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Abstract. Let R be a commutative ring and M be a Noetherian R-module. The intersection
graph of annihilator submodules of M , denoted by GA(M) is an undirected simple graph
whose vertices are the classes of elements of ZR(M) \ AnnR(M), for a, b ∈ R two distinct
classes [a] and [b] are adjacent if and only if AnnM (a) ∩ AnnM (b) 6= 0. In this paper, we
study diameter and girth of GA(M) and characterize all modules that the intersection
graph of annihilator submodules are connected. We prove that GA(M) is complete if and
only if ZR(M) is an ideal of R. Also, we show that if M is a finitely generated R-module
with r(AnnR(M)) 6= AnnR(M) and |m − AssR(M)| = 1 and GA(M) is a star graph, then
r(AnnR(M)) is not a prime ideal of R and |V (GA(M))| = |Min AssR(M)|+ 1.
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1. INTRODUCTION

Let R be a commutative ring and M be an R-module. The intersection graph of
ideals of a ring introduced and studied in [7] and then in [1] the intersection graph of
submodules of a module was defined. The intersection graph of submodules of a module,
denoted by G(M), is a graph whose vertices are in one to one correspondence with
all non-trivial submodules of M and two distinct vertices are adjacent if and only if
the corresponding submodules of M have non-zero intersection. Also, the complement
of the intersection graph of submodules of a module studied in [2], for more works
on the intersection graph of modules, see [10,15].

The zero-divisor graph of R, denoted by Γ(R), is a graph with vertices Z(R)∗ =
Z(R) \ {0} and two distinct vertices a and b are adjacent if and only if ab = 0,
see [4, 6]. The compressed zero-divisor graph of R, ΓE(R), that is constructed from
equivalence classes of zero-divisors, rather than individual zero-divisors themselves was
introduced in [11] and studied in some literatures, for examples [3, 8, 13]. This graph
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has some advantages over the zero-divisor graph. For examples, in many cases, the
compressed zero-divisor graph of R is finite when the zero-divisor graph is infinite and
another important aspect of the compressed zero-divisor graph is the connection to
the associated primes of R.

In this paper, with inspire by the above ideas, we introduce the intersection graph
of annihilator submodules of M . Let a, b ∈ R, we say that a ∼ b if and only if
AnnM (a) = AnnM (b). As noted in [11], ∼ is an equivalence relation. If [a] denotes
the class of a, then [a] = AnnR(M) whenever a ∈ AnnR(M) and [a] = R \ ZR(M)
whenever a ∈ R \ ZR(M); the other equivalence classes form a partition of ZR(M).
The intersection graph of annihilator submodules of M , denoted by GA(M), is an
undirected simple graph whose vertices are the classes of elements of ZR(M)\AnnR(M),
for a, b ∈ ZR(M) \AnnR(M) two distinct classes [a] and [b] are adjacent if and only if
AnnM (a) ∩AnnM (b) 6= 0. Let M be a Noetherian R-module. In section two, we study
connectivity, diameter and the girth of GA(M). We show that GA(M) is a disconnected
graph if and only if m− AssR(M) = {P1, P2} and P1 ∩ P2 = 0. In section three, we
show that GA(M) is a complete graph if and only if ZR(M) is a prime ideal of R
and we show that if r(AnnR(M)) 6= AnnR(M) and |m−AssR(M)| = 1 and GA(M)
is a star graph with at least three vertices, then r(AnnR(M)) is not a prime ideal of
R and

|V (GA(M))| = |Min AssR(M)|+ 1.

Let G be a graph with the vertex set V (G) and the edge set E(G). For each pair of
vertices u, v ∈ V (G), if u is adjacent to v, then we write u− v. The degree of a vertex
u, denoted by deg(u), is the number of edges incident to u, and u is called end-vertex
if deg(u) = 1. A graph with no edge is called null graph. The complement graph of
G, denoted by G, is a graph with the same vertices such that two vertices of G are
adjacent if and only if they are not adjacent in G. Recall that G is connected if there
is a path between any two distinct vertices of G. For vertices x and y of G, let d(x, y)
be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) =∞ if there is
no such path). The diameter of G is

diam(G) = sup{d(x, y) |x and y are vertices of G}.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G (gr(G) =∞
if G contains no cycles). A graph G is complete if any two distinct vertices are adjacent.
The complete graph with n vertices will be denoted by Kn. A complete bipartite graph
is a graph G which may be partitioned into two disjoint non-empty vertex sets A and
B such that two distinct vertices are adjacent if and only if they are in distinct vertex
sets. If one of the vertex set is a singleton, then we call G a star graph. A clique of
G is a complete subgraph of G and the number of vertices in the largest clique of G,
denoted by ω(G), is called the clique number.

Throughout, R denotes a commutative ring with non-zero identity, Z(R) its set of
zero-divisors and for ideal I of R,

r(I) = {r ∈ R : there exists n ∈ N with rn ∈ I}
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denotes the radical of I. As usual, Z and Zn will denote the ring of integers and the
ring of integers modulo n, respectively. Let M be an R-module and

AssR(M) = {p ∈ Spec(R) : p = AnnR(m) for some 0 6= m ∈M}.

A proper submodule P of M is said to be prime submodule whenever for r ∈ R and
m ∈M , rm ∈ P implies that m ∈ P or r ∈ AnnR(M/P ). Let SpecR(M) denote the
set of prime submodules of M and

m−AssR(M) = {P ∈ SpecR(M) : P = AnnM (a) for some 0 6= a ∈ R},

where for a ∈ R, AnnM (a) = {m ∈M : am = 0}. For notations and terminologies not
given in this article, the reader is referred to [12].

2. CONNECTIVITY, DIAMETER AND GIRTH OF GA(M)

Recall that R is a commutative ring and M is an R-module with property that its
zero submodule is not a prime submodule. In this section, the annihilator submodules
of M and the intersection graph of annihilator submodules of M are studied.

Theorem 2.1. Let M be an R-module and a, b ∈ R. Then the following statements
are true:

(i) [5, Theorem 2] If a /∈ r(AnnR(M))and AnnM (a) is a prime submodule of M ,
then it is a minimal prime submodule of M .

(ii) [5, Theorem 6 (ii)] If a, b /∈ r(AnnR(M)) and AnnM (a), AnnM (b) are distinct
prime submodules of M , then abM = 0.

(iii) [5, Theorem 5 (ii)] If a ∈ r(AnnR(M)), then AnnM (a) is an essential submodule
of M .

Lemma 2.2. Let M be a Noetherian R-module. Then

r(AnnR(M))M ⊆ ∩P∈m−AssR(M)P.

Proof. By hypotheses and [9, Proposition 3.2], m − AssR(M) 6= ∅. Suppose that
a ∈ r(AnnR(M)) and P ∈ m − AssR(M) we have to show that aM ⊆ P . By
assumption there is a positive integer t such that atM = 0. Thus atM ⊆ P .
By hypotheses P is a prime submodule of M , thus AnnR(M/P ) is a prime ideal
of R so by at ∈ AnnR(M/P ) it follows that a ∈ AnnR(M/P ). Hence, aM ⊆ P , we
are done.

Theorem 2.3. Let M be a Noetherian R-module with r(AnnR(M)) = AnnR(M) and
a, b ∈ R \AnnR(M). If P1 = AnnM (a) and P2 = AnnM (b) are prime submodules of
M such that P1 ∩ P2 = 0, then |m−AssR(M)| = 2.

Proof. Let P = AnnM (c) is a prime submodule of M . Then c 6∈ AnnR(M). By
hypotheses, P1 ∩ P2 = 0. Thus P1 ∩ P2 ⊆ P . If P1 6⊆ P and P2 6⊆ P , then there
exist m1 ∈ P1 \ P and m2 ∈ P2 \ P such that am1 = bm2 = 0 ∈ P which implies
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that a, b ∈ AnnR(M/AnnM (c)) = AnnR(cM). So that cM ⊆ AnnM (a) ∩AnnM (b) =
P1 ∩ P2. Hence, cM = 0 and so c ∈ AnnR(M), contrary to the assumption. Therefore,
either P1 ⊆ P or P2 ⊆ P and so either P1 = P or P2 = P by Theorem 2.1(i). Thus
|m−AssR(M)| = 2.

Corollary 2.4. Let M be an R-module with r(AnnR(M)) = AnnR(M) and a, b ∈
R \AnnR(M). If P1 = AnnM (a) and P2 = AnnM (b) are prime submodules of M such
that P1 ∩ P2 = 0, then aM + bM ∼= aM ⊕ bM .

Proof. Let a, b ∈ R \ AnnR(M), P1 = AnnM (a) and P2 = AnnM (b) are prime
submodules of M such that P1 ∩ P2 = 0. Then by Theorem 2.1(ii) it follows that
abM = 0. Hence aM∩bM ⊆ AnnM (b)∩AnnM (a) = 0. Thus aM+bM ∼= aM⊕bM .

Corollary 2.5. Let M be an R-module with r(AnnR(M)) = AnnR(M) and
a ∈ R \AnnR(M). If AnnM (a) is a prime submodule of M , then ZR(aM) is a prime
ideal of R.

Proof. First, we show that ZR(aM) = AnnR(aM). Suppose that c ∈ R. We show
that either AnnaM (c) = 0 or AnnaM (c) = aM . Assume that AnnaM (c) 6= 0 and
0 6= am ∈ AnnaM (c). Thus cam = 0. Hence, cm ∈ AnnM (a) and AnnM (a) is
a prime submodule of M , it follows that caM = 0. Thus AnnaM (c) = aM . Hence,
ZR(aM) = AnnR(aM) = AnnR(M/AnnM (a)) is a prime ideal of R, as claimed.

Let R be a commutative ring and M be an R-module. Assume Z∗R(M) denotes
the set of non-zero zero-divisors of M . For a, b ∈ R, we say that a ∼ b if and only if
AnnM (a) = AnnM (b). As noted in [11], ∼ is an equivalence relation. If [a] denotes
the class of a, then [a] = AnnR(M) whenever a ∈ AnnR(M) and [a] = R \ ZR(M)
for all a ∈ R \ ZR(M); the other equivalence classes form a partition of ZR(M).
The intersection graph of annihilator submodules of M , denoted by GA(M), is an
undirected simple graph whose vertices are the classes of elements in Z∗R(M)\AnnR(M),
and two distinct classes [a] and [b] are adjacent if and only if AnnM (a)∩AnnM (b) 6= 0.

Lemma 2.6. Let M be an R-module. If r(AnnR(M)) 6= AnnR(M), then GA(M) is
a connected graph.

Proof. Let a ∈ r(AnnR(M)) \ AnnR(M). Then by Theorem 2.1(iii), AnnM (a) is
an essential submodule of M . So that [a] is a universal vertex in GA(M), which show
that GA(M) is connected.

Theorem 2.7. Let M be a Noetherian R-module. Then GA(M) is a disconnected
graph if and only if m−AssR(M) = {P1, P2} and P1 ∩ P2 = 0.

Proof. (⇐) Suppose that P1 and P2 are two prime annihilator submodules of M
such that P1 ∩ P2 = 0. Thus by Lemma 2.2, r(AnnR(M))M ⊆ P1 ∩ P2 = 0 and so
r(AnnR(M)) = AnnR(M). Assume that a, b ∈ R \AnnR(M) and P1 = AnnM (a) and
P2 = AnnM (b). It is our claim that, there is no path between two vertices [a] and [b].
Set X = {AnnM (c) : c 6∈ AnnR(M)}. If P1 is not a maximal element of X, then
there exists a maximal element P in X different form P2 such that P1 ⊆ P . By
[9, Proposition 3.2], P is a prime submodule of M so that |m − AssR(M)| ≥ 3,
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contrary to hypotheses. Therefore, P1 and P2 are maximal elements of X. Thus
for each [c] ∈ V (GA(M)) we have either AnnM (c) ⊆ P1 or AnnM (c) ⊆ P2. On
the contrary, suppose that [a] − [c] − [d] − [b] is a path between [a] and [b], where
AnnM (c) ⊆ P1 and AnnM (d) ⊆ P2. Then 0 6= AnnM (c) ∩AnnM (d) ⊆ P1 ∩ P2 that is
a contradiction. In any other cases we have the same contradiction. Hence, there is no
path between [a] and [b], as claimed. Therefore, GA(M) is a disconnected graph.

(⇒) By hypotheses and Lemma 2.6 we can assume that r(AnnR(M)) = AnnR(M).
If |m − AssR(M)| = 1, then GA(M) has a universal vertex such as [a], where a ∈
R \ AnnR(M) and AnnM (a) = P ∈ m − AssR(M). So that |m − AssR(M)| ≥ 2.
Assume that P ′ ∩ P ′′ 6= 0, for each prime annihilator submodules P ′ and P ′′ of M
and we look for a contradiction. Let [c] and [d] be two arbitrary vertices of GA(M).
Then there exist two prime annihilator submodules P1 = AnnM (a) and P2 = AnnM (b)
of M such that AnnM (c) ⊆ P1 and AnnM (d) ⊆ P2. Consequently, [c]− [a]− [b]− [d] is
a path between two vertices [c] and [d]. Hence, GA(M) is a connected graph contrary
to assumption. So that there exist two annihilator prime submodules P ′ and P ′′ of M
such that P ′ ∩ P ′′ = 0. Now, the assertion follows from Theorem 2.3.

Corollary 2.8. Let M be a Noetherian R-module. Then the following statements are
equivalent:

(i) GA(M) is a connected graph,
(ii) Either m−AssR(M) = {P1, P2} and P1 ∩ P2 6= 0 or |m−AssR(M)| 6= 2,
(iii) Any two distinct elements of m−AssR(M) are adjacent in GA(M).

The independence number of a graph G is the maximum size of an independent
vertex set and is denoted by α(G).

Corollary 2.9. Let M be a Noetherian R-module. If GA(M) is a connected graph,
then

α(GA(M)) ≤ |V (GA(M))| − |m−AssR(M)|+ 1.

Proof. By Corollary 2.8, any two distinct elements of m − AssR(M) are connected
by an edge in GA(M), so that |m−AssR(M)| ≤ ω(GA(M)). On the other hand, by
[14, proposition 5.1.7]

ω(GA(M)) ≤ |V (GA(M))| − α(GA(M)) + 1.

Thus the result follows.

Remark 2.10. Let G(M) be a disconnected graph. Then by [1, Theorem 2.1],
M = P1 ⊕ P2 and m − AssR(M) = {P1, P2}, where P1, P2 are prime submodules
of M and P1 ∩ P2 = 0, so that GA(M) is a disconnected graph by Theorem 2.7,
whenever |V (GA(M))| ≥ 2 .

The converse is not true in general. Consider M = Z10 ⊕ Z10 as a Z-module. It is
easy to see that GA(M) is a null graph with two vertices, but G(M) is a connected
graph with more than two vertices.

Theorem 2.11. Let M be a Noetherian R-module and GA(M) be a connected graph.
Then diam(GA(M)) ≤ 2.
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Proof. Let [a] and [b] be two arbitrary vertices of GA(M). If AnnM (a)∩AnnM (b) 6= 0,
then d([a], [b]) = 1. Let AnnM (a) ∩AnnM (b) = 0. If r(AnnR(M)) 6= AnnR(M), then
by Theorem 2.1(iii), there is a universal vertex in GA(M) denoted by [x] such that
x ∈ r(AnnR(M)) \AnnR(M). Hence GA(M) has the path [a]− [x]− [b] as a subgraph
and so d([a], [b]) = 2.

Suppose that r(AnnR(M)) = AnnR(M). If ab 6∈ AnnR(M), then [ab] ∈ V (GA(M))
and AnnM (a) ⊂ AnnM (ab). In this case, if AnnM (ab) = AnnM (a), then we must have
AnnM (b) ⊆ AnnM (a) which contradicts the fact that AnnM (a) ∩ AnnM (b) = 0. So
AnnM (a) ⊂ AnnM (ab) and a similar argument shows that AnnM (b) ⊂ AnnM (ab).
Hence, GA(M) has the path [a]− [ab]− [b] as a subgraph and so d([a], [b]) = 2.

In the sequel, if ab ∈ AnnR(M), then there exist two vertices [x], [y] of GA(M)
such that AnnM (a) ⊆ AnnM (x) and AnnM (b) ⊆ AnnM (y) where AnnM (x),
AnnM (y) ∈ m−AssR(M) and x, y /∈ r(AnnR(M)). Thus by Corollary 2.8, GA(M) has
the path [a]− [x]− [y]− [b] as a subgraph. Suppose that 0 6= m ∈ AnnM (x)∩AnnM (y).
If either m ∈ AnnM (a) or m ∈ AnnM (b), then GA(M) has the path [a] − [y] − [b]
or [a]− [x]− [b] as a subgraph, respectively. Now, let m /∈ AnnM (a) ∪AnnM (b). By
abM = 0 it follows that bM ⊂ AnnM (a). Hence bm ∈ AnnM (a) ∩ AnnM (y) which
implies that GA(M) has the path [a]− [y]− [b] as a subgraph. Hence, d([a], [b]) = 2
and therefore diam(GA(M)) ≤ 2.

Theorem 2.12. Let M be a Noetherian R-module and GA(M) be a disconnected
graph. Then GA(M) is a connected graph and diam(GA(M)) ≤ 2.

Proof. By Theorem 2.7, there exist two prime annihilator submodules P1 = AnnM (a)
and P2 = AnnM (b) ofM such that P1∩P2 = 0. Thus [a] and [b] are adjacent in GA(M).
Also, P1 and P2 are the only maximal elements of X = {AnnM (d) : d 6∈ AnnR(M)}
so for every [c] ∈ V (GA(M)) \ {[a], [b]}, we have either AnnM (c) ⊂ AnnM (a) or
AnnM (c) ⊂ AnnM (b). Assume that [c] and [d] are two arbitrary vertices of GA(M).
If either AnnM (c),AnnM (d) ⊂ P1 or AnnM (c),AnnM (d) ⊂ P2, then GA(M) has the
path [c]− [b]− [d] or [c]− [a]− [d] as a subgraph, respectively. Also, if AnnM (c) ⊂ P1
and AnnM (d) ⊂ P2, then GA(M) has a cycle [c]− [b]− [a]− [d]− [c] as a subgraph.
Hence, GA(M) is a connected graph and diam(GA(M)) ≤ 2.

Theorem 2.13. Let M be a Noetherian R-module and let GA(M) be a connected
graph. Then the following statements are true:

(i) If either |m − AssR(M)| = 1 or |m − AssR(M)| = 2 and V (GA(M)) ≤ 3, then
gr(GA(M)) ∈ {3,∞}.

(ii) If either |m − AssR(M)| ≥ 3 or |m − AssR(M)| = 2 and V (GA(M)) ≥ 4, then
gr(GA(M)) = 3.

Proof. If r(AnnR(M)) 6= AnnR(M), then it follows from Theorem 2.1(iii) that
GA(M) has a universal vertex such as [a], where a ∈ r(AnnR(M)) \ AnnR(M).
Thus gr(GA(M)) ∈ {3,∞}. So in the following we can assume that r(AnnR(M)) =
AnnR(M). If m− AssR(M) = {P}, then P = AnnM (a) for some a ∈ R \ AnnR(M).
So [a] is a universal vertex of GA(M) and the result follows. For |m−AssR(M)| ≥ 3
the result follows from Corollary 2.8.
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Now, suppose that m−AssR(M) = {P1, P2}, where P1 = AnnM (a), P2 = AnnM (b)
and a, b /∈ AnnR(M). If |V (GA(M))| < 4, then by Corollary 2.8 the proof is obvious.
Thus we can assume that |V (GA(M))| ≥ 4. Let |V (GA(M))| > 4. Then there exist
two vertices [x], [y] which are adjacent to [a]. If 0 = AnnM (x) ∩ AnnM (y), then
AnnM (x) ∩ AnnM (y) ⊆ P2 so by an argument similar to that of Theorem 2.3 one
can show that either AnnM (x) ⊂ P2 or AnnM (y) ⊂ P2. Thus GA(M) has the cycle
[x]− [b]− [a]− [x] or [y]− [b]− [a]− [y] as a subgraph, respectively and gr(GA(M)) = 3.
If 0 6= AnnM (x)∩AnnM (y), then [a]−[x]−[y]−[a] is a cycle in GA(M). Thus the result
follows. Finally, assume that |V (GA(M))| = 4 and [x], [y] ∈ V (GA(M)) \ {[a], [b]}.
If both of [x] and [y] are adjacent to either [a] or [b], then the proof is similar to the
previous procedure. Otherwise, without loss of generality, let [x]− [a]− [b]− [y]. Then
AnnM (x) ⊂ AnnM (a) and AnnM (y) ⊂ AnnM (b). Since AnnM (a) ∩ AnnM (b) 6= 0,
then there exist 0 6= m ∈M such that m ∈ AnnM (a) ∩AnnM (b). If m ∈ AnnM (x) or
m ∈ AnnM (y), then GA(M) has the cycle [x]− [a]− [b]− [x] or [y]− [b]− [a]− [y] as a
subgraph, respectively. Now, let m /∈ AnnM (x)∪AnnM (y). If xyM = 0, then we have
yM ⊆ AnnM (x) and so ym ∈ AnnM (x). It follows that ym ∈ AnnM (x) ∩ AnnM (b)
which implies that GA(M) has the cycle [x]− [b]− [a]− [x] as a subgraph. If xyM 6= 0,
then xy 6= 0 and we have the following two cases, since |V (GA(M))| = 4,

Case 1. If AnnM (xy) = AnnM (a), then AnnM (y) ⊆ AnnM (a). Thus
[y]− [a]− [b]− [y] is a cycle in GA(M). Similarly, if AnnM (xy) = AnnM (b), then
[x]− [b]− [a]− [x] is a cycle in GA(M).

Case 2. If AnnM (xy) = AnnM (x), then AnnM (y) ⊆ AnnM (a). Thus
[y]− [a]− [b]− [y] is a cycle in GA(M). Similarly, for AnnM (xy) = AnnM (y), we
have [x]− [b]− [a]− [x] is a cycle in GA(M).

Therefore, gr(GA(M)) = 3 and the proof is completed.

Corollary 2.14. Let M be a Noetherian R-module and |m−AssR(M)| = 2. If GA(M)
is a connected triangle-free graph with at least three vertices, then GA(M) ∼= K1,2.

Proof. Let AnnM (a),AnnM (b) ∈ m − AssR(M). Then by hypotheses a, b /∈
r(AnnR(M)) and by the proof of Theorem 2.13, we have |V (GA(M))| = 3. Assume
that [c] ∈ V (GA(M)) \ {[a], [b]}. Then it follows that either AnnM (c) ⊂ AnnM (a) or
AnnM (c) ⊂ AnnM (b) since GA(M) is triangle-free. Thus GA(M) is either [b]− [a]− [c]
or [a]− [b]− [c], we are done.

3. MODULES WHOSE GA(M) IS COMPLETE OR STAR

In this section, R is a commutative ring and M is an R-module. The subset

T (M) =
{
m ∈M : rm = 0 for some 0 6= r ∈ R

}

of M is called the torsion subset of M .

Theorem 3.1. Let M be a Noetherian R-module. Then GA(M) is a complete graph
if and only if ZR(M) is a prime ideal of R.
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Proof. First, let GA(M) is a complete graph and a, b ∈ ZR(M). If AnnM (a) =
AnnM (b), then a+ b ∈ ZR(M) and the proof is completed. Otherwise, there is an edge
between [a] and [b], since GA(M) is a complete graph, thus AnnM (a) ∩AnnM (b) 6= 0.
Hence, there exists 0 6= m ∈M such that am = bm = 0. Therefore, (a+ b)m = 0 and
so a+ b ∈ ZR(M) which complete the proof.

Conversely, suppose that [a], [b] are two disjoint arbitrary vertices of GA(M)
and suppose that ZR(M) is an ideal of R. Let I = AnnR(M). It is easy to see
that R/I is a Noetherian ring and M is Noetherian R/I-module. By [12, Corollary
9.36], ZR/I(M) = ∪P∈AssR/I (M)P. It follows from The Prime Avoidance Theorem,
[12, Theorem 3.61], that ZR/I(M) = AnnR/I(m), for some 0 6= m ∈ M . We have
a+ I, b+ I ∈ Z∗R/I(M) so that am = bm = 0. Thus m ∈ AnnM (a)∩AnnM (b). Hence,
GA(M) is a complete graph.

Theorem 3.2. Let M be a Noetherian R-module such that r(AnnR(M)) 6= AnnR(M)
and |m− AssR(M)| = 1. If GA(M) is a star graph with at least three vertices, then
r(AnnR(M)) is not a prime ideal of R and

|V (GA(M))| = |Min AssR(M)|+ 1.
Proof. Suppose thatGA(M) is a star graph and a ∈ R\AnnR(M) and P = AnnM (a) ∈
m − AssR(M). By [9, Proposition 3.2], each maximal element of X = {AnnM (d) :
d 6∈ AnnR(M)} is a prime submodule of M which implies that AnnM (b) ⊆ P , for any
b ∈ ZR(M) \AnnR(M). Thus [a] is the only universal vertex of GA(M). Let [b], [c] be
two end-vertices of GA(M). Then by Theorem 2.2(iii), b, c 6∈ r(AnnR(M)). We show
that bc ∈ r(AnnR(M)) and so r(AnnR(M)) is not a prime ideal of R. If bc ∈ AnnR(M)
we are done. Now, assume that bc ∈ ZR(M) \ AnnR(M). If AnnM (b) = AnnM (bc),
then two vertices [b] and [c] are adjacent in GA(M) which contradicts the fact that
GA(M) is a star graph. Thus AnnM (b) 6= AnnM (bc), a similar argument shows that
AnnM (c) 6= AnnM (bc). Hence, [b] − [bc] − [c] is a path in GA(M) which implies
that AnnM (a) = AnnM (bc). Therefore, the previous paragraph shows AnnM (d) ⊆
AnnM (bc), for any d ∈ ZR(M) \ AnnR(M). Now, it is easy to see that for all p ∈
AssR(M) we have AnnR(M) ⊂ p and bc ∈ p. Thus bc ∈ r(AnnR(M)).

Let [b] be an end-vertex of GA(M). We show that [b] lies in a minimal element
of AssR(M). By hypotheses b ∈ ZR(M) \ r(AnnR(M)) and an argument similar to
that of Theorem 3.1 shows that ZR(M) = ∪p∈AssR(M)p. So that b ∈ p for some
p ∈ AssR(M). Suppose that p = AnnR(m), where m ∈M . If p is a minimal element
of AssR(M) we are done. Otherwise, there exists a minimal element q of AssR(M)
such that q ⊂ p and q = AnnR(m′), for some m′ ∈ M . Again, if b ∈ q we are
done. Assume that b /∈ q. By the previous paragraph r(AnnR(M)) ⊂ q. Assume
that c ∈ q \ r(AnnR(M)). Thus c 6= b. Now, AnnM (b) 6= AnnM (c) since cm′ = 0
but bm′ 6= 0 and m ∈ AnnM (b) ∩ AnnM (c). This is a contradiction with the fact
that GA(M) is a star graph. Thus every end-vertices of GA(M) lies in a minimal
element of AssR(M). If b, c ∈ p = AnnR(m), for two end-vertices [b], [c] of GA(M),
then m ∈ AnnM (b) ∩ AnnM (c) which is a contradiction. Hence, any end-vertex is
located in a unique minimal associated prime ideal of R. Therefore,

|V (GA(M))| ≤ |Min AssR(M)|+ 1.
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By hypotheses and the previous paragraph |Min AssR(M)| ≥ 2. Let p ∈ Min AssR(M).
Then p * r(AnnR(M)). Assume that b ∈ p \ r(AnnR(M)) thus [b] is a end-vertices of
GA(M) and so

|V (GA(M))| ≥ |Min AssR(M))|+ 1.
A graph G is planar if it has a drawing without crossings. In a graph G subdivision

of an edge with endpoints u and v is a operation of replacing the edge u− v with the
path u − w − v, through a new vertex w. The subdivision of a graph G is a graph
obtained from G by subdividing some of the edges of G.
Theorem 3.3. Let R1, R2, R3 be commutative rings and R = R1 ×R2 ×R3 and let
M = M1 ×M2 ×M3, where Mi is an Ri-module, for i = 1, 2, 3. Then GA(M) is
a planar graph if and only if ZRi

(Mi) = AnnRi
(Mi), for i = 1, 2, 3.

Proof. First, we assume that ZRi(Mi) = AnnRi(Mi), for all 1 ≤ i ≤ 3. Then

V (GA(M)) =
{
x1 = [(0, 0, 1)], x2 = [(0, 1, 0)], x3 = [(1, 0, 0)],
x4 = [(1, 1, 0)], x5 = [(1, 0, 1)], x6 = [(0, 1, 1)]

}
.

Here, it is easy to check that the graph GA(M) is isomorphic to the Figure 1 which
contains no subdivision of K5 and K3,3. Thus by [14, Theorem 6.2.2], GA(M) is
a planar graph.

x1 x2 x3

x4x5x6

Fig. 1. A graph with no subdivision of K5 and K3,3

Conversely, suppose that the graph GA(M) is planar. On the contrary and with no
loss of generality, let ZR1(M1) 6= AnnR1(M1). Then there exists r ∈ R1 \ {0, 1} such
that 0 6= AnnM1(r) ⊂M . It is easy to check that the vertex set

F =
{
x1 = [(1, 1, 0)], x2 = [(1, 0, 0)], x3 = [(0, 0, 1)], x4 = [(1, 0, 1)],
x5 = [(r, 0, 1)], x6 = [(r, 1, 0)], x7 = [(r, 0, 0)], x8 = [(0, 1, 0)]

}

induces a subgraph of GA(M) which contains a subdivision of K3,3, see Figure 2 for
more details. By [14, Theorem 6.2.2], GA(M) is not planar which is a contradiction.
So ZRi(Mi) = AnnRi(Mi), for all 1 ≤ i ≤ 3.
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x1x2

x3

x4 x5

x6
x7

x8

Fig. 2. An induced subgraph of GA(M) whose bold lines form a subdivision of K3,3

Theorem 3.4. Let R1, . . . , Rn (n ≥ 4), be commutative rings and R = R1× . . .×Rn

and let M = M1 × . . . ×Mn, where Mi is an Ri-module, for all 1 ≤ i ≤ n. Then
GA(M) is not a planar graph.

Proof. It is sufficient to show that GA(M) is not a planar graph for n = 4. Consider
the vertex set

F =
{
x1 = [(1, 1, 0, 0)], x2 = [(0, 0, 1, 0)],
x3 = [(1, 1, 1, 0)], x4 = [(0, 1, 0, 0)], x5 = [(1, 0, 0, 0)]

}
.

It is easy to see that AnnM (xi) 6= AnnM (xj) and AnnM (xi) ∩ AnnM (xj) 6= 0, for
all i, j with i 6= j and 1 ≤ i, j ≤ 5. Thus the set F induces a complete subgraph of
GA(M). Hence, by [14, Theorem 6.2.2] the result follows.
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