Revista Brasileira de Computacdo Aplicada, April, 2019

DOI: 10.5335/rbca.v11i1.8051
‘UPF EDITORA Vol. 11, N° 1, pp. 2-13
de Passo Fundo Homepage: seer.upf.br/index.php/rbca/index

ISSN 2176-6649

ORIGINAL PAPER

A case study on a service-based information systems
integration in academic environment

Ramon Abiliol, Cristiano M. Garcial'2, Flavio Morais! e Antonio E. R. Neto!
Information Technology Department, Federal University of Lavras (UFLA) - Brazil e 2Graduate Program in
Systems and Automation Engineering, Federal University of Lavras (UFLA) - Brazil
*{ramon.abilio,cristiano.garcia,flavio,antonio} @dgti.ufla.br

Received: 2018-04-25. Revised: 2018-11-05. Accepted: 2019-01-17.

Abstract

In corporate environments, we can find various information systems (IS), which need to communicate to
each other to share and maintain data consistency. Academic environments (AE) are even more complex than
corporate environments because they have several IS to help manage different aspects, such as restaurant and
library, which need to have consistent data to work properly. Therefore, it is necessary to encounter a form
to develop an integration among them and share common, trustworthy data. We present a case study on
SOA-based architecture for IS integration within AE to keep data consistent through the systems, to monitor
the communication, and to make the integration safe and manageable. We applied the proposal, and the
results show that we can integrate, monitor, and manage different software systems and network services and
permissions. The main contribution is a useful integration architecture for AE that must share trustworthy
data among several, heterogeneous IS and network systems. In addition, a small team can implement and
maintain this proposed architecture.

Key words: Academic Environments; Information Systems Integration; Service-Oriented Architecture; Web
Services.

Resumo

Em ambientes corporativos, pode-se encontrar diversos sistemas de informacdo (SI), que precisam comunicar
entre si para compartilhar e manter dados consistentes. Ambientes académicos conseguem ser ainda mais
complexos que ambientes corporativos, pois, especialmente em universidades federais, ha diversos aspectos
a serem gerenciados, como restaurante universitario e biblioteca. Tais setores também precisam de dados
consistentes para funcionar corretamente e nio haver perda financeira. Entdo, é necessario encontrar um meio
de desenvolver uma integracdo entre os SI e compartilhar dados comuns de maneira confiavel e consistente.
Neste trabalho, é apresentado um estudo de caso sobre uma arquitetura orientada a servigos para integracdo
entre SI em ambientes académicos para manter os dados consistentes através dos sistemas, monitorar a
comunicacdo entre tais sistemas e tornar a integracdo segura e consistente. A proposta foi aplicada e os
resultados mostram que é possivel integrar, monitorar e gerenciar permissdes de integracdo entre diferentes
SI e servigos de rede. A principal contribui¢do é uma arquitetura de integracdo para ambientes académicos que
precisam compartilhar dados confiaveis através de diversos e heterogéneos SI’s e servicos de rede. Além disso,
uma equipe pequena de TI consegue implementar e manter a arquitetura proposta, ja que ndo ha necessidade
de alteracdo de codigo de sistemas e servigos ja existentes.

Palavras-Chave: Ambientes académicos; Integracdo de Sistemas de Informacdo; Arquitetura orientada a
servico; Servicos Web.

http://dx.doi.org/10.5335/rbca.v11i1.8051
http://seer.upf.br/index.php/rbca/index

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13 | 3

1 Introduction

Information Systems Integration constitutes a
common problem in corporate environments, as
well as in academic environments. Studies have
pointed out that, concerning academic environments,
several Universities around the globe in fact struggle
with integrating information systems (Andersson
et al.; 2014; Costa et al.; 2010; Cunha et al.; 2008;
Garcia et al.; 2015; Fu and Yuan; 2011; Suryawan,
2014; Bessa et al.; 2016; Putro and Rosmansyabh,;
2017). Universities, in general, have different
necessities regarding their information system since
they have departments that deal with administrative
activities and departments that deal with learning,
research, and extension activities. Furthermore,
those information systems have to be integrated to
share data among them and among network services
composing an heterogeneous environment due to
the diversities concerning, for example, technologies,
DBMS, and platforms.

Corporate environments, in general, have different
information systems to handle strategic, tactic,
and operational information (Turban et al.; 2004).
Besides, data may be shared among systems in
different levels (vertical integration), and among
different systems in the same level (horizontal
integration). There is a number of approaches
for Information Systems Integration (ISI), which
can be classified, for instance, by technique-
centric approach, such as “Centralized Information”
(Martins; 2005), or by focusing the organization itself
and its processes, for example “Business to Business
(B2B)” (Hohpe and Woolf; 2003).

Concerning ISI, there are three important
dimension of issues (Hasselbring; 2000): distribution,
heterogeneity and autonomy. Distribution means
the ability of a proxy service hide distribution and
be presented as an only system, for example, by
using Remote Procedures Calls (RPC). Heterogeneity
concerns the different servers on which various
systems, developed in a number of different
languages, can execute. Finally, autonomy is related
to the ability of a system decide how to communicate
with external systems (Hasselbring; 2000).

Database features can assist at ISI by using direct
connections to external views or, if distinct databases
are on the same Database Management System
(DBMS), the tools of the DBMS may be used, such as
triggers, procedures, or even database engines, for
example the Federated Storage Engine, present in
MySQL DBMS. Other approaches, such as creating a
unique global ID for entities (Suryawan; 2014) can be
used, although it represents a big change in already
settled / third-party databases. Simultaneously,
other tools, such as Cron!, may help by being set
to trigger an update script.

Approaches such as Service-Oriented Architecture
(SOA) can be used for ISI. Several technologies provide
support for implementing SOA, such as J2EE, .Net
Frameworks, Microservices (Dragoni et al.; 2017)
and Web Services (He and Da Xu; 2014). When
we use SOA specifically for ISI, we have Service-
Oriented Integration (SOI) (Hensle et al.; 2010; OASIS;

thttps://help.ubuntu.com/community/CronHowto

2006). A way of implementing SOI is through Web
Services, which represents a vision on distributed
programming and resource offering, strongly linked
to Internet (Technologies; 2001). Many patterns
and technologies, such as Simple Object Access
Protocol (SOAP), Representational State Transfer
(REST) architecture, and Java API for Web Services
(JAX-WS), provide support to develop Web Services.

ISI can be extended to academic environments as
they may be even more complex and heterogeneous
than corporate environments (Alkhanak and
Mokhtar; 2009; Andersson et al.; 2014; Costa et al.;
2010; Fu and Yuan; 2011; Suryawan; 2014). Systems
most commonly used in corporations, e.g. Enterprise
Resource Planning, frequently contain modules that
embraces the major activities in the company in an
only system. On the other hand, universities have
different departments and services, for instance
restaurant, academic control department, wireless,
e-learning platforms without evident relation
among them. However, these systems and services
have at least one thing in common: they do need
trustworthy, consistent and updated data.

The Federal University of Lavras (UFLA) is
an example of that academic environments that
has complex and heterogeneous information
system integration (Garcia et al.; 2015). UFLA
has, approximately, 20 information systems (IS)
maintained by the Information Systems Coordination
(ISC), which is subordinated to the Board of
Information Technology Management. Those
information systems have peculiarities regarding
their: goal (academic, administrative, and support);
DBMS; platforms (desktop, web or mobile); and
technologies. Furthermore, some of those IS
have been developed by ISC and others have been
developed by thirds (companies or professors with
their students). In addition, the University has
network services, such as e-mail and wireless
internet available to the whole academic community
via user authentication.

This diversity of IS and network services makes
the integration challenging. Therefore, in this
paper we present a case study on a SOA-based
integration architecture designed to be scalable,
flexible, monitorable, and to have mechanisms of
security. A small team with 3 professionals (database
managers and developers) implemented the proposed
architecture at UFLA, making the integration more
reliable and secure. After that, they could identify,
for example, problems in the information systems
integration using the management and monitoring
system developed by them. The main contribution
of this work is an integration architecture that can
be implemented by small teams and can be used
in academic environments that have a diversity of
information systems and network services.

The rest of the paper is organized as follows.
We briefly present concepts related to information
systems integration and SOA in Section 2. In Section
3, we define the problem and, in Section 4, we present
the integration architecture proposal, covering a
number of aspects. We implemented the architecture
in an University and we report and discuss the results
in Section 5. The related work is presented in Section
2.3 and the Conclusion is presented in Section 6.

4 |

R. Abilio et al./ Revista Brasileira de Computacdo Aplicada (2019), v.11, n.1, pp.2-13

2 Background

The company that uses Information Technology
(IT) in an efficient way, integrating IT strategies
to business strategies, is able to gain competitive
advantage (Laurindo et al.; 2001). In these companies
- specially in Universities -, it is common to find
scenarios with many information systems, in which
data must be shared in order the preserve the
consistency among all IS and network services and
eventually to constitute an Information System
Integration (ISI). One of the most popular techniques
for ISI is by using SOA. This section briefly presents
approaches of information systems integration and
concepts related to the Service-Oriented Architecture
(SOA).

2.1 Information
Approaches

Systems Integration

Several reasons may instigate companies to contract

or develop information systems integration solutions.

These reasons may be (Degan; 2005): to extend
from the existent technology, to reduce costs and
time on implementation of new services; to allow
integration with stakeholders, expanding the range
of services; and integrate common information in
different databases, outcomes of fusions, acquisitions
or legacy systems. Information Systems Integration
constitutes a risky task, as each organization has its
own characteristics and integration needs (Martins;
2005).

An organization can integrate systems taking into
account approaches with different focuses, such as

implementation or on the company and its processes.

Regarding implementation level, an information
systems integration can be classified as (Martins;
2005): a) Composite Applications: applications
integrated via API, that works as a connector between
systems; b) Centralized Information: information
systems have access to the same database sharing
data and metadata; and c) Integrated Management
Systems: closed systems and formed by independent,
internal modules. This type of integration is
implemented, commonly, in the source-code level.
Focusing on the organization and its processes,
we have, for instance (Hohpe and Woolf; 2003): a)
Data Replication: integration in the information
level, having distributed, synchronized and
updated databases; b) Business-to-Business

Integration (B2B): surpass companies’ boundaries.

Represents functionalities offering between different
organizations. Although the other concepts
mentioned here may be applied to B2B, the
utilization of external networks may arise new
aspects to be analyzed (Hohpe and Woolf; 2003);
and c) Service-Oriented Architecture (SOA): systems
offer functionalities as services, that means, in
computing science context, “function well-defined
and universally available”.

Although different focuses, the taxonomies
have similarities among themselves (Hohpe and
Woolf; 2003; Martins; 2005). For instance, the
approaches Business-to-Business Integration (B2B)
and Composite Applications may use API to sharing
information and accomplish an integration among
information systems. To realize the integration, we

can use SOA implemented by using Simple Object
Access Protocol (SOAP) or Representational State
Transfer (REST), and Extended Markup Language
(XML) or Javascript Object Notation (JSON).

2.2 Service-Oriented Architecture

Software architecture represents a structure that
comprises software components, their externally
visible properties and the relation between both
(Pressman; 2001). Service-Oriented Architecture
(SOA) have been considered one of the principal
paradigms in distributed systems design leading to
a ramification in Software Engineering, so-called
Service Software Engineering (van den Heuvel et al.;
2009). SOA constitutes a paradigm that aims to
organize and utilize resources, that may be under
control of different owners, by providing a uniform
means of offering, discovering, and interacting with
functionalities used to produce the desired and
consistent effects.

This paradigm can offer several benefits, such as
control of systems growth, global-scale services offer
and utilization and cost reducing in business-to-
business cooperation (Valipour et al.; 2009). By using
SOA as an integration means, there is the Service-
Oriented Integration (SOI), which principal aim is
to create an integration among multiple systems,
changing little or nothing their implementations
(Hensle et al.; 2010). This technique exposes data,
functionalities and processes to be consumed by
systems of integration. There are several approaches
for SOI focusing on existent systems (Hensle et al.;
2010): a) Service: it uses a service layer between
existent systems and service consumers; b) Process
Integration: to integrate processes in a corporate
environment, suggesting the utilization in the
integration of small processes within big processes,
having human interaction or not; and c) Data
Integration: it regards an approach to manage data
models’ complexity in different applications.

Web Services (WS) constitute a means of
implementing SOI providing a service interface that
allows consumers to interact with service providers
(Coulouris et al.; 2013). The most common manner
to implement WS is by using Simple Object Access
Protocol (SOAP) as protocol or Representational State
Transfer (REST) as architecture of communication,
also mentioned as solution for processes integration
among organizations (Zur Muehlen et al.; 2005).

SOAP is a protocol that uses Web Services
Description Language (WSDL), an XML-based
document, to describe functionalities offered by a
WS (Zur Muehlen et al.; 2005). SOAP provides a basic
standard of communication, in which each operation
is represented by its terminal, described in the XML
sent in the request, instead of a method HTTP as in
REST architecture (Zur Muehlen et al.; 2005).

REST is an architecture (Fielding and Taylor;
2002) which constitutes an abstraction of principles
that makes World Wide Web (WWW) scalable
(Zur Muehlen et al.; 2005). It allows offering services
identified by a Uniform Resource Identifier (URI), for
example http://www.mysite.com/companies. HTTP
methods such as GET, POST, DELETE and PUT, define
the operation to be executed on a record or a set of
records. For example, GET obtains, POST inserts,

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13 | 5

DELETE removes and PUT updates data (Fielding and
Taylor; 2002).

By using REST the responses can be returned
in accordance with the application requirements,
for instance, by using different types of response
or formatting, such as Javascript Object Notation
(JSON) or XML. Conversely, SOAP defines a response

structure that must be respected (Gorski et al.; 2014).

2.3 Related Work

Information Systems Integration in academic
environments has been studied along the years and a
number of proposals have been made (Alkhanak and
Mokhtar; 2009; Andersson et al.; 2014; Costa et al.;
2010; Fu and Yuan; 2011; Suryawan; 2014; Putro and
Rosmansyah; 2017).

In the Acores University (Portugal), a set of Web
Services was developed aiming to optimize critical
tasks, involving financial and strategic information
(Costa et al.; 2010). Risky administrative tasks,
such as scholarship distribution and discounts for
flight tickets (relevant here as the principal means
of reaching Acores is by aircraft) - that required
information correctness and velocity, - used to take
several days to be checked and validated, as the
university’s employees resorted to fax, telephone,
mail and electronic mail to perform these tasks (Costa
et al.; 2010).

In the Federal University of Pelotas (UFPel
- Brazil), it was developed and deployed a set
of Web Services, named Cobalto Webservice, to
keep information consistency among systems and
services, such as university’s restaurant, e-learning

environment and wireless (Andersson et al.; 2014).

This project, by the time of publishing, was still
ongoing, as 60% out of all systems in UFPel already
used Cobalto Webservice, and the other 40% of
systems were scheduled to be migrated (Andersson
et al.; 2014).

An ISI solution was deployed in an Indonesian
University, based on a global unique ID, that
identifies a person in the Institution and is used
as a synchronization key (Suryawan; 2014). This
key is copied among the tables in the databases of
the integrated systems. One of the applications is
defined as a Single Source of Truth (SSOT) and the
synchronization is scheduled by using Cron. The
model does not present resources to recover from
failures during synchronization. The integration
script by accessing Web Services or direct access to
database, the author affirms that Web Services are
utilized only for simple and occasional tasks. For
more expensive tasks, the update is done by using
direct access to database, as in case of network failure,
the instruction keeps running on the DBMS. Yet
according to the author, this is a low-cost solution
and it is considered a palliative solution, until the
development of a new definitive, robust solution
(Suryawan; 2014).

In a University in China, an ISI platform has
been developed for 6 years in order to improve and
safely ensure infrastructure, account, application,
privileges, processes and data integration, and a case
study is presented (Fu and Yuan; 2011). This platform
has solved a number of ISI issues, such as a better
control access and authentication management (Fu

and Yuan; 2011). Although it seems interesting, there
is a lack of important details, as it presents an entire
platform but little part is shown in the case study.

In a Malaysian University, it was developed a set
of Web Services in order to convert some applications
into services and make data available (Alkhanak
and Mokhtar; 2009). In this mentioned work, it
was shown the importance of integration and data
availability to the academic community through SOA.
At first, the students were facing problems in using
data and services of the institution. With the adoption
of integration of the services, students could rely
more on data provided by the colleges, with increased
speed and low costs implementations (Alkhanak and
Mokhtar; 2009).

The work developed in Portugal (Costa et al.;
2010) presents a very specific, limited integration,
as it seemed to fit only their needs. Another
work, developed in Brazil (Andersson et al.; 2014),
presents a generic Web Service, intending to integrate
the various systems. However, in the work it is
not mentioned if they count on security methods,
or a monitoring system, for example. The work
performed in Indonesia (Suryawan; 2014) presents
a low-cost database integration, which can be very
expensive while changing data models, specially in
third-party databases. The integration is very simple,
and the author emphasizes that his approach it is
not a definitive one, and thus, a more robust, which
would take longer and more knowledge, should be
developed. Our work provides a generic, scalable
manner to integrate a number of systems, in a safe
and monitorable form.

Putro and Rosmansyah (2017) presented a proposal
of a enterprise service bus (ESB) to deal with
smart educational services. Their proposal is based
on SOA, web services e microservices technologies
and its main functionality is to route, transform
protocols, and transform messages or data due
to compatibility among services and information
technology resources. Our architecture can be used
with smart educational services acting as an ESB and
also dealing with data integration of other software
systems and network services.

Garcia et al. (2015) reported in their paper how the
software system integration was performed at UFLA
before the adoption of a SOA-based integration. In
June/2015, a mobile application was developed and
integrated to the other software systems using SOAP
and XML in the communication. However, it was
necessary the development of a REST layer to reduce
data processing on the mobile application. (Garcia
and Abilio; 2017) studied the impact of that layer
regarding time response of the requests. This work
differs from Garcia et al. (2015) and (Garcia and Abilio;
2017) since it presents a consolidated architecture
used at UFLA that has been studied and improved
since 2014. In this work, we present an abstraction
of our architecture proposal that can be used as a
reference by other IT teams.

3 Problem Definition
In general, Universities are based on teaching,

researching, and extension activities. To support
them, universities have departments to deal with

6 |

R. Abilio et al./ Revista Brasileira de Computacdo Aplicada (2019), v.11, n.1, pp.2-13

administrative tasks, e.g. human resource, and
university planning and management. Moreover,
they provide services for their students, professors,
and employees, such as restaurant, library, e-
learning environment, and academic e-mail. In
addition, there are several software systems to
support the activities and services in the university.
These software systems are commonly developed by
different companies, storing data in distinct Data
Base Management Systems, running on different
Operating Systems.

Therefore, we have a number of different processes
and information systems (IS) to support them.
Those IS have to be integrated to eliminate, for
instance, duplicated work among the departments
and inconsistency data among the IS. In this
integration, some IS connect in other systems to
authenticate an user, obtaining few data in response,
or periodically synchronize more than thousands of
registers in each connection (batch update).

We can identify the following characteristics of
this scenario: a) IS used by different business areas
(academic, administrative, and support); b) IS and
network services based on different technologies
and hosted in different servers; c) IS of different
companies; and d) The need of IS for sharing different
amount of data.

We also have to consider aspects, such as:
a) Security: only authorized applications can
have access to the data because personal data
of thousands of people may be handled; b)
Maintainability, Flexibility and Scalability: new or
different information systems and network services
may be added, changed, or removed, for example,
due to business rules and information technology
changes; and c) Monitorability: it is necessary
to monitor the integration to detect, for instance,
problems in the network connection or unnecessary
data synchronization.

This scenario is real for universities in Indonesia
(Suryawan; 2014) and it is present in Brazil
(Andersson et al.; 2014; Cunha et al.; 2008; Garcia
et al.; 2015) and Acores (Costa et al.; 2010). Our
proposal aims to deal with different systems /
technologies, running on different servers, due to the
heterogeneity present in this sort of environment.

4 Proposed Architecture

We propose an integration architecture addressing
the characteristics and aspects that we identified in
the Problem Definition. This integration architecture
can be classified regarding the implementation-
centric vision as a “Composite Applications”
approach (Martins; 2005) due to the integration
by using SOAP. Regarding the strategies, it focuses
on the organization and its processes using a
Service-Oriented Architecture and Data Replication
(Hohpe and Woolf; 2003) because the systems
provide functionalities by means of services, that
can be consumed by clients. Those functionalities
may deal directly with the databases involved in the
integration. In this Section, we discuss the main
aspects of the proposed architecture.

4.1 Maintainability, and

Scalability

Flexibility

Regarding maintainability, flexibility, and scalability,
we have to analyze the services and providers
granularity. A balance between coarse-grained
(when it is involved too much data) and fine-
grained (impacting in round-trip requests to
maintain a single record, for instance) granularity
is recommended in order to prevent a number
of problems, such as service duplication, hard
maintainability, and SOA principles breaking
(Kulkarni and Dwivedi; 2008).

Therefore, we discussed the question “Is it better
only one provider containing all services, or some
providers containing some services?”. We selected
the second option due to scalability, isolating, and
grouping the services by specific systems. This
may improve the governance, auditability, and
maintainability of services (Kulkarni and Dwivedi;
2008). With different providers grouping related
services, the maintainability and flexibility are
increased because when a provider or its services
need to be created or changed, the provider can be
initiated or stopped without interfering on the other
providers.

4.2 Security

The architecture uses SOAP as communication
protocol and JSON as response protocol. SOAP
had been chosen because the client has to know
the operations of the provider. SOAP counts on
specifications such as WS-Security, which aims to
improve SOAP messages, providing three principal
mechanisms (Lawrence et al.; 2006): i) sending
security tokens as part of the message; ii) message
integrity; and iii) message confidentiality. We used
JSON because we can transform objects into text
in the response, and at the same time not mixing
SOAP structure and the structure of the response,
as it would happen if both would use XML. In the
proposed architecture, the responses must contain a
JSON object with four attributes:

i. ID: the ID of the message with the ID of the
Provider, in order to improve the debug of eventual
failures;

ii. MESSAGE: it contains a textual description or
an object of the outcome for the action that was
requested;

iii. TYPE: it indicates the type of message,
for instance, if occurred a “SUCCESS” or an
“ERROR_DB”;

iv. SYSTEM: this attribute brings the name of the
requested provider.

Figure 1 shows an example of a JSON object with
the four attributes filled. In this example, the
attributes have the following values: 1) ID: 700_1.1;
2) MESSAGE: records requested by the consumer in
the requirements elicitation; 3) TYPE: SUCCESS; and
4) SYSTEM: PRG was the provider requested by the
consumer.

In order to prevent unauthorized access, an
authentication approach using a Token and IP address
can be used. That is, each authorized system has a

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13 | 7

& (=id
El7o0_1.1
@ [=-message

|=] {"active™:"yes" "servant_type":"technician","servant_name™."CRISTIANO MESQUITA
GARCIA™, civil_workplace™:"CSINDGTI","e_mail™ cristiano.garcia@dgti.ufla.br}

@ [=type
2| SUCCESS

@ [=system
2| PRG

Figure 1: JSON-formatted response of the Web
Service

auth (ab4165baff54) I

_ _ _ CAdGdalcGSD
Consumer

(Client) Provider

{id'500_1.1', message: "Login successfully
changed from cmg to cristiano’, type:
"SUCCESS’, system: 'SIGRH}

Figure 2: Example of interaction between a Private
Consumer and a Provider

Token and each token has a list of IP addresses or

complete subnets from which the requests can origin.

Therefore, when a system initiate its authentication,
it provides its Token and the provider checks the IP of
the client. If both match, the system is authenticated
and can consume the services.

Figure 2 presents an example of the process in
which a consumer needs to change a user login. The
consumer starts calling “auth” service and providing
its token (“ab4165baff54”). The provider verifies if
the request came from an authorized IP and returns
a session key (“c4d64aic65b”). A request with
session key is utilized to prevent unneeded accesses
to database. The services that the token can access are
loaded into the session and retrieved using a session
key. After that, the consumer calls “changeLogin”
service providing the session key, the current login
and the new login. As a result, the provider returns a

JSON object with the four attributes aforementioned.

To deal with a situation in which we have an
integration among internal information systems
(managed by the Information Technology team
of the University) and external systems (software
systems developed by thirds), we divide the providers
in two categories named:
Private providers are the ones that receive requests
exclusively from internal systems or contains services
that perform UPDATE or DELETE operations. On the
other hand, Public providers contain single services
that perform only SELECT operations consuming
private services. In this way, we have only one
public interface and we encapsulate private services
protecting them from unauthorized access.

Figure 3 illustrates the situation in which an
external client needs to change the user login and
this update needs to be propagated to more than
one system. Consumer calls “changeLogin” service

Private and Public.

from the Public Provider providing its token and
the Public Provider checks the token and the IP of
the Consumer. After that, the Public Provider acts
like a Private Consumer (Figure 2) having its own
token, authenticating itself in the respective Private
Provider, and consuming the services. Therefore,
the Public Provider receives requests and maps the
requested services to the respective private services.
This approach allow the encapsulation of services
and provides only one public interface. That is, if
the structure of the private providers change, or a
new private provider is included, or an existing one
is remove, the consumer will not be affected. The
Public Provider can log and/or send an e-mail to the
system administrator in case of failure.

4.3 Data Integration

It is common that legacy systems do not provide
mechanisms to integrate with other systems.
Therefore, an integration architecture can work as
a connector among systems providing, consuming,
and translating data. The proposed integration
architecture provides, consumes, and translates data
among systems by using SOA-based providers and
consumers.

In the proposed integration architecture, we can
have providers and consumers that act directly in the
databases of the integrated systems or that provide
and consume SOA-based services, when at least one
system provides them. When the service have to
change data directly in the database, it is needed
to gather the requirements and study the metadata
involved, contacting the software vendors in order
to detect possible and undesirable side effects at
updating data directly on the database. When the
systems provide an integration interface, the negative
impacts are minimized.

Providers and consumers can be developed for each
software system and the execution of the consumers
can be scheduled. Figure 4 shows five software
systems with their providers and the respective
consumers executed by Cron.

In order to maximize the data consistency among
the systems, there is a database table where the data
that should be propagated to the other systems must
be inserted. This database table works as a buffer.
The client of each system queries this table, in a
predefined frequency, in order to obtain the data and
to consume the provider of the same system, sending
the data. Thus, both systems tend to be consistent
among each other.

4.4 Monitorability

The integration should be monitorable in order to
detect failures, such as network or database failures.
It is also necessary a manner to compare the amount
of requests among systems to detect the time of the
day that the requests happen the most, and to detect
undesirable requests. It is necessary a graphical data
in order to be rapidly turned into information.

A Management System (MS) can be developed for
monitoring and managing the providers, services,
tokens, and requests. In its main window, MS should
have a dashboard showing graphics that allow the

8 | R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13
auth('c4d64alcBsh? >
_____ _JSarefisal __________| Private
changeLogin{'15adeff541', 'emg', ‘cristiano’) Provider 1
changeLogin('c4dE4alcEsh’, ‘cmyg’, ‘cristianc’) | 4' ﬁ_d'iojrmgsgejaag_huzc;sﬁlw_«:h;@ Tom |
Lt ©mg to cristiano’, type: "SUCCESS', system: 'System1}
Consumer | __ _ _ Public
(Client) '500_1.1', message: 'Login successiully changed from | Provider
isti ', 'SUCCESS', ;WS . .
cmg to cristiano’, type System: 1 auth('c4d64alcosh) >
- — — — — — tsgeanasc | .
changeLogin{ 15645ab45fc, ‘emg, ‘cristiana’) > T o
(<ie0e 1T, message: Togm siccassly changed fom |
cmg to cristiano’, type: 'SUCCESS', system: 'System27}
Figure 3: Example of interaction between Public and Private providers
extends:
System 2 ﬁ
System2 Provider
3 2 ;
§ g f\) CRUD Toke
svstem 1 |€ okens { Read Tokens
ystem 1 - {3 System 3 ‘ User tfevel 1
E 3 1
z =
g‘ =) extends
(7] 13 Manager CRUD Providers
’g] E CRUD Users
g 3
. User Level 2
System 5 : v System 4
g g
% - h (=3
Client 5 Client 4 : . :
al e e =2 Figure 5: Use Case Diagram of the Management

Figure 4: Integration Architecture

comparison of number of requests, success/error
in the processing of requests, number of requests
between current and last week, time of the last
request, among others. MS should have CRUD (Create,
Read, Update, and Delete) functions for tokens, and
IP / subnet addresses from which a request can be
origin (consumer’s IP address).

MS has to provide a flexible management of
the authorized systems avoiding configuration files
to configure tokens and their IPs. In MS, the
administrator can enable or disable a service in
a graphical way. Furthermore, we can generate
reports on the stored data related to the services
and the requests. Services that check the status of
communication between clients and providers are
important. Additionally, when facing for instance a
timeout, the service may send warning e-mails to
users recorded in MS.

The Use Case Diagram (Figure 5) shows the MS
actors and functionalities. MS has three actors
(levels of access): 1) User Level 2 can only view the
Dashboard; 2) User Level 1 inherits the permissions
from User Level 2, and can also read Services, Tokens
and Providers, but cannot update or delete them; and
3) Manager can maintain Services, Tokens, Providers,
Users, view Dashboard and link Tokens to Services.

5 Applying the Proposed Architecture

The Federal University of Lavras (UFLA) has been
passing through massive changes, as Brazilian

System

government has encouraged the creation of new
courses in Federal Universities and, thus, increasing
the number of students and civil servants, including
professors. Therefore, new needs started to emerge
regarding information systems. UFLA used to have
isolated software systems in each department, and
due to its growth, it was detected the need for sharing
information automatically among that information
systems. Therefore, in this section, we present
the scenarios before and after the development and
deployment of the proposed integration architecture.

5.1 Scenario before the Proposed Architecture

Due to the growth of the University, in 2006, the first
spark of ISI at UFLA appeared when data started to
be shared among Cin-Cadastro, Zimbra, and LDAP,
by using UDF to execute external scripts (Garcia
et al.; 2015). UDF stands for User-Defined Function,
functions programmed by a user, used as native
function in MySQL, developed in C and compiled
internally in the DBMS (MYSQL; 2005). A number of
problems were identified when using UDF, such as
database overload, as well as a problem related to a
MySQL version update from 4 to 5.

Cin-Cadastro is a software system that allow the
management of users of e-mail, wireless, and the
generation of the Institutional Card. In 2008, ISC
started the development of SIG-UFLA aiming the
centralization of data of civil servants and students
and providing functions to manage students and
professors academic life (e.g., courses, disciplines,
online enrollment, and reports). As SIG-UFLA was

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13 | 9

Federated Engine— — — ~L*{RV3Acesso
- —
~

cin-) : ~
Cadastro — Trigger =
/ \\ Trigger
UDF -1
l ~cron

"\
l\ S
\
> Pergamum

Figure 6: Integrated Software Systems before the
Proposed Architecture

going to have its own base of users, it was decided
to integrate SIG-UFLA and Cin-Cadastro avoiding
duplicated work registering users in both systems.
Although Cin-Cadastro centralizes the majority of
data used by other systems, SIG-UFLA has the data
of civil servants, students, and other people that have
relation with the University.

Before implementing the proposed approach, only
4 systems and 2 networking services participated in
the ISI (Figure 6): Cin-Cadastro, RV3Acesso, Zimbra,
SIG-UFLA, Pergamum, and LDAP. The integration of
the information systems and network services was
implemented by using scripts scheduled in Cron and
DBMS tools, such as triggers, UDF, and Federated
Engine of MySQL (Figure 6).

Figure 6 shows that, in the integration of SIG-
UFLA and Cin-Cadastro, it was used triggers, i.e.,
when data of a user are inserted or updated, an
event is dispatched and Cin-Cadastro is updated.
Pergamum and Cin-Cadastro were integrated using
PHP scripts executed by Cron at scheduled time. Cin-
Cadastro, Zimbra, and LDAP were integrated using
UDF, but this approach was very difficult to maintain,
as it is developed in C language programming and
compiled in the DBMS. Furthermore, as the update
volume was growing, the longer the update took to
be concluded overloading the database server (Garcia
et al.; 2015).

The integration approach presented in Figure 6
was difficult to manage and scale because: 1) when
other system needed data, database views were
made available for them; 2) it lacked a mechanism
to monitor the integration; 3) there were several
mechanisms to integrate the systems; and 4) UDF,
trigger, and Federated Engine are dependent on the
MYSQL version.

Afterwards, to reduce the negative impacts of UDF,
Cron was utilized to execute external scripts, at a
scheduled time. Although not simultaneously, the
updates started to be executed without overloading
the database. However, the scripts scheduled on
Cron did not have any pattern or similarities among
them, characteristic that makes the scripts difficult
to maintain (Garcia et al.; 2015). In this scenario, the
only form to make data available to external systems
was through database access, mostly offering access

to views.

5.2 Scenario after deploying the Proposed
Architecture

In 2014, we studied the historic of the integration
(Garcia et al.; 2015), and it allowed us to propose and
test the architecture. In April 2015, we already had 12
software systems and 2 network services integrated
using the proposed architecture. Table 1 presents the
software systems with their programming language,
DBMS, and platforms. For instance, the system
SIG-UFLA was developed by using PHP, uses DBMS
MySQL, and its platform is Web.

Table 1: Software Systems and Technologies

Systems Prog. Lang. / DBMS
Platform
Cin-Cadastro PHP/Web MySQL
HCS -/Desktop MySQL
Merengue Java/Web MySQL
MinhaUFLA Java/Mobile -
Pergamum Delphi/Desktop SQL Server
Java/Web
PROEC PHP/Web MySQL
PRP PHP/Web MySQL
RV3Acesso -/Desktop MySQL
SIG-UFLA PHP/Web MySQL
SIGAA Java/Web PostgreSQL
SIGADMIN Java/Web PostgreSQL
SIGRH Java/Web PostgreSQL
SIP PHP/Web MySQL
SIPAC Java/Web PostgreSQL

Information Systems Coordination (ISC) has
developed SIG-UFLA, MinhaUFLA and Cin-Cadastro,
and there has been licenses purchases to use
Pergamum, HCS and RV3Acesso. SIGAA, SIGRH,
SIPAC and SIGADMIN compose a family of systems.
They are developed and maintained by other Federal
University and that University makes them available
for deployment in other Universities. Those systems
are under gradual deployment, but they provide and
consume data from other systems. Merengue, SIP,
PRP, and PROEC are software systems developed at
UFLA, but we considered them as an external software
systems because ISC does not maintain them.

Another software started to be integrated to the
integration architecture from June/2015: a mobile
application for institutional purposes (at first offering
functionalities for undergraduate students), named
MinhaUFLA. In order to reduce data processing on
the mobile application, a REST layer had to be
developed. This layer works by communicating
with the MinhaUFLA Provider (that uses SOAP),
translating data, converting the requests/responses
from/to JSON before sending it back to the mobile
application (Garcia and Abilio; 2017).

To implement the architecture in the University,
PHP was chosen as programming language. PHP
has native functions for SOAP requests, general
database-handler classes, and has good perspectives

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13

10 |
Public Clients Public Provider Private Providers Private Clients
MinhaUFLA
Zimbra
MinhaUFLA P g =
+— 3 —| Zimbra
REST LDAP
LDAP
RV3Acesso
PROEC RV3Acesso
.
PRP Public
q_ — <]_ — sIP D
(SOAP) - Hes
»
>
SIGAdmin SIGRH
—=3

BD-SIG

BD-CIN

Figure 7: Communication among Public Clients
(external systems), Public Provider, Private
Providers and Private Clients (internal systems)

for future as its version 7 should be released in
2015, bringing significant advantages comparing to
early versions, including performance. Furthermore,
80% out of the websites in 2017 (James; 2017) were
developed in PHP, which means there are several
options regarding servers to host web systems/sites
that use this technology. Furthermore, PHP is cross-
platform, and has, as of its version 5.1, PDO (PHP
Data Object), a data-access abstraction layer that ease
data access and future changes on data sources.

Figure 7 presents the implemented architecture.
For example, Public Clients can request Public
Providers, and Public Providers can request only
one or multiple Private Providers, that access the
databases and return the requested data. Private
Clients can request Private Providers and they can
perform the SELECT operation in the database of the
Cin-Cadastro seeking for updates in records that will
be propagated to other systems.

In order to trigger the clients with the need of
recurring update, we used Cron configured to execute
them at each 10 minutes. Additionally, to bring
security, we utilized TLS, that is a protocol based
on public key cryptography. This protocol, as well as
SSL, is widely accepted as a protocol that can provide
secure HTTP for internet transactions (Microsoft;
2003).

To manage and monitor the integration, we
developed the Management and Monitoring System
(MMS). MMS was developed by using PHP and has
the uses cases described in the proposal (Figure 5).
Figure 8 shows the MMS main window, in which we
have a dashboard with 5 charts:

i. Percentage of Success and Failures: observing
this chart we can notice that are occurring failures
and then we can investigate their causes;

ii. Comparison of This and Last Week: with this
chart, we can follow the use of the services;

iii. Proportion of Requests to Providers: this chart
compares the amount of requests of each service;

iv. Top 5 Requested Services: observing the
services more requested, we can try to optimize
them seeking to minimize, for instance, the

response time;

v. Requests in the last 24 hours: the chart allow
us identify peaks of requests of a service and
investigate why they occurred.

Figure 9 presents the status of services, together
with the time of last request. When a Provider that
was supposed to be updated in some frequency does
not do that, after 1 hour from last request to checking
time, the status of the Provider is signaled to red
and the MMS starts sending warning e-mails to the
responsible staff. Additionally, Figure 9 shows the
time of last request (date and time) and if it is in
production (globe icon) or development (PC icon)
environment. The statuses that can appear in this
window are online (green), offline (red), and disabled
(gray). For example, HCS Provider is in production,
and its last request occurred at 17:00:01 on 2015-04-
27 and WS Provider is also in production, but its last
request happened at 16:16:16 on 2015-04-27. The
latter is signed as red because the last request to
it occurred longer than one hour before checking,
meaning that something went wrong with the client.
In addition, LOG Provider (a hypothetical system,
showed for example purposes), is an example of
disabled provider, signaled as gray.

MMS has a use case to register Tokens and their IPs
following the proposal of preventing unauthorized
access by using an authentication approach that
takes into account a Token and an IP addresses
(Figure 10). For example, in Figure 10, the token
“asbo7sfealibifgafdfof5011” can use the IP addresses
“187.145.16.27” and “179.151.20.102” to access the
Providers. There may also be registered complete
subnets, such as the Token named “Department 1
Client” and subnet “177.150.48.%"”, where % means
any number from 0 to 254.

After selecting a token in the list (Figure 10), we
can allow its access to any Provider, since a link is
recorded in MMS.

5.3 Comparing the Scenarios

After implementing the architecture in October 2014,
we can manage ISI easily through the MMS. In
addition, the implementation and deployment of
new providers and services take some hours or a
few days, whilst in the former architecture, the IT
team spent weeks or months. As a result related to
Flexibility and Scalability, in April 2015, less than
one year after implementation, we had 13 systems
in the integration; in April 2018, 20 systems were
integrated, and this number is going to grow due
to the adherence of new systems at UFLA’s system
environment.

The security was one of the main points to regard
during developing the architecture. Before, when
making views available to clients, some actions
should be taken: creating a new user, setting the IP
address (or range of IP addresses) that could access
that view (in MySQL, the relation user:address is 1:1,
meaning that, for each new IP address or range of IP
addresses to access the view, a new user should be
created). Furthermore, when a client, for any reason,
stopped using the view without any notification,
the permission was still recorded, meaning it was
difficult to manage and to have control on which

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13 | 11

Utilisation Statistics for This Week

Percentage of Success and Error
M Success Il Error

- Last Week
~+ This week

100 100 100 e 100

o o o o] o

Hes LDAP | PERGAMUM PRG

Top 5 Requested Services

PERGAMUM updateQuantityStudentsSubject a9

wOrUpdateUser 120

30 40 S0 60 700 800 %0 1000
Amount of Requests

Requests

This Week vs. Last Week

ZIMBRA

Proportion of Requests to Providers
Hes

SIGRH: 0.0% | HCS:05%

LoAP ZIMBRA: 0.0% ——— | LDAP:01%
s —
RV3 ACESSO: 9.8%
o PRG:26.5% ———
PERGAML
PERGAMUM: 63.1%

- MHcs M LDAP
PRG M SIGRH Il ZIMBRA

PERGAMUM B PRG Il RV3 ACESSO

Requests in the last 24h

- HCS

= LDAP
PERGAMUM
PRG

Requests

-
-+ RV3 ACESSO
SIGRH

~ ZIMBRA

Figure 8: Management and Monitoring System (MMS) Main Window

Provider's Status and Last Request

@ @ HCS: 2015-04-27 at 17:00:01

@ @ RV3 ACESSO: 2015-04-27 at 17:00:05
@ @ PERGAMUM: 2015-04-27 at 17:00:07
A @ ZIMBRA: 2015-04-27 at 17:00:01

B @ LDAP: 2015-04-27 at 16:16:16

@ @ SIGRH: 2015-04-27 at 17:00:01

@ @ PRG: 2015-04-27 at 16:34:18

A & LOG: Disabled

@ @ WS: 2015-04-27 at 16:16:16

Figure 9: Provider’s Status and Last Request

Tokens iist
Operations. Name Token [Description

Cliente (Tokenp/ a5b075feal1b1f9afddod5011 187.145.16.27
SIGRH) 179.151.20.102

sl e x Token SIGRH

s % x Department 1 Client aadcea76ac7314c4da2gfaffdbso 177.150.48.% Department 1

Figure 10: Managing Tokens and authorized IPs

permissions are still in use. Notice that there was
no central point of management. It was always
dependent on the system and integration tool used.

Nowadays, with the new architecture, we have
a central management system, the MMS, in which
tokens and IP addresses that can access them can be
managed. It offers enough data in order to support
decisions, detect unused tokens and unauthorized
trials of access. New controls and warnings of
numerous access trials will be developed.

The approach, in which a unique global ID
for entities shall be created (Suryawan; 2014),
is expensive when dealing with several systems,
including third-party systems. However, at UFLA
we had an interesting characteristic: most of the
databases had personal data stored, including CPF
(individual registration), which could work as the
unique global ID (Suryawan; 2014). For the systems
that did not store CPF, such as Zimbra and LDAP,
there was a field that, by politics at UFLA, is unique:
user login. Therefore, the data consistency is verified
using those fields without changing the systems.

Before the new architecture, it lacks a way for
monitoring the integration. Most of the failures were
detected when a user experienced problems in one
of the systems due to the integration stopping. With
the new architecture, we can monitor the integration
observing in the dashboard: log system, checking
services, and graphs of MMS. At the moment, MMS
has graphs only for Private Providers and Services.
As a future work, we intend to develop a graphical
monitor for Public Provider and Services as well.

In general, those charts allow the identification
of anomalous behaviours of services in terms of the
amount of requests. For instance, we verified that
a certain service was requested several times in a
short period. Investigating the cause, we found
unnecessary calls to that service, and then, we fixed
the source-code in the Client with wrong behavior.

6 Conclusion

In this work, we have proposed an architecture for
integrating information systems in academic
environments, and described how it was
implemented in a Brazilian Federal University
(UFLA). A team with only 4 IT professionals was
involved in the architecture design. However, only
3 professionals from the team are responsible for
the database management and information systems
integration. Therefore, a small team is responsible
for managing the integration, developing consumers
and providers, registering tokens and authorized
IPs.

Before the implementation of the proposed
integration architecture, only 4 software systems
and 2 network services were integrated. In the
integration, several techniques were used, such as,
triggers, UDF, and Federated Engine, but those
technologies depend on the DBMS version. With
the new architecture, within less than one year,
13 software systems and 2 network services were
integrated. This new architecture promoted positive
changes because it is monitorable, manageable,
secure, and scalable specially comparing to the
former integration architecture. Heterogeneous
systems, in this new architecture, can be integrated

12

R. Abilio et al./ Revista Brasileira de Computag¢do Aplicada (2019), v.11, n.1, pp.2-13

in an uniform way.

The proposed architecture in Section 4 can
be used as a reference by Universities and even
by corporate environments, since the architecture
is platform-independent and its implementation
requires knowledge on web services and access to
databases. Therefore, it is a low cost solution that can
be developed and maintained by a small IT team and
do not require licences of ERP third-party modules
or a whole new system to manage the integration.

As future work, we suggest the implementation of
a structure to manage and monitor scripts executed
by schedulers, since a software system may have to
perform batch updates using scripts that connect
directly to the DBMS and most of those scripts
are not managed and monitored; the development
of a generic framework for information systems
integration focused on Academic ISI.

References

Alkhanak, E. and Mokhtar, S. (2009). Using Services
Oriented Architecture to Improve Efficient Web-
Services for Postgraduate Students, World Academy
of Science, Engineering and Technology 3(8): 64-67.

Andersson, V., Santos, R., Tillmann, A. and Noguez,
J. (2014). COBALTO Webservice: Solugdo para
consisténcia de informacgdes, VIII Workshop de
Tecnologia da Informagdo e Comunica¢do das IFES,

pp. 1-1.

Bessa, J., Branco, F., Costa, A., Martins, J. and
Gongalves, R. (2016). A Multidimensional
Information System Architecture Proposal for
Management Support in Portuguese Higher
Education: The University of Tras-os-Montes and
Alto Douro case study, Proceedings of 11th Iberian
Conference on Information Systems and Technologies
(CISTI), IEEE, pp. 1-7.

Costa, C., Melo, A., Fernandes, A., Gomes, L. and
Guerra, H. (2010). Integracdo de Sistemas de
Informacdo Universitarios via Web Services, Actas
da 59 Conferencia Ibérica de Sistemas y Tecnologias de
Informacién, pp. 290-295.

Coulouris, G., Dollimore, J., Kindberg, T. and Blair,
G. (2013). Sistemas Distribuidos: Conceitos e Projeto,
Bookman Editora.

Cunha, M., Souza Junior, M. and Dornelas, J. (2008).
O Uso da Arquitetura SOA como Estratégia de
Integracdo de Sistemas de Informagdo em uma
Instituicdo Publica de Ensino, Simpdsio de Exceléncia
em Gestdo e Tecnologia (SEGeT), pp. 1-13.

Degan, J. (2005). Integragdo de Dados Corporativos:
Uma Proposta de Arquitetura Baseada em Servicos de
Dados, Master’s thesis, Universidade Estadual de
Campinas.

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,
M., Montesi, F., Mustafin, R. and Safina, L. (2017).
Microservices: Yesterday, Today, and Tomorrow,
Present and Ulterior Software Engineering, Springer,
pPp- 195-216.

Fielding, R. T. and Taylor, R. N. (2002). Principled
Design of the Modern Web Architecture, ACM
Transactions on Internet Technology 2(2): 115-150.

Fu, Xiao-Long, L. Q.-X. and Yuan, F. (2011). Design
and Implementation of University Level Unified
Information System Integration Platform, Computer
Engineering and Design 32(6): 7-12.

Garcia, C. M. and Abilio, R. (2017). Integracao entre
Sistemas utilizando Web Services REST e SOAP: Um
Relato Pratico, Revista de Sistemas de Informagéo da
FSMA (19): 34-41.

Garcia, C. M., Abilio, R. and Malheiros, N. (2015).
Abordagens e Tecnologias para Integracdo de
Sistemas: Um Estudo de Caso na Universidade
Federal de Lavras, Revista de Sistemas de Informagdo
da FSMA (15): 11-22.

Gorski, P. L., Iacono, L. L., Nguyen, H. V. and Torkian,
D. B. (2014). Service Security Revisited, 2014 IEEE
International Conference on Services Computing (SCC),
IEEE, pp. 464-471.

Hasselbring, W. (2000). Information System
Integration, Communications of the ACM 43(6): 32—
38.

He, W. and Da Xu, L. (2014). Integration of
Distributed Enterprise Applications: A Survey, IEEE
Transactions on Industrial Informatics 10(1): 35-42.

Hensle, B., Booth, C., Chappelle, D., McDaniels,
J., Wilkins, M. and Bennett, S. (2010). Oracle
Reference Architecture - Service-Oriented
Integration, Release 3.0, Technical report, Oracle.

Hohpe, G. and Woolf, B. (2003). Enterprise integration
patterns: Designing, building, and deploying messaging
solutions, Addison-Wesley Professional.

James, H. (2017). 80% of the web powered
by PHP. Available at https://haydenjames.io/
80-percent-web-powered-by-php/ (Accessed 2018
April 03).

Kulkarni, N. and Dwivedi, V. (2008). The Role of
Service Granularity in a Successful SOA Realization
- A Case Study, [EEE Congress on Services-Part I, IEEE,
PP. 423-430.

Laurindo, F. J. B., Shimizu, T., Carvalho, M. M. d.
and Rabechini Jr, R. (2001). O Papel da Tecnologia
da Informagido (TI) na Estratégia das Organizacoes,
Gestdo & Produgdo 8(2): 160-179.

Lawrence, K., Kaler, C., Nadalin, A., Monzillo,
R. and Hallam-Baker, P. (2006). Web
Services Security: SOAP Message Security
1.1 (WS-Security 2004), OASIS Standard
Specification pp. 1-76. Available at https:
//www.oasis-open.org/committees/download.php/
16790/wss-v1l.1-spec-os-S0APMessageSecurity.pdf
(Accessed 15 September 2014).

Martins, V. M. M. (2005). Integragdo de Sistemas de
Informagdo: Perspectivas, Normas e Abordagens,
Master’s thesis, Universidade do Minho,
Guimaraes, Portugal.

https://haydenjames.io/80-percent-web-powered-by-php/
https://haydenjames.io/80-percent-web-powered-by-php/
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
https://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

R. Abilio et al./ Revista Brasileira de Computagdo Aplicada (2019), v.11, n.1, pp.2-13

13

Microsoft (2003). What is TLS/SSL? Available at
https://technet.microsoft.com/en-us/library/
cc784450%28v=ws.10%29.aspx (Accessed on 27 April
2015).

MYSQL (2005). Adding a New User-Defined Function.
Available at http://dev.mysql.com/doc/refman/5.1/
en/adding-udf .html (Accessed 03 November 2014).

OASIS, O. (2006). Service-Oriented Architecture.
Available at http://docs.oasis-open.org/soa-rm/v1.
0/soa-rm.pdf (Accessed 15 September 2014).

Pressman, R. S. (2001). Software Engineering: A
Practitioner’s Approach, McGraw-Hill.

Putro, B. L. and Rosmansyah, Y. (2017). Functionality
Design of Enterprise Service Bus (ESB) as
Middleware on the Smart Educational Service
Computing System Platform, 2017 International
Conference on Information Technology Systems and
Innovation (ICITSI), IEEE, pp. 355-360.

Suryawan, F. (2014). Inter-database Synchronization:
A Low-cost Approach to Information System
Integration, International Conference on Engineering
Technology and Industrial Application, pp. 243-436.

Technologies, I. (2001). Web Services Definition.
Available at http://www.w3.0rg/2001/03/WSWS-popa/
paper13 (Accessed 21 October 2014).

Turban, E., Leidner, D., McLean, E. and Wetherbe,
J. (2004). Tecnologia da Informagdo para Gestdo:
Transformando os Negdcios na Economia Digital, 6 edn,
Bookman.

Valipour, M. H., AmirZafari, B., Maleki, K. N.
and Daneshpour, N. (2009). A Brief Survey
of Software Architecture Concepts and Service-
Oriented Architecture, IEEE International Conference
on Computer Science and Information Technology,
pp. 34-38.

van den Heuvel, W.-]., Zimmermann, O., Leymann,
F., Lago, P., Schieferdecker, I., Zdun, U. and
Avgeriou, P. (2009). Software Service Engineering:
Tenets and Challenges, Proceedings of the 2009 ICSE
Workshop on Principles of Engineering Service Oriented
Systems, IEEE Computer Society, pp. 26-33.

Zur Muehlen, M., Nickerson, J. V. and Swenson, K. D.
(2005). Developing Web Services Choreography
Standards: The Case of REST vs. SOAP, Decision
Support Systems 40(1): 9-29.

https://technet.microsoft.com/en-us/library/cc784450%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/cc784450%28v=ws.10%29.aspx
http://dev.mysql.com/doc/refman/5.1/en/adding-udf.html
http://dev.mysql.com/doc/refman/5.1/en/adding-udf.html
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
http://www.w3.org/2001/03/WSWS-popa/paper13
http://www.w3.org/2001/03/WSWS-popa/paper13

	1 Introduction
	2 Background
	2.1 Information Systems Integration Approaches
	2.2 Service-Oriented Architecture
	2.3 Related Work

	3 Problem Definition
	4 Proposed Architecture
	4.1 Maintainability, Flexibility and Scalability
	4.2 Security
	4.3 Data Integration
	4.4 Monitorability

	5 Applying the Proposed Architecture
	5.1 Scenario before the Proposed Architecture
	5.2 Scenario after deploying the Proposed Architecture
	5.3 Comparing the Scenarios

	6 Conclusion

