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OSCILLATORY RESULTS
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Abstract. The main purpose of this paper is to improve recent oscillation results for
the second-order half-linear delay differential equation

(
r(t)

(
y′(t)

)γ)′ + q(t)yγ(τ(t)) = 0, t ≥ t0,

under the condition ∞∫

t0

dt
r1/γ(t) <∞.

Our approach is essentially based on establishing sharper estimates for positive solutions of
the studied equation than those used in known works. Two examples illustrating the results
are given.
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1. INTRODUCTION

Consider the second-order half-linear delay differential equation of the form
(
r(t) (y′(t))γ

)′ + q(t)yγ(τ(t)) = 0, t ≥ t0 > 0. (1.1)

Throughout, we will assume that
(H0) γ is a quotient of odd positive integers;
(H1) r ∈ C([t0,∞), (0,∞)) satisfies

π(t0) :=
∞∫

t0

dt
r1/γ(t) <∞;
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(H2) the delay function τ ∈ C1([t0,∞),R) satisfies τ(t) ≤ t, τ ′(t) ≥ 0 and
limt→∞ τ(t) =∞;

(H3) q ∈ C([t0,∞), [0,∞)) does not vanish identically on any half-line of
the form [t∗,∞);

(H4) there is a constant ` such that π(τ(t))/π(t) ≥ ` > 1 for any t ≥ t0.

By a solution of Eq. (1.1) we understand a function y ∈ C([ta,∞),R) with ta = τ(tb),
for some tb ≥ t0, which has the property r (y′)γ ∈ C1([ta,∞),R) and satisfies (1.1) on
[tb,∞). We consider only those solutions of (1.1) which exist on some half-line [tb,∞)
and satisfy the condition sup{|x(t)| : tc ≤ t <∞} > 0 for any tc ≥ tb. As is customary,
a solution y(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is
termed oscillatory if all its solutions oscillate.

The problem of establishing oscillation criteria for differential equations with
deviating arguments has been a very active research area over the past decades and
several references and reviews of known results can be found in the monographs by
Agarwal et al. [1–4], Došlý and Řehák [6] and Győri and Ladas [11].

Usually, the equation (1.1) has been studied in so-called canonical form, i.e. when

π(t0) =∞. (1.2)

On the other hand, much less efforts in this direction have been undertaken for
non-canonical equations (i.e. when (H1) holds). A common approach in the literature
(see [5,8–10,12–16]) for investigation of such equations consists in extending known
results for canonical ones. The objective of this paper is to study oscillatory and
asymptotic properties of (1.1) in non-canonical form.

In 2017, Džurina and Jadlovská [7] established, contrary to most existing results,
a single-condition oscillation criteria for (1.1). Among others, they showed that if,
for all t1 ≥ t0 large enough,

lim sup
t→∞

πγ(t)
t∫

t1

q(s)ds > 1, (1.3)

then (1.1) is oscillatory. The main purpose of this paper is to sequentially improve
condition (1.3) by presenting new criteria for oscillation of (1.1). Our approach is
essentially based on establishing sharper estimates for positive solutions of (1.1) than
those used in the known works [5, 7, 9, 10,12–16].

Remark 1.1. All functional inequalities are assumed to hold eventually, that is, they
are satisfied for all t large enough.
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2. MAIN RESULTS

We recall that by the result [7, Theorem 2], Eq. (1.1) is oscillatory if

∞∫

t0

πγ+1(s)q(s)ds =∞. (2.1)

Thus, without further mentioning, we will assume that the integral in (2.1) is
convergent.

We begin with the preliminary result on the structure of nonoscillatory, let us say
positive solutions of Eq. (1.1) and their asymptotic properties, which plays an essential
role in the proofs of the main results.

Lemma 2.1. Let (H0)−(H3) hold. Assume that

∞∫

t0

1
r1/γ(t)




t∫

t0

q(s)ds




1/γ

dt =∞. (2.2)

Furthermore, suppose that (1.1) has a positive solution y on [t1,∞). Then

y > 0, y′ < 0,
(
r (y′)γ

)′ ≤ 0, on [t1,∞) (2.3)

and
lim
t→∞

y(t) = 0. (2.4)

Proof. The proof is similar to that of [7, Theorem 1] and hence we omit it.

The following criterion is in fact condition (1.3), improved in the sense that the
criterion does not depend on the choice of the initial constant. For the reader’s
convenience and further purposes, we state its complete proof here.

Theorem 2.2. Let (H0)−(H3) and (2.2) hold. If

K := lim sup
t→∞

π(t)




t∫

t0

q(s)ds




1/γ

> 1, (2.5)

then (1.1) is oscillatory.

Proof. Suppose the contrary and assume that y is a nonoscillatory solution of (1.1)
on [t0,∞). Without loss of generality, we may assume that y(t) > 0, y(τ(t)) > 0 for
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t ∈ [t1,∞) ⊆ [t0,∞). By Lemma 2.1, y satisfies (2.3) and (2.4). Integrating (1.1) from
t1 to t, we have

−r(t) (y′(t))γ = −r(t1) (y′(t1))γ +
t∫

t1

q(s)yγ(τ(s))ds

≥ −r(t1) (y′(t1))γ + yγ(τ(t))
t∫

t1

q(s)ds

≥ −r(t1) (y′(t1))γ + yγ(τ(t))
t∫

t0

q(s)ds− yγ(τ(t))
t1∫

t0

q(s)ds.

In view of (2.4), there is a t2 > t1 such that

−r(t1) (y′(t1))γ − yγ(τ(t))
t1∫

t0

q(s)ds > 0

for t ≥ t2. Thus,

−r(t) (y′(t))γ ≥ yγ(τ(t))
t∫

t0

q(s)ds ≥ yγ(t)
t∫

t0

q(s)ds. (2.6)

On the other hand, using the monotonicity of r1/γy′, we have

y(t) ≥ −
∞∫

t

r−1/γ(s)r1/γ(s)y′(s)ds ≥ −r1/γ(t)y′(t)π(t), (2.7)

which gives

−r(t) (y′(t))γ ≥ −r(t) (y′(t))γ πγ(t)
t∫

t0

q(s)ds.

Taking the limsup on both sides of the above inequality, we arrive at contradiction
with (2.5). The proof is complete.

Theorem 2.3. Let (H0)−(H3) and (2.2) hold. If

k := lim inf
t→∞

1
π(t)

∞∫

t

πγ+1(s)q(s)ds > γ (2.8)

or
k ≤ γ and K > 1− k

γ
, (2.9)

then (1.1) is oscillatory.
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Proof. Suppose the contrary and assume that y is a nonoscillatory solution of (1.1)
on [t0,∞). Without loss of generality, we may assume that y(t) > 0, y(τ(t)) > 0 for
t ∈ [t1,∞) ⊆ [t0,∞). By Lemma 2.1, y satisfies (2.3) and (2.4). Employing the identity

(
y(t) + r1/γ(t)y′(t)π(t)

)′
= π(t)

(
r1/γ(t)y′(t)

)′

and the chain rule
(
r(t) (y′(t))1/γ

)′
= γ

(
r1/γ(t)y′(t)

)γ−1 (
r1/γ(t)y′(t)

)′

in (1.1), we get

x′(t) = π(t)
γ

(
r1/γ(t)y′(t)

)1−γ (
r(t) (y′(t))γ

)′

= −π(t)
γ

(
r1/γ(t)y′(t)

)1−γ
q(t)yγ(τ(t)),

(2.10)

where we set x(t) = y(t) + r1/γ(t)y′(t)π(t). From (2.7), it is easy to see that x is
positive. Integrating (2.10) from t to ∞, we arrive at

x(t) ≥
∞∫

t

π(s)
γ

(
r1/γ(s)y′(s)

)1−γ
q(s)yγ(τ(s))ds

≥
∞∫

t

π(s)
γ

(
r1/γ(s)y′(s)

)1−γ
q(s)yγ(s)ds

≥
∞∫

t

π(s)
γ

(
r1/γ(s)y′(s)

)1−γ
q(s)

(
−π(s)r1/γ(s)y′(s)

)γ−1
y(s)ds

≥ 1
γ

∞∫

t

πγ(s)q(s)y(s)ds ≥ y(t)
γπ(t)

∞∫

t

πγ+1(s)q(s)ds,

(2.11)

that is,

y(t) + r1/γ(t)y′(t)π(t) ≥ y(t)
γπ(t)

∞∫

t

πγ+1(s)q(s)ds,

or

y(t)


1− 1

γπ(t)

∞∫

t

πα+1(s)q(s)ds


 ≥ −π(t)r1/γ(t)y′(t) > 0. (2.12)

By virtue of (2.8), there exists ε > 0 such that

k − ε > γ.
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From the definition of k, we have

1− 1
γπ(t)

∞∫

t

πα+1(s)q(s)ds ≤ 1− k − ε
γ

< 0,

which in view of (2.12) contradicts the positivity of y.
Now assume that k ≤ γ. Proceeding as in the proof of Theorem 2.2, we obtain

(2.6), that is,

−r1/γ(t)y′(t) ≥ y(τ(t))




t∫

t0

q(s)ds




1/γ

≥ y(t)




t∫

t0

q(s)ds




1/γ

. (2.13)

Then, in view of (2.12), we have

−r1/γ(t)y′(t)


1− 1

γπ(t)

∞∫

t

πα+1(s)q(s)ds




≥ y(t)


1− 1

γπ(t)

∞∫

t

πα+1(s)q(s)ds






t∫

t0

q(s)ds




1/γ

≥ −r1/γ(t)y′(t)π(t)




t∫

t0

q(s)ds




1/γ

and therefore

π(t)




t∫

t0

q(s)ds




1/γ

≤ 1− 1
γπ(t)

∞∫

t

πα+1(s)q(s)ds.

Taking limit superior on both sides of the last inequality, we get

lim sup
t→∞

π(t)




t∫

t1

q(s)ds




1/γ

≤ 1− lim inf
t→∞

1
γπ(t)

∞∫

t

πα+1(s)q(s)ds,

that is,
K ≤ 1− k

γ
,

which contradicts (2.9). The proof is complete.

The next considerations are intended to improve criteria given in Theorems 2.2
and 2.3 by incorporating the value of delay argument.
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Lemma 2.4. Let (H0)−(H3) and (2.2) hold. Assume that (1.1) has an eventually
positive solution y on [t1,∞). Then there exists T ≥ t1 such that for any ε > 0

y

πK−ε
↓ on [T,∞). (2.14)

Proof. Pick t1 ∈ [t0,∞) such that y(τ(t)) > 0. By Lemma 2.1, y satisfies (2.3) and (2.4).
Proceeding as in the proof of Theorem 2.2, we arrive at (2.6), that is,

−r1/γ(t)y′(t) ≥ y(t)




t∫

t0

q(s)ds




1/γ

,

which holds for any t ≥ t2, where t2 ≥ t1 is large enough. Let K̃ = K − ε, where ε > 0
is arbitrary. In view of the definition of K, we have

π(t)




t∫

t0

q(s)ds


 > K̃

eventually, say for t ≥ t3 ≥ t2. Consequently,
(
y(t)
πK̃(t)

)′
= r1/γ(t)y′(t)πK̃(t) + K̃y(t)πK̃−1(t)

r1/γ(t)π2K̃(t)

≤
y(t)πK̃−1(t)

(
K̃ − π(t)

(∫ t
t0
q(s)ds

)1/γ
)

r1/γ(t)π2K̃(t)
< 0

(2.15)

on t ∈ [t3,∞). The proof is complete.

The following two results serve as an improvement of Theorems 2.2 and 2.3,
respectively, when K ≤ 1.
Theorem 2.5. Let (H0)−(H4) and (2.2) hold. If

`KK > 1 (2.16)

then (1.1) is oscillatory.
Proof. Proceeding as in the proof of Theorem 2.2, we arrive at (2.6), which holds for
any t ≥ t2, where t2 ≥ t1 is large enough. By (2.14), we obtain

y(τ(t)) ≥ y(t)
(
π(τ(t))
π(t)

)K−ε
≥ y(t)`K−ε. (2.17)

Using the above estimate in (2.6), we have

−r(t) (y′(t))γ ≥ yγ(t)`γ(K−ε)
t∫

t0

q(s)ds, (2.18)
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which implies

−r(t) (y′(t))γ ≥ −r(t) (y′(t))γ `γ(K−ε)πγ(t)
t∫

t0

q(s)ds.

Taking the lim sup on both sides of the latter inequality, we obtain

1 ≥ `K−εK.
Since ε is arbitrary, the above condition contradicts (2.16). The proof is complete.

Theorem 2.6. Let (H0)−(H4) and (2.2) hold. If (2.8) or

k ≤ γ and `KK > 1− k

γ
, (2.19)

then (1.1) is oscillatory.
Proof. We proceed as in the proof of Theorem 2.3 with (2.13) replaced by (2.18)
to obtain

−r1/γ(t)y′(t)


1− 1

γπ(t)

∞∫

t

πα+1(s)q(s)ds




≥ `K−εy(t)


1− 1

γπ(t)

∞∫

t

πα+1(s)q(s)ds






t∫

t0

q(s)ds




1/γ

≥ −`K−εr1/γ(t)y′(t)π(t)




t∫

t0

q(s)ds




1/γ

.

Obviously,

lim sup
t→∞

`K−επ(t)




t∫

t0

q(s)ds




1/γ

≤ 1− lim inf
t→∞

1
γπ(t)

∞∫

t

πα+1(s)q(s)ds,

that is,
`K−εK ≤ 1− k

γ
.

Since ε is arbitrary, the above inequality is in contradiction with (2.19). The proof is
complete.

Theorem 2.7. Assume (H0)−(H3). If

k >

(
γ

γ + 1

)γ+1
, (2.20)

then (1.1) is oscillatory.
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Proof. Suppose the contrary and assume that y is a nonoscillatory solution of (1.1)
on [t0,∞). Without loss of generality, we may assume that y(t) > 0, y(τ(t)) > 0 for
t ∈ [t1,∞) ⊆ [t0,∞). By Lemma 2.1, y satisfies (2.3) and (2.4). First, we show that

lim sup
t→∞

t∫

t1

(
πγ(s)q(s)−

(
γ

γ + 1

)γ+1 1
r1/γ(s)π(s)

)
ds =∞ (2.21)

implies that (1.1) is oscillatory. Define the function

v(t) = r(t) (y′(t))γ

yγ(t) .

Using (2.7), one can easily see that

−1 ≤ v(t)πγ(t) < 0.

Differentiating v and using (1.1) with the fact that y is decreasing, we have

v′(t) =
(
r(t) (y′(t))γ

)′

yγ(t) − γ r(t) (y′(t))γ y′(t)
yγ+1(t) ≤ −q(t)− γ

r1/γ(t)v
1+1/γ(t). (2.22)

Multiplying (2.22) by πγ and integrating the resulting inequality from t1 to t, we obtain

v(t)πγ(t)− v(t1)πγ(t1) + γ

t∫

t1

πγ−1(s)
r1/γ(s) v(s)ds

+
t∫

t1

πγ(s)q(s)ds+ γ

t∫

t1

πγ(s)
r1/γ(s)v

1+1/γ(s)ds ≤ 0

Using Young’s inequality

|ab| ≤ 1
p
|a|p + 1

q
|b|q, a, b ∈ R, p > 1, q > 1, 1

p
+ 1
q

= 1

with p = 1 + 1/γ, q = γ + 1 and

a = (γ + 1)1+1/γπγ
2/(γ+1)v(t), b = γ

(γ + 1)1−γ/γ+1π
−1/(γ+1)(t)

yields

−γπγ−1v(t) ≤ γπγ(t)v1+1/γ(t) +
(

γ

γ + 1

)γ+1 1
π(t) .

Therefore,
t∫

t1

(
πγ(s)q(s)−

(
γ

γ + 1

)γ+1 1
r1/γ(s)π(s)

)
ds ≤ v(t1)πγ(t1)− v(t)πγ(t)

≤ v(t1)πγ(t1) + 1.
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Taking the limsup on both sides of the above inequality, we obtain a contradiction
with (2.21). Now, it is enough to show that (2.21) implies (2.20). To do this, assume
that (2.21) is not satisfied. Then, there is a t2 ≥ t1 such that for any ε̃ > 0,

∞∫

t

(
πγ(s)q(s)−

(
γ

γ + 1

)γ+1 1
r1/γ(s)π(s)

)
ds < ε̃.

Since π is decreasing, we have

1
π(t)

∞∫

t

(
πγ+1(s)q(s)−

(
γ

γ + 1

)γ+1 1
r1/γ(s)

)
ds < ε̃

that is,
1
π(t)

∞∫

t

(
πγ+1(s)q(s) +

(
γ

γ + 1

)γ+1
π′(s)

)
ds < ε̃.

Hence,
1
π(t)

∞∫

t

πγ+1(s)q(s)ds < ε̃+
(

γ

γ + 1

)γ+1

for all ε̃ > 0, which contradicts to (2.20). The proof is complete.

Theorem 2.8. Let (H0)−(H4) and (2.2) hold. If

`Kk >

(
γ

γ + 1

)γ+1
, (2.23)

then (1.1) is oscillatory.

Proof. We proceed as in the proof of Theorem 2.7 with (2.22) replaced by

v′(t) ≤ −`K−εq(t)− γ

r1/γ(t)v
1+1/γ(t),

where we used (2.17) with ε arbitrary. The rest of the proof is similar and so
we omit it.

3. EXAMPLES

We illustrate the applicability of the main results by means of a couple of examples.

Example 3.1. Consider the second-order delay differential equation
(
tγ+1 (y′(t))γ

)′ + q0y
γ(λt) = 0, t ≥ 1, 0 < λ ≤ 1, q0 > 0. (3.1)
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Here,
r(t) = tγ+1, q(t) = q0, τ(t) = λt,

π(t) =
∞∫

t

r−1/γ(s)ds =
∞∫

t

s−(γ+1)/γds = γt−1/γ , and ` = λ−1/γ .

Also, it is easy to verify that

K = γq
1/γ
0 and k = γγ+1q0.

Theorem 2.2 requires
q0 >

1
γγ

(3.2)

for (3.1) to be oscillatory.
Theorem 2.3 improves Theorem 2.2 in the sense that if condition (3.2) is not

satisfied, then (3.1) is oscillatory if

q0 >
(1− γγq0)γ

γγ
. (3.3)

Theorem 2.5 improves condition (3.2) by taking the value λ into account:

q0 >
λq0

γγ
. (3.4)

Finally, Theorem 2.6 provides a similar improvement of condition (3.3), namely,

q0 > λq0
(1− γγq0)γ

γγ
. (3.5)

Let γ = 1/3 and λ = 0.5. Then (3.2)−(3.5) reduce to q0 >
3
√

3 ≈ 1.44225, q0 > 0.9840,
q0 > 0.8181 and q0 > 0.70633, respectively.
Example 3.2. We consider again Eq. (3.1). By Theorem 2.7, equation (3.1) is
oscillatory if

q0 >
1

(γ + 1)γ+1 . (3.6)

Note that for γ = 1 and λ = 1, condition q0 > 1/4 is sharp for oscillation of the Euler
differential equation (

t2y′(t)
)′ + q0y(t) = 0.

On the other hand, Theorem 2.8 improves Theorem 2.7 in the sense that condition
(3.6) is replaced by

q0 >
λq

1/γ
0

(γ + 1)γ+1 . (3.7)

Let γ = 1/3 and λ = 0.5. Then condition (3.6) reduces to q0 > 0.6814. Obviously,
criterion (3.7) provides a sharper result, since it requires that q0 > 0.4075.
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