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Abstract

An electrical network with the structure of a random tree is considered: starting from a root vertex,

in one iteration each leaf (a vertex with zero or one adjacent edges) of the tree is extended by either a

single edge with probability p or two edges with probability 1 − p. With each edge having a resistance

equal to 1, the total resistance Rn between the root vertex and a busbar connecting all the vertices at

the nth level is considered. Representing Rn as a dynamical system it is shown that 〈Rn〉 approaches

(1+p)/(1−p) as n→∞, the distribution of Rn at large n is also examined. Additionally, expressing Rn

as a random sequence, its mean is shown to be related to the Legendre polynomials and that it converges

to the mean with |〈Rn〉 − (1 + p)/(1− p)| ∼ n−1/2.

1 Introduction

For several years random sequences have been a topic of interest for a number of researchers. While this body

of work has been accepted as a branch of statistical physics, the current literature is primarily focused on

problems of a purely mathematical conception, namely the idea of a random Fibonacci sequence introduced

in [1] and expanded on in [2], [3] and [4]. The natural response to these analyses is to consider areas in

applied science where a random sequence may be characteristic of the phenomena being studied, these are

disordered systems whose behaviour is non-deterministic in that the state of the system after a short step in

time could be any of a number of possibilities (according to certain probabilities), much in an analogous way

to a random Fibonacci sequence. One success of statistical mechanics has been the widespread utilization of

of complex (random) networks to model naturally occurring phenomena, for this reason random sequences

that mimic the properties of random network problems have potential to become a fruitful topic of research.

The example considered here extends a number of well studied problems involving networks of electrical

resistors, [5] and [6] are concerned with the resistance between two sites on a lattice where each edge is a

resistor, and [7] goes further by examining the percolation that occurs when these resistors are overloaded,
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destroying the corresponding edge and breaking the lattice. On a similar theme, this paper attempts to

find the resistance across a particular class of random network where each edge represents a resistor, this

paper concerns a theoretical application of the equations associated with electrical resistance, the aim being

to find results regarding the total resistance of a random network where each edge represents a resistor,

the particular problem chosen has provided an opportunity to show that random sequences can be useful in

studying problems in physics.

The network studied here is grown from a single vertex by the repeated process of appending either one

branch or two (with probabilities p and 1− p respectively) to those vertices created in the previous iteration

(see Fig.1), the tree after n steps is denoted Tn [≡ Tn(p)]. To simplify the problem all edges are chosen

to have a resistance of 1Ω, throughout the paper the units of resistance Ω will not be displayed. This

paper is concerned with the the following question: as a function of p, what is the resistance Rn [≡ Rn(p)]

between the root vertex and a busbar connecting all the vertices at the nth level, and what happens when

n → ∞? The problem is interesting since the equations governing electrical resistance will take a different

(a) (b) (c)

Figure 1: The network begins as a single vertex and at each iteration one or two new edges are attached to each ’leaf’ of

the tree, the tree may grow along a single branch as in Fig.1a with probability p, or split in to two branches as in Fig.1b

with probability 1 − p. Figure 1c shows what a tree may look like after 2 iterations this particular realization will occur with

probability (1 − p) × (1 − p) × p. At the far right of the tree all the leaf vertices will, by definition, join to a single busbar to

complete the circuit, therefore the network can be seen as a complex combination of resistors in series and in parallel, Fig.1c

for example will have total resistance 6/7 (assuming the resistance across each edge is 1.

form depending on whether a given vertex branches in two or not, if it does (Fig.1b)then the formula for the

resistance across the two parallel edges with resistances R1 and R2 given by

1

RTotal
=

1

R1
+

1

R2

is used, edges connected in series use the formula RTotal = R1 + R2. The random combination of these

equations makes the question of the total resistance difficult to solve, moreover the problem increases rapidly

in complexity as the network grows.

The remainder of this paper describes ways in which these problems are mitigated and approximate solutions

are found for 〈Rn〉, its distribution Pn(R) as well as the rate of convergence to the mean as n increases.

In Section 2 the exact solutions for the two special cases, p = 0 and p = 1, are presented. In Section 3

a simplified model is used to approximate Tn(p) and the mean and second moment are approximated for
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general p and large n. Section 4 introduces a method to generate Tn accurately and the corresponding

numerical results are compared with those of 3. A random sequence model is presented in Section 5 from

which the convergence towards the mean is obtained as n increases.

2 p = 0 and p = 1

Figure 2: Tn(0) is equivalent to joining together two copies of

Tn−1(0) by two parallel edges to a new root vertex.

At the extreme values, p = 1 and p = 0, upper and

lower bounds for the Rn(p) are easily found: in the

first case there is no branching so Tn(1) is composed

of a line of n edges connected in series; supposing the

network grows with n, the equation for resistance in

series gives

Rn = Rn−1 + 1

and so Rn ∼ n as n → ∞. In the second case

the network branches at every vertex (thus Tn(0) is

a complete binary tree) and so both equations for

resistance in series and in parallel are needed. As

illustrated in Fig.??, Tn is equivalent to joining two networks, Tn−1, by two parallel edges from the root

vertex to a newly created root vertex (to verify this, observe that Tn has 2n end points (leaves) and 2×Tn−1
has 2× 2n−1). The consequent resistance equation is

1

Rn
=

1

Rn−1 + 1
+

1

Rn−1 + 1

⇒ Rn =
Rn−1 + 1

2
,

the solution to this being Rn → 1 as n→∞.
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3 A simplified model to approximate Rn

Figure 3: In the simplified model at each iteration the network

is either extended by an edge from the root vertex or joined with

a duplicate of itself as shown.

When 0 < p < 1 one wishes to find the mean 〈Rn〉

as a function of p as well as higher moments and

also the distribution Pn(R), since this is not easily

obtained a simplified network T ∗n is studied. In this

section, for the resistance R of T ∗n when n→∞ the

first and second moments are found and the distri-

bution P (R) is expressed in two different forms.

With probability p, T ∗n is constructed by joining the

root vertex of T ∗n−1 to a new vertex or, with proba-

bility 1− p, T ∗n is found by joining two duplicates of

T ∗n−1 to a new vertex (see Fig.??). Since this net-

work retains the same proportion of split branches

as Tn one expects it to be a close approximation.

The corresponding resistances are given by

Rn =

 Rn−1 + 1 with probability p

Rn−1+1
2 with probability 1− p

(1)

One can immediately write down a recursive formula for the average,

〈Rn〉 =
1 + p

2
[〈Rn−1〉+ 1] , (2)

which indicates the steady state value for which Rn converges to: 〈R〉 = (1 + p)/(1 − p). The distribution

of R at iteration n obeys

Pn(R) =

∫
Pn−1(R′)dR′

[
(1− p)δ

(
R′ + 1

2
−R

)
+ pδ (R′ + 1−R)

]
where δ(x) is the Dirac delta function. This to simplifies to

Pn(R) = 2(1− p)Pn−1(2R− 1) + pPn−1(R− 1). (3)

For the second moment, following directly from Eq.(3),

〈R2
n〉 =

∫ ∞
1

R2Pn(R)dR = 2(1− p)
∫ ∞
1

R2Pn−1(2R− 1)dR+ p

∫ ∞
1

R2Pn−1(R− 1)dR

is solved with changes of variable, u = R−1 and v = 2R−1, and the knowledge that for any natural number

n,
∫ 1

0
Pn(R)dR = 0 and

∫∞
1
Pn(R)dR = 1 which follows from Eq.(1). The resulting recursive formula is

〈R2
n〉 =

1 + 3p

4
(〈R2

n−1〉+ 2〈Rn−1〉+ 1), (4)
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as n→∞ the second moment is found to be 〈R2〉 = (3 + 10p+ 3p2)/3(1− p)2.

Additionally, Pn(R) converges to an invariant distribution as n increases to infinity, from Eq.(3) the invariant

distribution satisfies

P (R) = 2(1− p)P (2R− 1) + pP (R− 1). (5)

Using P̃ (k) to denote the Laplace transform of P (R), the solution of Eq.(5) when transformed,

P̃ (k) = L(P (R)) = 2(1− p)
∫ ∞
1

P (2R− 1)e−kRdR+ p

∫ ∞
1

P (R− 1)e−kRdR,

simplifies to the recursive equation

P̃ (k) =
(1− p)ek/2

1− pe−k
P̃ (k/2)

=
(1− p)e−k/2

1− pe−k
(1− p)e−k/4

1− pe−k/2
P̃ (k/4)

...

=

∞∏
r=0

(1− p)e−k/(2r+1)

1− pe−k/(2r)
P̃ (k) = e−k

∞∏
r=0

1− p
1− pe−k/2r

(6)

The inverse Laplace transform will recover an expression for P (R), this is described as

P (R) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
P̃ (k)eRkdk (7)

= the sum of the residues of P̃ (k)eRk. (8)

These residues lie at the points on the complex plane where the denominator in Eq.(6) is equal to zero, i.e

for each root ks (s = 0, 1, 2, ...), ks = 2s log(p). Calculating and summing these residues yields

P (R) =

∞∑
s=0

2sp2
sR 1− p
√
p

∞∏
r 6=s

(1− p)p−2s−r−1

1− p1−2s−r .

Using the expansion 1/(1−X) = 1 +X +X2 + ... with X = pe−k/2
r

, Eq.(6) can be written

P̃ (k) = e−k
∞∏
r=0

(1− p+ pe−k/2
r

− p2e−k/2
r

+ p2e−k/2
r−1

− ...)

Focusing only on terms up to and including multiples of p2, multiplying out the brackets and recalling the

translation property of δ(x),

P̃ (k) = e−k + p

∞∑
r=0

(e−k(1+1/2r) − e−k)

+ p2

 ∞∑
r=0

(e−k(1+1/2r−1) − e−k(1+1/2r)) +

∞∑
i=0

∞∑
j=0

(e−k(1+1/2i+1/2j) − e−k(1+1/2i) − e−k(1+1/2j) + e−k)


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Figure 4: Cumulative probability distribution plotted with the output of 104 realizations of the simplified model (Model I),

n = 106 and p = 0.1.

can be expressed as

P̃ (k) =

∫
e−kRδ(R− 1)dR+ p

∞∑
r=0

∫
e−kRδ(R− 1− 1/2r)dR− ...

=

∫
e−kRP (R)dR (9)

where P (R) ≈ δ(R− 1) + p

∞∑
r=0

[δ(R− 1− 1/2r)− δ(R− 1)] + p2
∞∑
r=0

[δ(R− 1− 1/2r−1)− δ(R− 1− 1/2r)]

+ p2
∞∑
i=0

∞∑
j=0

[δ(R− 1− 1/2i − 1/2j)− δ(R− 1− 1/2i)− δ(R− 1− 1/2j) + δ(R− 1)]. (10)

As values of p go towards zero, the values identified by the delta functions in the above expression constitute

an increasingly significant proportion of P (R). This can be seen in Fig.4 with the largest probability

occurring at R = 1, corresponding to the first order term as well as lower order terms, other notable values

of R correspond to the values identified by the delta functions that are multiplied by p2 in Eq.(10), 2, 1.5,

1.25, etc..

4 Comparison of the resistances of T ∗n and Tn: numerical results

In this section the results of Section 3 are compared with numerical results generated by simulation of the

dynamical system Eq.(1) (Table 1), additionally a second system is introduced which accurately reproduces

the behaviour of Rn for the original network Tn. The similarity of the simplified model with the accurate

representation is then shown by a comparison of each models mean (Fig. 5 and Table 1), variance (Table 1)

and distribution (Figs. 4 and 6) generated numerically.
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Table 1: A comparison is made between the simplified model and the accurate model, here the results for the mean and

variance predicted in 3 are shown next to numerical results obtained from 106 realizations. Numerical results of the accurate

model are also shown here and in Fig. 5, illustrating the accuracy of the simplified model as and approximation to the accurate

one.

p Predicted Model I (Simplified) Model II (Accurate)

Average Variance Average Variance Average Variance

0.1 1.22222 0.164618 1.22266 0.173222 1.19601 0.132801

0.2 1.5 0.416667 1.49595 0.422622 1.43467 0.337122

0.3 1.85714 0.816326 1.86260 0.850533 1.74874 0.666383

0.4 2.33333 1.48148 2.32556 1.45536 2.17774 1.19880

0.5 3 2.66667 3.00448 2.68774 2.72414 2.10841

0.6 4 5 3.96578 4.77015 3.60162 3.92301

0.7 5.66667 10.3704 5.67442 10.4559 5.04931 8.19541

0.8 9 26.6667 8.98651 26.7466 8.36457 23.7019

0.9 19 120 18.8040 116.624 17.3566 104.912

4.1 Constructing Tn

With probability p, Tn is constructed by joining the root vertex of Tn−1 to a new vertex or, with probability

1− p, Tn is found by joining two trees Ta and Tb to a single root vertex, where both Ta and Tb are possible

realizations of Tn−1. The resistance of Tn is then given by

Rn =


Rn−1 + 1 with probability p

1

1/(Ra + 1) + 1/(Rb + 1)
with probability 1− p

(11)

where Ra and Rb are distributed according to Pn−1(R). Comparisons are shown in table 1 and Fig.5, for the

simple model it was shown that the mean converges to (1 + p)/(1− p) and the sum of the squares converges

to (3 + 10p+ 3p2)/3(1− p)2 from which the variance is calculated.

5 Using random sequences to predict the convergence of Rn

To obtain the rate at which 〈Rn〉 converges to the mean a third model is considered in this section. Expressing

〈Rn〉 as a recurrence relation it is shown to be equivalent to a well known family of orthogonal polynomials,

these polynomials are expressed as an integral which is solved to retrieve the average as a function of p and

n when n is large.
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Figure 5: Comparison of the accurate model and the simplified model (n = 106).

Figure 6: Cumulative probability distribution plotted with the output of 104 realizations of the accurate model, n = 106 and

p = 0.1.
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In this model the tree Tn is either extended by an edge from the root vertex as before (with probability p)

or two duplicates of Tq are connected to a newly created root, where q is a randomly selected integer from

[0, n− 1]. The resistance is then given by following the random sequence

Rn =


Rn−1 + 1 with probability p

Rq + 1

2
with probability 1− p and q ∈ [0, n− 1]

(12)

If the Tq are chosen with equal probability then for large n one would expect the distribution of Rq to

approach that of Rn, this specifically describes a system of either attaching a single edge to the root vertex

of Tn (with probability p) or selecting a previous Tq and attaching it to its own duplicate (with probability

1− p). Letting Qn(q) be the probability that the value q ∈ [0, n− 1] is chosen, the distribution of Rn obeys

the integral equation

Pn(R) =

∫
(1− p)

n−1∑
q=0

Qn(q)Pq(R
′)δ

(
R− R′ + 1

2

)
dR′

+

∫
pPn−1(R)δ(R− (R′ + 1))dR′

which reduces to

Pn(R) = 2(1− p)
n−1∑
q=0

Qn(q)Pq(2R− 1) + pPn−1(R− 1)

From this the average An = 〈Rn〉 =
∫
RPn(R)dR is found to obey

An = (1− p)
n−1∑
q=0

Qn(q)

(
Aq + 1

2

)
+ p(An−1 + 1). (13)

A similar argument to the following can be found in [4], the distribution Qn(q) can be written as Qn(q) =

Q(q)/bn where

bn =

n−1∑
q=0

Q(q). (14)

Then Eq.(13) becomes

An =
(1− p)
bn

n−1∑
q=0

Q(q)

(
Aq + 1

2

)
+ p(An−1 + 1) (15)

Subtracting Eq.(15) from the equivalent equation for An+1, and observing from Eq.(14) that Q(n) = bn+1−

bn, it is found that

, 2bn+1An+1 + 2pbnAn−1 = (p+ 1)[(bn+1 + bn)An + (bn+1 − bn)]. (16)

In the case where the previous Tn are chosen with equal probability, Qn(q) = 1/n for all q ∈ [0, n−1], bn = n

(bn+1 = n+ 1, obviously) and Eq.(16) becomes

2(n+ 1)An+1 + 2pnAn−1 = (p+ 1)[(2n+ 1)An + 1] (17)

9



equivalently

nAn =
p+ 1

2
[(2n− 1)An−1 + 1]− p(n− 1)An−2. (18)

A solution can be obtained with the help of some known results in orthogonal polynomials, this is possible

by first observing that the transformation

An =
1 + p

1− p
+ p

n
2Bn (19)

when substituted into Eq.(18) leaves

nBn =
p+ 1

2
√
p

(2n− 1)Bn−1 − (n− 1)Bn−2, (20)

the recursion relation for the Legendre polynomials Bn = Pn−1(x) at x = (p+ 1)/2
√
p [8]. Given in [8], the

Gegenbauer polynomials, which obey the integral form

C(α)
n (x) =

2(1−2α)Γ(n+ 2α)

n![Γ(α)]2

∫ π

0

[x+
√
x2 − 1 cos φ]n( sin φ)2α−1dφ, (21)

become the Legendre polynomials at the value α = 1/2, so Eq.(21) reduces to the much simpler

Pn(x) =
1

π

∫ π

0

[x+
√
x2 − 1 cos φ]ndφ. (22)

This can be easily solved using Laplace’s method as it can be expressed in the form

Pn(x) =
1

π

∫ π

0

exp{nf(φ)}dφ

with

f(φ) = log[x+
√
x2 − 1 cos φ]

f ′(φ) =−
√
x2 − 1 sin φ

x+
√
x2 − 1 cos φ

(23)

f ′′(φ) =−
√
x2 − 1 cos φ

x+
√
x2 − 1 cos φ

+
(x2 − 1) sin2φ

[x+
√
x2 − 1 cos φ]2

. (24)

From Eq.(23) it can be seen that stationary points of f exist at φ = 0 and φ = π, putting these into Eq.(24)

yields

f ′′(0) =−
√
x2 − 1

x+
√
x2 − 1

(25)

and f ′′(π) =

√
x2 − 1

x+
√
x2 − 1

(26)

Using Laplace’s method on the integral in Eq.(22), as n→∞

Pn(x) ∼ 1

π

1

2

√
2π

n|f ′′(φ0)|
exp{nf(φ0)}

=
1

2π

√
2π

n

√
x+
√
x2 − 1√

x2 − 1
(x+

√
x2 − 1)n

⇒ Pn

(
1 + p

2
√
p

)
≈ 1√

nπ

√
1

1− p
p−n/2.

10



Figure 7: Convergence of random sequence representation of 〈Rn〉, here p = 0.7. The gradient in this plot agrees with the

predicted result in Eq.(27) that the convergence to the mean behaves as n−1/2.

Note that only half of the value is taken since the maximum is on the boundary of the integral. Relating

this back to the formula for the average value of the random sequence [Eq.(19)],

An+1 =
1 + p

1− p
+ p

n+1
2 Pn

(
p+ 1

2
√
p

)
,

the resulting equation showing the rate of convergence

An+1 =
1 + p

1− p
+

1√
πn

√
p

1− p
, (27)

also retrieves the value for 〈Rn〉 for large n seen in Section 3.

6 Summary

A class of random resistor networks has been introduced with a tree-like structure characterized by a single

parameter p. By constructing similar yet simplified tree networks that retained the important property of

the proportion of branching points to non-branching points, approximations were made to the resistance of

the network with a slight loss of accuracy. For a growing network it was established for the approximation

that when p = 1 the resistance diverges but for all other values of p the resistance converges to (1+p)/(1−p)

with |〈Rn〉 − (1 + p)/(1 − p)| ∼ n−1/2. It was revealed that the structure of the probability distribution of

Rn when n is large is intricate although as p decreases certain values begin to dominate the distribution.
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