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Abstract
Computational modeling has enabled researchers to simulate tasks which are very often impossible in practice,such as deciphering the working of the human mind, and chess is used by many cognitive scientists as aninvestigative tool in studies on intelligence, behavioral patterns and cognitive development and rehabilitation.Computer analysis of databases with millions of chess games allows players’ cognitive development to bepredicted and their behavioral patterns to be investigated. However, computers are not yet able to solve chessproblems in which human intelligence analyzes and evaluates abstractly without the need for many concretecalculations. The aim of this article is to describe and simulate a chess problem situation proposed by theBritish mathematician Sir Roger Penrose and thus provide an opportunity for a comparative discussion bysociety of human and arti�cial intelligence. To this end, a specialist chess computer program, Fritz 12, wasused to simulate possible moves for the proposed problem. The program calculated the variations and reacheda di�erent result from that an amateur chess player would reach after analyzing the problem for only a shorttime. New simulation paradigms are needed to understand how abstract human thinking works.
Key words: Chess Software; Cognition; Computational Modeling
Resumo
A modelagem computacional tem possibilitado aos pesquisadores realizar simulações de tarefas onde muitasvezes se torna impossível a experiência prática, como por exemplo, nas buscas em decifrar o funcionamento docérebro humano. O jogo de xadrez é utilizado por muitos cientistas cognitivos como ferramenta de investigaçãono campo de estudos sobre a inteligência, padrões de comportamento, desenvolvimento e reabilitação cognitiva.Através da análise computacional em banco de dados com milhões de partidas de xadrez é possível predizer odesenvolvimento cognitivo e averiguar padrões de comportamento de jogadores. Porém, o computador aindanão consegue resolver problemas de xadrez onde a inteligência humana analisa e avalia de forma abstrata,sem a necessidade de muitos cálculos concretos. O objetivo deste artigo é simular, observar e descrever umasituação problema de xadrez proposta pelo matemático britânico Penrose, abrindo espaço de discussão para asociedade sobre a inteligência humana em comparação com a arti�cial. Para tanto foi empregado um programade computador especialista em xadrez, o Fritz12, que simulou as jogadas possíveis do problema proposto. Aconclusão foi de que o programa de computador calculou as variantes e avaliou resultado diferente do que umamador de xadrez conclui em pouco tempo de análise da posição problema, sendo ainda necessários novosparadigmas de simulação para se entender como funciona o pensamento abstrato humano.
Palavras-Chave: Cognição; Modelagem Computacional; Softwares de Xadrez
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1 Introduction
Computational modeling and chess are widelyused by cognitive scientists for research purposes.Cognitive scientists investigate human intelligencein an interdisciplinary �eld of knowledge involvingneuroscience, psychology, the philosophy ofmathematics and computer science.

“In recent years, with the rapid development in computer
software and hardware technologies, big data and the arti�cial
intelligence (AI), cognitive computing has received considerable
attention in both academic and industry. In the academic, the
IEEE Technical Activity for cognitive computing de�nes it as
‘an interdisciplinary research and application �eld’, which ‘uses
methods from psychology, biology, signal processing, physics,
information theory, mathematics, and statistics’ in an attempt to
construct ‘machines that will have reasoning abilities analogous
to a human brain’.” (Chen et al.; 2018).
Chess, which is believed to have originated in India,dates from the sixth century and has evolved overthe years (Murray; 1913). It is played on a checkeredboard with sixty-four squares and two equal armies,each of which has a king and queen, two rooks, twobishops, two knights and eight pawns (Fide Team;2018). The players make moves in turn, and the aimof the game is to checkmate the opponent’s king. Theessence of chess lies in its embodiment of variousmathematical concepts, such as arithmetic, algebra,geometry and logical reasoning, as well as spatialvision (Saarilouma; 2001).Chess programs are very popular with chess loversbecause they can be used to play against humancompetitors on the Internet as well as against theprograms themselves. The games are stored indatabases which contain millions of chess games,allowing research into human behavior, cognitivedevelopment and intelligence. These databases canalso be used to train players and, with the aidof software, identify a particular person’s playingstyle. By anticipating in this way what the person’smoves would be, a game against that player can besimulated.In studies of human intelligence, however, it hasnot yet been possible to simulate factors involvedin thinking that allow an understanding of abstractsituations. Arti�cial intelligence (AI) is not yetable to solve experimental chess problems thatrequire the power of abstraction rather than puremachine calculation. This was demonstrated with achess problem proposed by scientists at the PenroseInstitute and described in Section 4 (Results). Thecomputer calculated the possible solutions for morethan fourteen hours, but predicted di�erent resultsfrom those identi�ed by humans after analyzing theproblem for only a short time.The aim of this article is to report a simulationin which the Fritz 12 chess program (ChessBaseTeam; 2010) was used to solve the problem proposedby Penrose and to describe the results in order toprovide an opportunity for a comparative discussionby society and the scienti�c community of aspectsof human and arti�cial intelligence. Studies in thisarea seek to understand how humans solve chessproblems other than by merely performing concretecalculations of the variations.The article is organized in �ve sections in additionto this Introduction. Section 2 describes chess in

the context of computing. Section 3 describes themethodology used here. Section 4 presents theresults, which are then analyzed in Section 5. Finally,some conclusions are drawn in Section 6.

2 Chess in the Context of Computing
A study of the behavioral patterns of novice chessplayers was carried out recently by Leone et al.(2014). The authors used a database with chess gamesplayed by novices and experienced players. Usingnumerical simulation, they identi�ed inexperiencedchess players’ behavioral patterns, such as repeatingmoves several times with the same piece in squaresclose to the last move and attempting to simplify thegame by exchanging pieces (captures).Gaschler et al. (2014) used the German ChessFederation database and computational modelingtechniques to predict children’s performance after atleast ten years participation in tournaments. Theymade predictions of players’ expertise acquisitionand how they evolved over time. The German ChessFederation database is recommended as a researchvehicle in psychology by Vaci and Bilalić (2017), whoencourage other researchers to register on a websitewhere the database is available.A computational model can be used with theinformation in the database to calculate players’performances and compare them with the resultsof other types of models, as well as to carry out,for example, gender-related studies Vaci and Bilalić(2017).The possibilities of computational models andself-learning in AI as used in chess-playingsoftware such as AlphaZero were criticized by Bratko(2018). The author questions whether the resultingcomputational models can be applied to other typesof human activity.Cognitive computing models (Chen et al.; 2018)and multimodal observations of humans (Guntzet al.; 2018) based on chess have been describedin recent studies. The aim of these authors was touse their studies to help with patient treatment andrehabilitation as well as to detect medical problems.In Kujala and Saariluoma (2018), the conceptof cognitive mimetics for computational modelsof intelligence was introduced. According to theauthors, this concept helps to understand howcognitive processes work in the human mind andhow they can be mimicked with computationalmodeling. The authors provide a historical reviewof the mimicking of intelligence, its potential uses,methods, applications and successful tests. Modelscited by the authors include AlphaZero (which learnedchess on its own) and AlphaGo (which learnedthe game of Go on its own) from DeepMind, aswell as IBM’s Watson, which played Jeopardy (ageneral-knowledge TV game show) against humansand won. They conclude that cognitive mimeticscan complement pattern-matching and machine-learning based design of AI to solve design problems.In 2018, Sir Roger Penrose, of the MathematicalInstitute, University of Oxford, devised a challenge:he developed a chess problem that existing softwarecould not solve even after many hours of processing.He argued that the AI developed in recent years
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simply “does not understand” what happens inpractice, as in a chess match, for example. Penrose(2018) used a program, Fritz, that is very popularamong chess players. He notes that the softwaredid not manage to �nd the solution to the proposedproblem as it decided there was an easy win forblack although the only outcome was in fact adraw. According to Penrose, the software did notunderstand what was happening on the board.
“Many examples of highly e�ective algorithmic systems, such
as AI devices, have been constructed in recent years. We
have computer-controlled machines like self-driving cars and
algorithmic systems that play chess and GO at levels that can out-
perform even the best of human players. But do such devices
actually “understand” what they are doing, in any reasonable
sense of that word? I argue that they do not, and as an illustrative
example I present a recently composed chess position that a
human chess player, after brie�y examining it, would correctly
conclude that it is an obviously drawn position. Nevertheless,
when it is presented to the top-level chess-playing program
Fritz, set at grandmaster level, Fritz incorrectly claims that it is a
win for the black pieces and eventually Fritz blunders dreadfully
(though “correctly” according to its algorithm) to be soon check-
mated by white. This demonstrates Fritz’s remarkable lack of
any actual understanding of the game of chess, despite its vast
computational abilities.” (Penrose, 2018).

3 Methodology
The �rst step consisted of a literature search toidentify articles in scienti�c journals and specializedsites. The following terms were used to searchthe PubMed database: chess, computer, cognitivedevelopment, expertise, visuospatial perception,arti�cial intelligence.To check the results obtained by Penrose (2018),the Fritz 12 chess program was used to analyze thehypothetical problem that he drew up. The resultswere recorded and analyzed in light of the articlesidenti�ed in the literature search.

4 Results
The chess problem devised by Penrose (Fig. 1) wasinput into the Fritz 12 program. The program was setto “in�nite analysis” mode (in which there is no timelimit for processing the variations) and processedthe problem uninterruptedly for more than fourteenhours to assess the position. Although black is atan advantage, his position is static as he is caughtbetween white’s pawns and unable to move, apartfrom the bishops on e5, f4 and g3. An amateurchess player will notice that the bishops on their owncannot do anything to checkmate the white king,which can move undisturbed on the white squares.In Russel and Norvig (2013), the chess programsanalyzed use the minimax algorithm to makedecisions. This algorithm seeks to minimize themaximum loss and maximize the minimum gainin order to determine the best move. The programachieves this using various technical concepts, fromthe value of the chess pieces through the pawnstructure and dynamic possibilities to checkmatecalculations.The modules used in Fritz 12 assess the positionwith the help of a numerical value. The assessmentis expressed using the pawn as the unit, always from

Figure 1: The problem devised by Penrose (2018).Source: recreated by the authors

the perspective of white. When the program assignsa value of +1.30, this means that white’s position is1.30 pawns more than black’s. If the advantage wereonly one pawn, the remaining 0.30 would correspondto the value of conceptual position-related factors(mobility, position of the pieces, safety of the kings,pawn structure etc.). A value of -3.00 means thatwhite has three pawns or one piece less (a bishop andknight are each worth three pawns). A rook is worth5 pawns, and a queen 9 pawns. The king’s valueis de�ned as in�nite, so loss of this piece results inimmediate defeat.Russel and Norvig (2013) note that the half-move,or ply, is important in programs that use alpha-betapruning as it corresponds to one level of the decisiontree, which is used to determine the risk associatedwith a move. The alpha-beta algorithm is considereda signi�cant improvement on the minimax searchalgorithm as it substantially reduces the search treeby using the branch-and-prune technique. Thismeans that when a piece of software is analyzing agame, all it has to do is �nd a winning alternative. Inthis case, there is no need to analyze other variationseven if they are better. When a winning alternativeis found, the others are discarded.When it is processing the problem conceived byPenrose, Fritz 12 calculates millions of variations indepth with more than forty moves in the decisiontree. Based on the calculations it has performed, theprogram concludes that black will win the game. Theresult of the calculations is a score of -33.56 for black(Fig. 2). Positive scores (for white, or negative forblack) of more than two points signify a decisiveadvantage in terms of being able to checkmate theopponent’s king.Note that the software’s decision tree involvesseven variations (Fig. 2). Variations with movesthat only involve white’s king (variations 1 to 4 inFig. 2) are calculated to have values of -33.56, i.e.,a signi�cant advantage for black. However, they do
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Figure 2: Simulation of the solution to the problem using Fritz 12. Source: the authors

not reach checkmate. In variations 5, 6 and 7 (Fig.2), the result is checkmate for black in 13, 8 and 6moves, respectively. It should be noted that white isnot obliged to make the moves in these variations.

5 Analysis of Results
The results of the analysis performed by Fritz 12can be considered equivalent to those obtained byPenrose (2018). This clearly indicates the di�cultythe software faced assessing the position correctly.More importantly, other programs on the markethave the same di�culty solving the problem evenwhen the con�guration of the hardware on which theprogram is running is superior to that tested here.It cannot be denied that chess programs su�erfrom limitations; nevertheless, these relate notto their playing capacity but to their assessmentof a position. For these issues to be overcomewould require the development of software thatis both prohibitively expensive and requires animpractical amount of processing power. Itis therefore important to improve decision-treepruning algorithms to select moves and shortenanalyses.An amateur chess player realizes after analysis ofthe problem in Figure 1 for only a short while thatif he moves the king along the white squares on theboard, black cannot force a checkmate. This typeof heuristic analysis is intrinsic to humans’ mentalprocesses and has not yet been translated into anytype of algorithm.The arti�cial chess problem proposed by Penroseis unlikely to arise in practice and is the fruit ofhuman creativity, which enables a person to explorepossibilities he knows can be easily solved, unlikea specialist program, which cannot make abstractassessments and therefore cannot conclude that theresult is di�erent from the result of its calculations.The process used by humans to performcalculations di�ers from that used by software in thathumans can simplify and select variations to includein the concrete calculation. This simpli�cation isa result of the ability of humans to imagine thedecisive position, to understand the limitations onthe opponent’s moves and to �lter irrational moves.

The problem faced by scientists is to implement inan algorithm this human abstraction, which, withonly a little analysis and a few calculations, discoversthat there is no other way to continue the game andthat there is no need to go down as many moves inthe analysis of the decision tree as Fritz 12 did.
Chess programs have evolved greatly since 1997,when Deep Blue, an IBM chess program runningon a computer with 256 interconnected processors,beat the then world chess champion, Gary Kasparov(Marshall; 2014). Countless programs have beendeveloped since, and Fritz 12 is one of this newgeneration.

Figure 3: Position in the �rst match betweenKasparov and Deep Blue in 1997. Source: the authors

For the purposes of comparison with currentsoftware, we input a position from the �rst gamebetween Kasparov and Deep Blue in 1997 into Fritz 12.The game was won by Kasparov. Deep Blue’s (black’s)
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Figure 4: Simulation with Fritz 12 of Deep Blue’s move. Source: the authors

44th move (Fig. 3) was a strange one that surprisedKasparov, who began to mistrust the machine for the�rst time, saying that there was human involvementin the moves it was making. Kasparov soon realizedthat the move was very bad and enabled him to winsooner. It was only in 2014 that a documentary wasreleased by ESPN in which it was con�rmed thatthere was a bug in the software (Marshall; 2014).Interestingly, in the simulation with Fritz 12, DeepBlue’s choice was only the 15th choice for Fritz 12(Fig. 4).
In the same match in 1997, in the sixth and lastgame, Kasparov made a provocative move, certain inthe knowledge that Deep Blue would not sacri�ce theknight on e6 because he believed the software, aftercoldly calculating the numbers, would not toleratebeing at a numerical disadvantage. Kasparov was verysurprised by Deep Blue’s move, which was preciselyto sacri�ce the knight on e6. We put the sameposition into Fritz 12 (Fig. 5).
Even though some twenty years have passed sincethe original game, the result simulated by Fritz 12was di�erent from the choice made by Deep Blue (Fig.

6):As can be seen in the simulation, Ne4 got a bettergrade in Fritz 12, Deep Blue preferred the secondvariation (2 = (0.23): 1.Nxe6) to the �rst (1 = (0.25):1.Ne4), which would result in a higher score for themachine (Fig. 6). Because of these moves, Kasparovbecame suspicious of the software and suggested thata good player was “helping” Deep Blue.Deepening the analysis or the position after theKnight’s sacri�ce in "e6" (Fig. 7), Fritz 12 showseven worse evaluations (Fig. 8). The program do not“understand” that the black king does not have a safeplace to go and white has a winning attack. As inthe events horizon of the simulation did not appeara checkmate or any material gain, the algorithm hasno reason to choose that sacri�ce.Fritz 12 prefers to return the Knight to "e4" 9),This is the position that Kasparov thought a computershould choose. But Deep Blue has played the formerposition 7), (Kasparov; 2018) later said:
“Machines are not speculative attackers. They need to see the
return on their investment in their search before they invest
material. I knew that Deep Blue would decide to retreat its knight
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Figure 5: Position in the sixth game betweenKasparov and Deep Blue in 1997 after 7. . . - h6 byKasparov. Source: the authors

Figure 6: Simulation with Fritz 12 of the move byDeep Blue in the sixth game after Kasparovs move(h6). Source: the authors

instead of playing the sacri�ce, after which my position would be
�ne”
The position evaluation after "Ne4" (Fig. 10), hasa better evaluation than after “Nxe6”. But why DeepBlue played a typical human move? Many years later(Kasparov; 2018) got the answer:
“Here once more is Deep Blue coach Miguel Illescas in his 2009
interview, speaking about the fateful sixth game: ‘We were
looking at all kinds of rubbish, such as 1.e4 a6 or 1.e4 b6, giving
as many forced moves to the computer as we could. On this
same morning we also introduced the move Knight takes e6 in
the Caro-Kann, on the same day that Kasparov played it. That
very morning we told Deep Blue, if Garry plays h6, take on e6
and don’t check the database. Just play, don’t think.. . . This was
his bet, that the machine would never like this piece sacri�ce for
a pawn. And indeed, if we had given freedom to Deep Blue to
choose, it would never have played it.’”
Although new chess programs have evolvedsubstantially and implement algorithms that makeuse of heuristics to work out the moves in a game,they are not yet able to solve the problem created

Figure 7: Position in the sixth game betweenKasparov and Deep Blue in 1997 after 8-Nxe6 byDeep Blue. Source: the authors

Figure 8: Simulation with Fritz 12 of the move byDeep Blue in the sixth game after 8.Nxe6. Source:the authors

by Penrose. From a technical point of view, chessprograms have superior playing strength to humans,a characteristic that can be attributed to their greatprocessing power and access to large databases ofinformation. These factors, nevertheless, do notendow programs with intuition and an ability to learnfrom their own mistakes (Razmov, V.; 2010). In spiteof these limitations, programs such as AlphaZerowould appear to suggest that these last barriersdescribed by Razmov have now been overcome.
Specialized programs like AlphaZero and AlphaGo
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Figure 9: Position in the sixth game betweenKasparov and Deep Blue in 1997 after 8-Ne4 by Fritz12. Source: the authors

Figure 10: Simulation with Fritz 12 of the possiblemove by Deep Blue in the sixth game after 8.Ne4.Source: the authors

learn using machine-learning algorithms, and theirmoves are very similar to those made by humans.Like humans, AlphaZero reduces the number ofvariations processed when solving a problem anduses fewer branches in the decision tree, allowingit to perform calculations in greater depth and �ndunexpected solutions (Illescas; 2018). Indeed, thisnew generation of programs may soon be able tosolve problems like that designed by Penrose.
Specialized programs that can solve problemswhich are di�cult for humans and �nd bettersolutions evolve as the results of studies are shared

by the scienti�c community. The e�ects of thisevolutionary progress will be felt in all sectors andwill pose new challenges in terms of reorientingsociety’s priorities.

6 Conclusion
Penrose (2018) composed a chess problem of easysolution for human players, but too hard forcomputers, because the software do not understandswhat is happening on the board. In a position thatone side has a huge material advantage, the softwarealgorithm is unable to perceive that there is no wayto victory.Analysis of the performance of Fritz 12 revealsthat even though some elements of heuristics havebeen implemented in the software, key problemshave yet to be overcome before human intuitioncan be mimicked. A simulation performed by Fritz12 at Penrose position obtained the same results,showing the di�culty the software faced assessingthe position, and that chess programs su�er fromlimitations.Kasparov, former World chess champion wasaware of chess programs limitations when playedagainst Deep Blue in 1997. He got very suspiciousthat there was a human helping the computer,because the machine made a qualitative sacri�ce thatcould not be translated into numbers. An algorithmwould not tolerate being at a numerical disadvantagewithout a predictable winning. This position was alsosimulated at Fritz 12, con�rming the reasoning ofKasparov, that a machine would not choose the movethat Deep Blue has made.Computational modeling has helped researchersin di�erent �elds of knowledge and, together withchess, can be an invaluable aid for research into thecognitive sciences. A range of models have beendeveloped for various purposes, especially researchinto how the human brain learns, and new paradigmshave emerged at a speed and on a scale typical of theinformation technology era.Although that simulations of Penrose positionand Kasparovs game exposed programs limitations,AlphaZero is a new specialized chess program,that can make moves very similar to those madeby humans. Maybe AlphaZero can solve Penroseproblem as easy as humans and choose the samemove that Kasparov said a machine would not make.This subject is suggested for other simulations.Discussions of these new ideas involve profoundre�ection on science and technology. Society isbombarded with information and very often is notaware of the network of actors—including scientistsand the State—that exert an enormous in�uenceon the resulting technologies. Society must becomeaware of the real power it can exert in this complexnetwork and discuss the �ndings and experiencesmade possible by information technology to ensurethe validity of future experiments.Existing computational models help with manytasks involving large numbers of calculations thatare unproductive for humans because of the timerequired. Although such models are important toolsfor performing tasks of this nature, they are notyet fully reliable, and any important decisions taken
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by them must therefore be scrutinized by a humanobserver.
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