto capture this data, and the log �le to reportwarnings and exceptions that may occur duringthe execution. The Scheduler starts by loading andparsing the con�guration �le, creating the indicatednumber of threads, activating required monitors andinitialising the logging system (Frantz et al.; 2011).

3.3 Guaraná Integration Platform

Guaraná is the result of a joint research e�ortbetween academy and company to develop aninnovative platform for application integration.This platform is currently in version 1.4 and wasdeveloped with the Java programming language.Guaraná follows the style of message-basedintegration and provides support for severalintegration patterns (Hohpe and Woolf; 2012)to implement a variety of atomic tasks. Thisplatform allows the modelling, deployment, andmonitoring of integration solutions using a graphicalinterface. This environment supports the followingconstructors: message, task, slot, port, andresources. Message is the information transmittedand transformed into the integration solution. Tasksare units that perform a certain processing onthe messages �owing in the integration solution,such as �ltering, copying, transforming, dividing,regrouping. Slots perform the connection betweentasks, or between tasks and ports. Ports abstract thecommunication mechanism an integration solutionuses to interact with the resources being integrated.Resources represent sources of information that aretypically in applications or databases (Frantz et al.;2011).
Figure 1 shows the interface of the designer whereconceptual models for integration solutions canbe elaborated. The modelling occurs in Panel (A),with tasks dragging from Panel (C). In Panel (A),software engineers can connect tasks, slots, andports to form the integration solution. Panel (C)provides several tasks organised in groups, suchas: router, modi�er, and transformer. Panel (B)provides general functions, such as save, copy, past,print. The tasks and ports con�guration takes placein Panel (D), which has elements to perform thecon�guration of the selected task. The graphic modeldeveloped can be exported to an Extensible MarkupLanguage (XML) format. The resulting models

A
A

C

D

B

Figure 1: Guaraná user interface to designintegration solutions.

obtained with Guaraná are platform-independent,so engineers do not need to have skills on a low-level integration technology when designing theirsolutions. Furthermore, this design can be re-usedto automatically generate executable EAI solutionsfor di�erent target technologies.

4 Methodology
This section introduces our methodology, which isdivided into four main steps: conceptual modelling,model transformation, simulation, and analysis.Figure 2 provides an overview of this methodology.In the conceptual modelling step, the work�ow ofthe integration solution is developed by the softwareengineer using the graphic concrete syntax of thedomain-speci�c language provided by the integrationplatform. This graphic model is transformed into atextual representation, based on the XML format.This feature is provided by the integration platform,which uses this format to internally store conceptualmodels in its repository. XML is a standard machine-readable format and is the base representation forthe integration solution.

Conceptual Modelling Model Transformation Simulation Analysis

Guaraná ModelGen Simulink

Graphic Model

Textual Model

XML

Textual Model

MDL

Statistical

Step 1 Step 2 Step 3 Step 4

Excel

Export

Transform

Import

Generates

Import
Graphs

Data

Export

Import

Export

Complementary
Information

Figure 2: Overview of the proposed methodology.
In the model transformation step, the XML �leis imported by ModelGen at its graphical interface.

ModelGen, by means of model transformation,produces the corresponding simulation model for thetarget integration platform. The simulation modelis represented using the Model De�nition Language(MDL) format, which is the standard format usedby Simulink Matlab (Higham and Higham; 2005).Simulink is a simulation tool integrated with Matlabwhich allows modelling, simulating, and analysingsystems. Furthermore allows to model event-basedsystems with the SimEvents library and is thesupporting software tool in the next step. Thetransformation of the XML model into the simulation

52 | Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58

model occurs through the capture of all the tasksrepresented in the XML, so each task is transformedinto an entity in the MDL model. Software engineershave also to provide complementary information tocon�gure ModelGen. This information are providethrough the graphical interface of the ModelGentool and regards the number of threads to beexperimented, the input rate for inbound messagesto be simulated and the total duration time for thesimulation under these rates.
The simulation step is performed using Simulink,and the software engineer only needs to import andrun the simulation model generated in the previousstep. There is no need to perform more settings forits operation. After executing the simulation model,results containing statistical raw data that can beexported and has to be analysed.
The last step concerns with the analysis of theraw data produced during the simulation. In ourmethodology we propose to perform this analysisusing a spreadsheet, like Microsoft Excel (Winston;2016), since exported data by Simulink can beimported into Excel and the graphs be straightgenerated for the analysis of the simulationbehaviour.

5 Supporting Tool
In this section we introduce ModelGen, which is aJava-based software tool to automate the generationof simulation models taking as input the conceptualmodels exported by integration platforms.
The overview of the internal process of the toolresponsible for generate the models can be visualisedin the Figure 3. The process starts by reading a textual�le in XML format, this �le is loaded into the userinterface of ModelGen, where additional informationis also added. The textual model contains the tasksand their interconnections in the integration solution.Complementary information includes: simulationtime, input rate, number of threads and executiontime of each task. Simulation time is where users caninform the execution time for the simulation modelgenerated. Input rate represents howmany messagesthe integration solution receives for each unit of time.Number of threads determines the amount of threadsthat the simulationmodel will use in the experiments,the execution time of each task represents the totaltime to individually execute a task of the integrationsolution, and is calculated automatically by the tool.
Internally, on model generation, ModelGenperforms the transformation of each task receivedin the textual model into the Model De�nitionLanguage (MDL) format, that is, each task istransformed into a block called entity. The modeltransformed into the MDL format is the modelequivalent to the integration solution model. Toperforms the simulation, additional data that theuser has informed are needed. Therefore, in this stepthe tool adds the execution times of each task, theinput rate, the total simulation time and the numberof threads.
In addition, the MDL model of the runtime engineis also added, this model is �xed independent ofthe integration solution received, because it containselements that do not need to be modi�ed. While

Textual Model (XML)

Model Generation

Complementary

Information

Runtime

Engine

modeled

in MDL

format

Transformation
Integration

Solution MDL

User Interface Textual Model (MDL)

ModelGen

Read XML

MDL Model

Fixed part of the model Variable part of the model

Figure 3: Overview of ModelGen.

A

B

E

C

D

F

Figure 4: User interface of ModelGen.

the other parts are dependent on each integrationsolution.
Finally, the generated model is formed by the MDLmodel of the integration solution, in conjunction withthe MDL model of the execution engine.
The main user interface ofModelGen can be seen inFigure 4. Component (A) has the function of openinga �le selector in which the user can search the XML�le containing the conceptual model of the targetintegration solution. In (B), it is possible to selectthe number of threads to be con�gured at the runtimeengine to execute the integration solution. In (C), theinput rate for inbound messages to the integrationsolution has to be provided. This value correspondsto messages per second. Field (D) allows for thespeci�cation of the simulation time, i.e., the amountof time to run the simulation.
After reading the XML, data is automaticallydisplayed in (E), which is composed of the columns:tasks and execution time. Tasks represent the listof tasks present in the integration solution. Theexecution time represent the time that each tasktakes to execute in the simulation. This values haveto be provided by software engineers and generallycan be obtained by means of the monitoring toolsprovided by the integration platforms. ModelGen isable to store these values for an integration solution,and automatically �ll this editable column in itsfuture executions. Button Generate SimulationModel (F) generates the fully con�gured simulation�le in MDL format. This �le has to be imported andrun in Simulink with no need of any further settingsby the software engineer.

Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58 | 53

S1

P1

P2 P3

P4 P5

P6

S2

T1 T2

T3

T4

T5 T6

T7

Orders

Cold Drinks

Barista
Hot Drinks

Waiter

Barista

Figure 5: Conceptual model for the Café integration solution.

6 Case of Study
This section presents a case of study based onthe Café (Hohpe; 2005) integration problem todemonstrate our proposal. Café illustrates howrequests are processed in a co�ee shop and has beenused in the area of enterprise application integrationto demonstrate the application and viability ofproposals.
6.1 Context of the Integration Solution

The process begins with a customer making a requestfor the cashier, who then registers the order in thesystem and adds it to a queue of orders. An order caninclude hot and cold drinks which are prepared bydi�erent baristas. When all drinks that correspondto the same order have been prepared, they willbe delivered by the waiter. Each order has a trayassociated with it, which is used to deliver it to thecustomer.
6.2 Conceptual Model

The integration solution must be able to receiverequests from the queue of requests, send requestsfor the baristas to prepare the appropriate drinksand notify the waiter when an order is completed.Figure 5 presents a conceptual model for theintegration solution designed using the domain-speci�c language provided by Guaraná integrationplatform.The integration solution starts at input port P1,which waits for new customer requests. Each orderresults in a message with the drinks to be preparedand the messages generated are added to slot S1. Task
T1 is used to separate each message in several othermessages so that it is possible to send the request tothe correct barista. This means that the part of themessage that contains the request for a hot drink issent to the barista for hot drinks, and in the sameway with cold drinks. After that, the messages aresent to task T2, which sends the messages to thecorrect destination. Task T3 replicates the messages

to Cold Drinks Barista application, so that one copycan be sent to the barista and another copy to task
T5, which correlates the barista’s response to thecopy on hold. Task T6 enriches the copy on holdwith the information returned by the Cold DrinksBarista application. Task T4 transforms the messagesinto the format necessary for the Cold Drinks Baristaapplication to understand them. Messages that aresent to the Hot Drinks Barista application behave thesame way. After the preparation of the drink, thebarista messages are gathered in a single slot S2 bythe T7 merger task. The drinks prepared are thenwithdrawn from this slot and reassembled to a singlemessage again, so that the output port P6 writes theresulting message to Waiter application.
6.3 Simulation Model

The simulation model automatically generated by
ModelGen for Café integration solution is presentedin Figure 6. This model is organised into a set ofentities, a queue, a server, data extraction blocks,and graphics generators. For each integrationsolution, the simulation model varies the entitiesblock, since they represent speci�c tasks in theintegration solution.
Every entity has an attribute that must becon�gured with a value that determines the intervalbetween the generation of two instances of thatentity. In the simulation model, this value iscalculated from the input rate provided at theuser interface of ModelGen. In addition, two otherattributes have to be con�gured in the entity blocks,they are: type and time of service. Attribute type isused to distinguish between one entity and another,and it also allows entities to be identi�ed in otherblocks of the simulation system. The attribute timerepresents the time that the servers will take toexecute the entity. Both attributes are con�guredat ModelGen. Entities generated by entity blocksare sent to the Entity Input Switch block. Thisblock has the function of sending the entities tothe Work Queue block, which represents the taskqueue. The queue has an in�nite size and it is

54 | Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Entity

Graphics

Average Size

Number of Entities

1

Threads Entity TerminatorWork Queue

FIFO

in out

Save in Save out

Entity

Input Switch

Splitter (T1)

Distributor (T2)

ReplicatorCD (T3)

ReplicatorHD (T8)

TranslatorCD (T4)

CorrelatorCD (T5)

TranslatorHD (T9)

CorrelatorHD (T10)

Context-based EnriCD (T6)

Context-based EnriHD (T11)

Merge (T7)

Aggregator (T12)

Figure 6: Simulation model generated by ModelGen.

possible to generate several types of graphs, whichrepresent system statistics. This queue follows theFIFO discipline.
Threads block represents the servers, i.e., thethreads available for the execution of the integrationsolution. The time that the entities remain in thisblock is previously de�ned in the attribute time. Afterentities are executed, this block sends the entities tothe output, which occurs in the Entity Terminatorblock. The simulation model also includes two blockscalled Save in and Save out, which are used to monitorthe number of input and output messages in themodel.

7 Experiments
In this section we report on the experiments wehave conducted to evaluate our proposal. Theconceptual model for the Café integration solutionintroduced in Figure 5 was implemented at Guaranáintegration platform and run to collect executiondata from the runtime engine to this integrationsolution. A textual model representation for theconceptual model was exported from Guaraná andtaken as input by ModelGen, which have generateda corresponding simulation model to be performedin Simulink Matlab. In the following sections wedescribe our experiments and analyse the resultsfound with Café running at Guaraná integrationplatform and its corresponding simulation modelrunning at Simulink Matlab.
7.1 Research Question

We have selected three research questions we wantto answer with our experiments. They are:
RQ1: What is the optimum number of threads to becon�gured in the runtime engine of Guaranáintegration platform to run the Café solutionunder a given message input rate?

RQ2: Does the optimum number of threads to executean integration solution increases by increasing themessage input rate?RQ3: By increasing the number of threads, theperformance of the runtime engine increases aswell?
7.2 Environment

The experiments were carried out on a machineequipped with 16 processors Intel Xeon CPU E5-4610V4, 1.8 GHz, 32GB of RAM, and operating systemWindows Server 2016 Datacenter 64-bits. Java SEversion 8.0 update 152 was installed and is requiredto run Guaraná integration platform version 1.4.Simulink Matlab version R2016a was also installedto run the simulation. To minimise interferences, noother software was installed at the machine and itwas disconnected from the Internet.
7.3 Variables

In this section we present the dependent andindependent variables considered in our experiments,which are the following:
- Dependent: number of messages processed. Thisvariable represents the number of messagesprocessed by the Café integration solution anddelivered by its exit port P6 to the Waiter. Thisvariable was measured in the execution of theactual integration solution at Guaraná and inthe execution of the corresponding simulationmodel at Simulink Matlab.
- Independent: running time, input rate, number of

threads. Running time represents the amount oftime each experiment with the Café integrationsolution run at Guaraná and the time consideredfor running the simulation. We have considereda �x amount of 120 seconds for this variable allover our experiments. Input rate represents thenumber of messages which have been injected to

Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58 | 55

Plat. Sim. Plat. Sim. Plat. Sim. Plat. Sim. Plat. Sim.

1 29738 18685 29786 20586 28901 19667 27650 17559 17320 21658

3 46450 79267 65822 89961 52084 58459 43023 71873 32746 72178

6 40225 72726 46200 81064 66614 82217 83618 75601 35479 79025

9 33598 67633 49322 67642 63253 67643 81525 67648 31768 60460

12 34669 69354 49642 60237 61618 73145 77828 57856 24544 56132

15 34984 64341 50897 62138 62451 73540 65722 62155 24500 58026

18 35439 61525 50149 74186 63238 70816 67154 64284 24499 59134

21 36165 59830 49184 69766 62484 65212 67159 64434 24499 55430

24 36119 59365 48680 70735 62246 64223 68592 61909 24449 56584

Threads
5000 msg/s 6000 msg/s 7000 msg/s 8000 msg/s 9000 msg/s

Plat. Sim.

13646 20422

25847 75322

28308 81500

31767 73366

27182 54828

26695 57862

26013 61249

29482 55430

29187 55156

10000 msg/s

Table 1: Number of messages processed at the integration platform and the simulation.

the integration solution per second. The inputrates considered were 5000, 6000, 7000, 8000,9000, and 10000 messages per second (msg/s).With rates lower than 5000msg/s the integrationsolution processes all injected messages usingonly one thread, so they were not considered.Number of threads represent the number ofthreads available to run the runtime engine, thenumber of threads chosen for the experimentswere: 1, 3, 6, 9, 12, 15, 18, 21, and 24. Thecombination of input rates and the number ofthreads allowed us to measure the number ofmessages processed in 54 di�erent experiments.
7.4 Execution and Data Collection

In both, Guaraná and Simulink Matlab, eachexperiment out of the 54 was repeated 25 times.According to Grinstead and Snell (2012), when anexperiment is repeated a large number of times,as the number of repetitions increases, the samplemean of the variables approach the populationmean. Usually, the population mean is found withapproximately 20-30 repetitions (Sargent; 2010).Outliers in these executions were removed usingTukey method (Tukey; 1977). A �rst set of 225executions were used to warm-up the Java VirtualMachine, and their values for the dependent variablediscarded, since according to Pinto et al. (2014),the �rst executions tend to be considerably slowerthan the later ones since the Java Just-in-timecompiler collects data and decide on the possibleoptimisations.Data was collected at Guaraná integration platformusing active monitors, which after the running timeestablish for the experiment stored the number ofprocessed messages at log �les. These log �les wereimported into Excel, allowing their visualisationand graph generation. The data collection for theexecutions of the simulation model in SimulinkMatlab occurs in a similar way by means of buildingblocks that represent monitors.
7.5 Results

The results regarding the number of messagesprocessed by Café running at Guaraná integrationplatform and its corresponding simulation modelrunning at Simulink Matlab are provided in Table 1.Each value in this table is the average computed forthe 25 repetitions in each combination of input rate

Figure 7: Number of messages processed by theintegration platform.

and thread number, excluding possible outliers. TheGuaraná integration platform results are �aggedas “Plat” and the simulation results are �aggedas “Sim”. Values highlighted in bold represent thehighest number of messages processes in each inputrate.
The average number of messages processed byCafé running at Guaraná integration platform in the54 experiments is presented in Figure 7. The x-axisrepresents the number of threads, and the y-axis thenumber of messages processed in each input rate.Figure 8 presents the average number of messagesprocessed in the simulation. The x-axis representsthe number of threads, and the y-axis the numberof messages processed. Fits of the experimental datashown by lines are also present (more detail below).
Analysing experimental data from Figures 7 and 8were observed peaks of messages processed byspeci�c threads. With input rate of 5000 msg/s, thehighest number of messages processed with theintegration platform and simulation were obtainedusing 3 threads, 46450 and 79267, respectively.The same happens with input rate of 6000 msg/s,the highest number of messages processed is stillobtained with 3 threads, counting 65822 messagesfor the integration platform and 89961 messagesin the simulation. For input rates of 7000, 8000,and 9000 msg/s, the highest number of messagesprocessed was always reached using 6 threads.With this number of thread and an input rate of7000 msg/s, 66614 messages were processed by theintegration platform and 82217 messages in the

56 | Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58

0 3 6 9 12 15 18 21 24
0.0

2.0x104

4.0x104

6.0x104

8.0x104

1.0x105

 Exp. - Fit - Input Rate
 5000 msg/s
 6000 msg/s
 7000 msg/s
 8000 msg/s
 9000 msg/s

Figure 8: Number of messages processed in thesimulation.

simulation; with an input rate of 8000 msg/s, 83618messages were processed by the integration platformand 75601 in the simulation; and, with an input rateof 9000 msg/s, 35479 messages were processed bythe integration platform and 79025 messages in thesimulation.
When experimenting the integration platformand the simulation with an input rate of 10000msg/s, the highest number of messages processedby the integration platform was reached withthe use of 9 threads, counting 31767 messages.However, in the simulation the highest number ofmessages processed was reached using 6 threads,counting 81500 messages. In this input rate,the optimum number of threads required to runthe integration solution di�ers, probably due toexternal interference on the environment in whichthe integration platform runs. Although we haverepeated the execution, since this repetition isautomatically programmed and execution only takes120 seconds, and execution of other software processat the operating system may caused this interference.In all other input rates experimented, the optimumnumber of threads was always the same at theintegration platform execution and the simulation.
The lines in Figures 7 and 8 were obtained�tting the experimental data using the sum oftwo distributions. The �rst one was a log-normalfunction used to identify the peak of processing ofmessages. The second one was a logistic functionused to characterise the saturation of processingof messages. The parameters of each functionwere restricted at data range observing the trendempirically. A scan of all set possibilities wasperformed in order to obtain those resulted in thesmallest di�erence between experimental and �tteddata. The most e�cient Threads obtained by the �twere (Plat. and Sim. for input rate): 3 and 4 for 5000msg/s, 3 and 4 for 6000 msg/s, 6 and 6 for 7000msg/s, 7 and 5 for 8000 msg/s, 5 and 5 for 9000msg/s, and 6 and 5 for 10000 msg/s.

7.6 Discussion

Our experiments with the integration platformand the simulation model demonstrate there isa partial relation between the number of threads

and the number of messages processed. In everyinput rate considered, increasing the number ofthreads has a positive impact on the number ofmessages processed up to a certain number ofthreads. Then, keeping increasing threads do notresult in the increasing of processed messagesas well. Adding more threads after that numberof threads in which the highest performance interms of message processing was found, leads toa deterioration of the overall performance, i.e., areduction of the number of messages processedin every input rate experimented. This behaviourmay be related with the time that the Java VirtualMachine takes to perform the context switch andmanage the threads, such as saving local data andthe program pointer of the current thread execution,and loading the local data and the program pointer ofthe next thread to be executed (Pusukuri et al.; 2011).Keeping increasing the number of threads shows thisdegradation persists also up to a certain number ofthreads and then our experiments demonstrate that�nally, from this point by increasing the number ofthreads there is no more positive or negative impacton the performance.It was also observed that by increasing the inputrate, the number of messages processes tend todecrease. This occurs because there will be moreoccurrences of tasks from the beginning of theintegration �ow in the FIFO queue to be executedby the threads. This behaviour also leads to anincrement of the amount of time a message takes tocomplete the integration �ow.Despite the number of messages processed di�ersin the execution of Café at Guaraná integrationplatform and its corresponding simulation modelrunning at Simulink Matlab, it was possible tovalidate the simulation model since in every inputrate the number of threads that give the bestperformance is the same for the integration platformand the simulation.It is observed that the experimental results ofmore e�cient Thread did not match perfectly withthe adjusted results but indicated the behaviour.We argue that a challenge is to get more processedmessage data in function on the number of threads.Thus the �ts can express with more reality theexperimental data. Nevertheless, the �ts arepresented as the beginning of the search for amathematical model able to foresee the behaviour ofthe number of messages processed as a function ofthe threads.
7.7 Threats to Validity

The integration platform we have considered inour experiments requires Java Virtual Machine torun, and this machine runs over Windows operatingsystem. Thus, any system process that runs at thesame time that the Java Virtual Machine process islikely to impact on the running experiments. Thiscan be more critical if the concurrent system processruns and requires computing resources, such as diskaccess or demands high processing CPU. These willhave a direct impact on the number of messagesprocessed and consequently a�ects the optimumnumber of threads. Simulation performed withSimulink Matlab is less likely to be in�uenced by

Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58 | 57

external system processes, since the simulationruns on a virtual environment and does not haveinterference in the actual runtime environment suchas for the Java Virtual Machine. The simulationmodel could also be improved by considering otheraspects, chie�y related with the actual hardwarein which the integration platforms runs, whichprobably a�ect the number of messages processed.The results obtained are also dependent on theintegration solution and the integration platform, soit is not possible to generalise the results to othersolutions and to other platforms. The approach wehave taken in this article is static, which meanswe analyse the integration solution for a givenintegration platform not during its execution. Ourproposal works on data that must be extracted froma previous execution of the integration solution. Thischaracteristics make the proposal tightly coupledwith the hardware in which the integration platformis running and so the data extracted is valid only forthe optimisation of the number of threads in thathardware and with that integration platform.

8 Conclusions

With the growth in the use of enterprise applicationsin companies, there is an increasing need forintegration amongst these applications. Thisintegration can be performed through di�erentplatforms. The integration platforms run integrationsolutions in runtime engines. Runtime engines areimportant for the performance of the solutions, andtherefore, �nding the optimum number of threads forthe execution of these engines has great importance.In this article we have presented a methodology anda tool to assist with the generation of simulationmodels based on queuing theory, in order to �nd theoptimum number of threads to execute an integrationsolution focusing performance improvement. Theuse of this simulation model can be used to empowersoftware engineers when con�guring the runtimeengine of their integration platform to improve theperformance of an integration solution and replacesthe need of empirical knowledge, which may bringrisks. ModelGen also allows to know the limits of anintegration solution, for example, if the softwareengineer has a limited hardware available ourapproach will assist him to �nd out the maximumsupported input rate for a given integration solutionrunning on that hardware.
Experiments were conducted running Caféintegration solution at Guaraná integration platformand its corresponding simulation model at SimulinkMatlab. The methodology and our tool supporto generate simulation models to represent thebehaviour of a runtime engine of an integrationplatform was validated and the optimum numberof threads to run and get the best performance onan integration solution was found the same in theexperiments with the integration platform and inthe simulation. Thus, from now on, ModelGen canbe used to forecast the optimum number of threadsfor integration solutions at Guaraná integrationplatforms in a static way. Other experiments can beconducted to analyse the applicability ofModelGen forother integration platforms, such as Camel, Spring

Integration, Mule, Petals, Apache Flume, and ApacheNi�. A dynamic approach has also to be investigated,since it would make our tool hardware and platformindependent. Maybe this is the most interesting andchallenging step forward to improve ModelGen.

Acknowledgements
This work was partially supported by the BrazilianCo-ordination Board for the Improvement ofUniversity Personnel (CAPES) under grant number88881.119518/2016-01, the Research SupportFoundation of the State of Rio Grande do Sul(FAPERGS) under grant number 17/2551-0001206-2,and the Brazilian National Council for Scienti�c andTechnological Development (CNPq).

References
Chaturvedi, D. (2017). Modeling and simulation of
systems using MATLAB and Simulink, CRC Press.

Dancheva, T., Gusev, M., Zdravevski, V. and Ristov, S.(2016). An OpenMP runtime pro�ler/con�gurationtool for dynamic optimization of the numberof threads, 39th International Convention on
Information and Communication Technology,
Electronics andMicroelectronics (MIPRO), pp. 192–197.
http://dx.doi.org/10.1109/MIPRO.2016.7522136.

Dossot, D., D’Emic, J. and Romero, V. (2014). Mule in
action, Manning.

FLU (2017). Apache Flume, https://flume.apache.org.Last accessed on 03/09/2018.
Frantz, R. Z., Corchuelo, R. and Roos-Frantz,F. (2016). On the design of a maintainablesoftware development kit to implement integrationsolutions, The Journal of Systems and Software
111(1): 89–104. http://dx.doi.org/10.1016/j.jss.
2015.08.044.

Frantz, R. Z., Quintero, A. M. R. and Corchuelo,R. (2011). A domain-speci�c language todesign enterprise application integrationsolutions, International Journal of Cooperative
Information Systems 20(02): 143–176. http:
//dx.doi.org/10.1142/S0218843011002225.

Freire, D. L., Frantz, R. Z. and Roos-Frantz,F. (2019). (in-press). Ranking enterpriseapplication integration platforms from aperformance perspective: An experiencereport, Software: Practice and Experience pp. 1–21. http://dx.doi.org/10.1002/spe.2679.
Freire, D. L., Frantz, R. Z., Roos-Frantz, F. andSawicki, S. (2019). Survey on the run-time systemsof enterprise application integration platformsfocusing on performance, Software: Practice and
Experience 49(3): 341–360. http://dx.doi.org/10.
1002/spe.2670.

Grinstead, C. M. and Snell, J. L. (2012). Introduction
to probability, American Mathematical Soc.

Higham, D. and Higham, N. (2005). MATLAB guide,Society for Industrial and Applied Mathematics -SIAM.

http://dx.doi.org/10.1109/MIPRO.2016.7522136
https://flume.apache.org
http://dx.doi.org/10.1016/j.jss.2015.08.044
http://dx.doi.org/10.1016/j.jss.2015.08.044
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1142/S0218843011002225
http://dx.doi.org/10.1002/spe.2679
http://dx.doi.org/10.1002/spe.2670
http://dx.doi.org/10.1002/spe.2670

58 | Haugg et al./ Revista Brasileira de Computação Aplicada (2019), v.11, n.1, pp.48–58

Hohpe, G. (2005). Your co�ee shop doesn’tuse two-phase commit [asynchronous messagingarchitecture], IEEE software 22(2): 64–66. http:
//dx.doi.org/10.1109/MS.2005.52.

Hohpe, G. and Woolf, B. (2012). Enterprise integration
patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional.

Ibsen, C. and Anstey, J. (2017). Camel in action,Manning Publications Co.
Ju, T., Wu, W., Chen, H., Zhu, Z. and Dong, X. (2015).Thread Count Prediction Model: Dynamicallyadjusting threads for heterogeneous many-coresystems, IEEE 21st International Conference on Parallel
and Distributed Systems (ICPADS), pp. 456–464. http:
//dx.doi.org/10.1109/ICPADS.2015.64.

Jung, C., Lim, D., Lee, J. and Han, S. (2005). Adaptiveexecution techniques for smt multiprocessorarchitectures, Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, pp. 236–246. http://dx.doi.org/10.
1145/1065944.1065976.

Klcinrock, L. (1975). Queueing systems, vol. 1: theory,New York: Wiley.
Lee, J., Wu, H., Ravichandran, M. and Clark, N.(2010). Thread tailor: dynamically weaving threadstogether for e�cient, adaptive parallel applications,
ACM SIGARCH Computer Architecture News, pp. 270–279. http://dx.doi.org/10.1145/1816038.1815996.

Lindholm, T., Yellin, F., Bracha, G. and Buckley, A.(2014). The Java virtualmachine speci�cation, PearsonEducation.
Muñoz, E. and Ruspini, E. (2014). Simulation offuzzy queueing systems with a variable numberof servers, arrival rate, and service rate, IEEE
Transactions on Fuzzy Systems 22(4): 892–903. http:
//dx.doi.org/10.1109/TFUZZ.2013.2278407.

NIF (2017). Apache Foundation, https://nifi.apache.
org. Last accessed on 03/09/2018.

Pandey, C. (2015). Spring Integration Essentials, PacktPublishing Ltd.
Pinto, G., Castor, F. and Liu, Y. D. (2014).Understanding energy behaviors of threadmanagement constructs, ACM SIGPLAN Notices,pp. 345–360. http://dx.doi.org/10.1145/2660193.

2660235.
Prado, D. (2014). Teoria das Filas e da Simulação,Editora de Desenvolvimento Gerencial.
Pusukuri, K. K., Gupta, R. and Bhuyan, L. N.(2011). Thread reinforcer: Dynamically determiningnumber of threads via os level monitoring, IEEE
International Symposium onWorkload Characterization
(IISWC), pp. 116–125. http://dx.doi.org/10.1109/
IISWC.2011.6114208.

Ritter, D., May, N. and Rinderle-Ma, S.(2017). Patterns for emerging applicationintegration scenarios: A survey, Information
Systems 67(Supplement C): 36–57. http:
//dx.doi.org/10.1016/j.is.2017.03.003.

Sargent, R. (2010). A new statistical procedure
for validation of simulation and stochastic models,L.C. Smith College of Engineering and ComputerScience.

Schildt, H. (2017). Java: a beginner’s guide, McGraw-Hill.
Son, Y. J. and Wysk, R. (2001). Automatic simulationmodel generation for simulation-based, real-timeshop �oor control, Computers in Industry 45(3): 291–308. http://dx.doi.org/10.1016/S0166-3615(01)

00086-0.
Surhone, L., Timpledon, M. and Marseken, S.(2010). Petals Enterprise Service Bus (Esb), BetascriptPublishing.
Tukey, J. W. (1977). Exploratory data analysis, Mass.Reading.
Winston, W. (2016). Microsoft Excel data analysis and
business modeling, Microsoft press.

http://dx.doi.org/10.1109/MS.2005.52
http://dx.doi.org/10.1109/MS.2005.52
http://dx.doi.org/10.1109/ICPADS.2015.64
http://dx.doi.org/10.1109/ICPADS.2015.64
http://dx.doi.org/10.1145/1065944.1065976
http://dx.doi.org/10.1145/1065944.1065976
http://dx.doi.org/10.1145/1816038.1815996
http://dx.doi.org/10.1109/TFUZZ.2013.2278407
http://dx.doi.org/10.1109/TFUZZ.2013.2278407
https://nifi.apache.org
https://nifi.apache.org
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1145/2660193.2660235
http://dx.doi.org/10.1109/IISWC.2011.6114208
http://dx.doi.org/10.1109/IISWC.2011.6114208
http://dx.doi.org/10.1016/j.is.2017.03.003
http://dx.doi.org/10.1016/j.is.2017.03.003
http://dx.doi.org/10.1016/S0166-3615(01)00086-0
http://dx.doi.org/10.1016/S0166-3615(01)00086-0

	1 Introduction
	2 Related Work
	3 Background
	3.1 Queuing Theory
	3.2 Runtime Engine
	3.3 Guaraná Integration Platform

	4 Methodology
	5 Supporting Tool
	6 Case of Study
	6.1 Context of the Integration Solution
	6.2 Conceptual Model
	6.3 Simulation Model

	7 Experiments
	7.1 Research Question
	7.2 Environment
	7.3 Variables
	7.4 Execution and Data Collection
	7.5 Results
	7.6 Discussion
	7.7 Threats to Validity

	8 Conclusions

