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Abstract 

 

For almost half a century the catastrophic failure of direct chill (DC) cast high 

strength aluminum alloys has been challenging the production of sound ingots. In 

spite of all technical improvements and case studies, the cold cracking still remains an 

unpredictable phenomenon in the aluminum industry. To overcome this problem, a 

criterion is required that can assist the researchers in predicting the critical conditions 

which facilitate the catastrophic failure of the ingots. In the past, this was achieved by 

performing numerous casting trials under various casting conditions with the aim to 

find the limits beyond which cold cracking occurs. Development of computer 

simulations however, replaced this costly process by thermo-mechanical simulations 

of residual thermal stresses. At the same time, although the simulation results are able 

to show the critical locations and conditions where and when high stresses may appear 

in the ingots, the prediction of critical void/crack size requires simultaneous 

application of fracture mechanics. In this paper, we present the thermo-mechanical 

simulation results that indicate the critical crack size distribution in several DC-cast 

billets cast at various casting conditions. The simulation results were validated upon 

experimental DC-casting trials and revealed that the existence of voids/cracks with a 

considerable size is required for cold cracking to occur. 

 

1. Introduction 
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Direct chill (DC) casting is the first step in the production of high strength aluminum 

alloys [1]. In spite of its robust nature and relative simplicity it can induce some voids 

and defects in the ingots. High cooling rates and non-equilibrium solidification 

conditions of the DC-casting result in formation of non-equilibrium eutectics and 

intermetallics, which mainly precipitate on the grain boundaries and interdendritic 

spaces during final stages of solidification [2, 3]. The formation of such phases 

coincides with the appearance of thermal stresses when the dendritic grains start to 

form a coherent network [4]. Due to their low melting point, the non-equilibrium 

eutectics provide potential nucleation sites and propagation paths for hot cracking 

(cracking above the solidus) while they are still in the liquid state. Below solidus, they 

provide a continous network of brittle intermetallics on the interdendritic/intergranular 

spaces and make the material prone to intergranular brittle fracture [5-7]. The fracture 

of the intermetallics under triaxial loading conditions in the center of the billet may 

provide cracks of critical size which may facilitate the cold cracking [8]. 

Regardless of the micro-scale cracking mechanism, voids/cracks of critical size 

should be present in the structure, at the tip of which the stresses are intensified to 

some critical levels. The critical crack/void size can be calculated by application of 

fracture mechanics and thermo-mechanical simulation of the residual thermal stresses 

developed in the billet during the casting process [9, 10]. Thermo-mechanical 

simulation is a powerful computational tool that assists the researchers in better 

understanding the development of residual thermal stresses during the DC-casting 

process [11]. However, in order to calculate the critical crack/void size that results in 

catastrophic failure, the application of fracture mechanics is required. According to 

the Rankine’s theory, which is more applicable to brittle materials than other theories, 

the failure occurs when either the maximum principal stress reaches the uniaxial 

tensile strength or the minimum principal stress reaches the uniaxial compressive 

strength [12, 13]. Experimental DC-casting trials have shown that DC-cast ingots 

suffer from failure under highly tensile stress conditions rather than compressive ones 

[7, 14]. Thus, the knowledge of the maximum principal stress along with the plane 

strain fracture toughness of the alloy in the genuine as-cast condition is necessary for 

any critical crack/void size assessment.  

The brittleness of the material in the genuine as-cast condition is indeed the result of 

the special microstructure, but the level of thermal stresses developed during the 

casting is brought about by the poor thermo-physical properties of the material. A 
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wider solidification temperature range, a lower thermal conductivity, and a relatively 

higher coefficient of thermal expansion compared to other aluminum alloys [15] lead 

to high temperature gradients and consequently high thermal stresses in 7xxx series 

aluminum ingots [16]. Therefore, high-strength aluminum alloys are intrinsically 

prone to cold cracking due to the poor thermo-physical properties and the special 

microstructure in the genuine as-cast condition. Under such conditions, any external 

parameter which can affect the temperature distribution and consequently the 

corresponding thermal stresses in the billet might make it even more prone to cracking. 

The casting process parameters such as casting speed and billet size can affect the 

stress level, distribution and orientation, which in turn influences the failure 

probability of the billets (ingots) [17]. 

In order to assist the industry in better understanding the cold cracking phenomenon 

and to provide a predictive tool, a proper criterion has to be established. Since the first 

reports on cold cracking in 1940’s and 50’s [18, 19], some works have been 

performed mainly as case studies to prevent cold cracking [20, 21]. First criteria on 

cold cracking were based on the analysis of numerous industrial trials and included 

the requirement for the minimum ductility of the as-cast material or a relationship 

between casting speed and ingot size [22]. Recently, some researchers applied the 

fracture mechanics to thermo-mechanical simulations with the aim to predict the 

critical crack size [9, 10]. However, their results have never been validated upon 

experimental DC-casting trials. In this research work, we present the simulation 

results for the AA7050 alloy cast under various conditions. The effect of the casting 

speed and billet diameter on the failure probability of the billets was studied using the 

contour maps of the critical crack size. The predictions of the criterion for a typical 

7xxx series aluminum alloy were validated upon pilot scale casting trials. The findings 

of this paper may be useful to aluminum industry in prediction and prevention of cold 

cracks. 

 

2. Computer simulation process   

 

ALSIM5* was used for the computation of temperature profile and stress/strain fields 

for round AA7050 billets under various casting conditions. A detailed description of 

                                                 
* ALSIM is a casting-simulation software developed by the Norwegian Institute for Energy Technology 
(IFE), Kjeller, Norway.  
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the models involved can be found elsewhere [23-26]. The simulated geometry 

consisted of the hot top, mold, water jet, bottom block and the casting domain as 

shown in Fig. 1. 2D-rectangular elements were used that become finer on moving 

from the center towards the surface of the billet (Fig. 1). As the bottom block moves 

downwards during casting, new elements with the size of 0.75 mm are added to the 

geometry at the casting speed to simulate the continuous casting conditions. 

Meanwhile, the mold, hot top and molten metal retain their initial position. 

Simulations were run in 2D and due to axial symmetry, only half of the billet was 

considered. Time-dependent thermal boundary conditions are defined to account for 

filling time, air gap formation between the billet and the bottom block as well as at the 

billet surface, and for different heat extraction in different parts of the casting system 

[27]. The casting process parameters are shown in Table 1 for three various cases. The 

Case 1 is a 200-mm diameter billet cast at the speed 1 mm/s. In the second Case, the 

casting speed is increased to 2 mm/s while the billet diameter is unchanged. In the 

third case, the billet diameter is increased while the casting speed is the same as in 

Case 1. For Cases 2 and 3, water flow rates were increased accordingly to compensate 

for the higher heat input related to the greater mass of hot metal coming into the mold. 

The casting times were selected in such a way to make sure that the steady-state 

conditions are reached.  

Chemical composition of the tested alloy is listed in Table 2. Thermal as well as 

physical properties of the alloy were obtained from the thermodynamic database 

JMat-Pro (Sente Software Ltd., Surrey Technology Centre, 40 Occam Road, GU2 

7YG, United Kingdom) provided by Corus-Netherlands (IJmuiden) and are shown in 

Table 3. The liquidus and non-equilibrium solidus were determined through 

differential scanning calorimetry (DSC) tests for the grain refined alloy as 632 and 

462 °C, respectively. The fraction liquid in the solidification range between the 

liquidus and the non-equilibrium solidus was calculated by Scheil equation (JMat-Pro) 

and results are shown in Table 4. In ALSIM5, the latent heat of solidification is 

included in the enthalpy and is released as enthalpy is reduced due to cooling [28]. 

Mechanical properties and constitutive parameters of the grain refined alloy were 

measured by authors in the genuine as-cast condition (Table 5) and the details may be 

found elsewhere [8, 29]. Mechanical behavior of the material at high temperatures is 

different in different temperature ranges. Therefore, different models are used to 

describe this behavior and some characteristic temperatures define the boundaries 
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between them. The extended Ludwik equation [30] and ALSPEN equations [27] were 

used to simulate the viscoplastic behavior of the material below the onset temperature 

of strain hardening (390 °C) [27]. Between this temperature and the so called merge-

properties-temperature, low temperature strain hardening equations (Ludwik and 

ALSPEN) are merged with the mushy zone equations (a cohesion model) [31] and 

details on the models may be found elsewhere [32]. The merge-properties-temperature 

is defined to be few degrees below the solidus (455°C). Between merge-properties-

temperature and rigidity temperature (onset of thermal contraction in the mushy zone, 

559 °C, which was measured experimentally by authors using the solidification 

contraction setup [33]) the cohesion model [31] was used to simulate the thermo-

mechanical behavior of the material in the mushy zone. As the rheological parameters 

of the 7050 alloy are not available in the literature, the rheological parameters of the 

Al-2 wt% Cu were used instead [34].  

As a good approximation, the grain refined material under discussion can be assumed 

to be homogeneous and isotropic, i.e. in macroscopic view there is no preferred crack 

orientation and cracks propagate normal to the maximum principal stress component 

[35]. Having the plane strain fracture toughness of the material and assuming the 

ingot as a semi-infinite medium, one can calculate by application of fracture 

mechanics the critical crack size that leads to catastrophic brittle fracture [9, 13]. To 

achieve this goal, a new module is added to ALSIM5 which uses the plane strain 

fracture toughness (KIc) of the material in the as-cast condition [8] and the maximum 

principal stress (σ11) component acting at the corresponding location. To calculate the 

critical crack size (CCS), the penny shaped crack (PSC) (Fig. 2a) was chosen for the 

bulk of the billet and the vicinity of the surface. The critical crack size for brittle 

fracture corresponding to this geometry is calculated as follows based on Griffith’s 

analysis [36]: 
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At the surface of the billet, the surface breaking semi-circular (thumbnail) crack (Fig. 
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3. Simulation results for AA7050 and discussion 

 

Fig. 3 shows the simulation results for the 200-mm billet cast at 1 mm/s after 380 s of 

casting when steady-state conditions are already obtained. As can be seen in Fig. 3a, 

after 380 s of casting the temperature in the lower part of the billet is already below 80 

°C.  For the detailed explanation of the stress tensor components in the billet and their 

time evolution, one may refer to the previous works of authors [8, 16]. It is however 

worth to recall that under steady-state casting conditions, stresses are mainly tensile in 

the center of the billet and with moving toward the surface they either diminish or turn 

to compressive. In the water impingement zone (WIZ; shown in Fig. 1), the 

circumferential stress appears to be highly tensile, which immediately turns to 

compressive as the billet leaves the impingement zone. One consequence of having a 

triaxial tensile stress state in the center of the billet may be observed in Fig. 3b, where 

the mean (hydrostatic) stress (σm) takes high values in the center of the billet (48 

MPa). Similar situation is observed at the surface of the billet in the WIZ (σm = 30 

MPa). This explains why 7xxx series aluminum alloys are so prone to cracking at 

these two locations. The higher the tri-axial stresses, the higher would be the chance 

of plastic constraint at the tip of the voids and cracks, and consequently the higher the 

chance of brittle fracture [37]. Luckily, in round ingots (billets), the tensile 

circumferential stresses in the WIZ are replaced by the compressive ones as a result of 

the contraction of the center. In spite of this, at some locations of the billet, e.g. on top 

of the bottom block the micro-cracks induced by tensile stresses may reach the critical 

length and propagate [38-40]. An example of such cracks may be seen in Fig. 4. 

Although such cracks are more suspected to be hot cracks rather than cold cracks, the 

exact determination of their type is not that straight forward. This is mainly due to the 

fact that the eventual fractographic features of hot and cold cracks may resemble each 

other [6, 41]. Moreover, the cold cracking may be a continuation of hot cracking 

which makes the distinction even more complicated [8].  

Fig. 3c shows the contour map of the σ11 in the billet cast under conditions of Case 1. 

As can be seen, the σ11 gains its maximum values in the WIZ (100 MPa) as well as 

the center of the billet (71 MPa). This component of the principal stress tensor was 

applied to Eq. 1 along with the KIc values (200°C: 8.3 ± 0.2 MPa·m1/2, 100°C: 8.6 ± 

0.2 MPa·m1/2 and room temperature: 8.9 ± 0.3 MPa·m1/2 [8]) in order to calculate the 

critical crack size. The results are shown in Fig. 3d. The smallest critical crack size 
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appears in the WIZ in the vicinity of the surface, where cracks of 6-8 mm 

(corresponding temperatures: 180-200 °C) may trigger the failure. In the center of the 

billet this reads 10.7 mm (corresponding temperatures: 100-115 °C). The PSC would 

not be the right choice for the surface of the billet due to its geometry constraints. 

Therefore, for this specific location the surface breaking semi-circular (thumbnail) 

crack was chosen and the resulted critical crack size is 4.2 mm. Our earlier 

experimental results [8] showed that above 200 °C, the plane strain conditions are not 

valid anymore and for measurement of the KIc at higher temperatures very large 

samples are required. As a result, the calculation of critical crack size was not possible 

above 200 °C and the corresponding area is marked in Fig. 3d.  

Fig. 5 shows similar contour maps as in Fig. 3 but for a billet cast under the conditions 

of Case 2, i.e. a 200-mm billet cast at 2 mm/s. As can be seen in Fig. 5a, the higher 

casting speed has resulted in a deeper sump which in turn increases the temperature 

gradients especially in the axial direction of the billet (-y). The increase in the 

temperature gradients leads to the increase of the thermal stress level in the billet in all 

directions [17, 42]. A direct consequence of this is the increase of the mean stress 

level to 103 MPa in the center of the billet and to 39 MPa in the WIZ (Fig. 5b). 

Comparing the situation to Case 1, one concludes that the mean stress is more than 

doubled in the center of the billet, which increases the plastic constraint and the 

probability of brittle fracture. Fig. 5c indicates the distribution of the σ11 in the billet. 

Another consequence of the stress level elevation in the billet may be observed here, 

where the σ11 has increased to 125 MPa in the center and 105 MPa in the WIZ at the 

surface. The contour map of the critical crack size (CCS) is shown in Fig. 5d, where 

the minimum CCS appears to be 3.5-5 mm in the center of the billet and 5-6 mm in 

the WIZ. The thumbnail crack size at the surface of the billet was calculated as 3.8 

mm. Compared to Case 1, the critical crack size has decreased dramatically in the 

center of the billet, but in the WIZ the changes are smaller. By comparing Fig. 5c, d 

with Fig. 3c, d one learns that the area corresponding to the largest σ11 and the 

minimum critical crack size has grown in the center of the billet, which indicates the 

higher failure probability in that area. In the WIZ however, the corresponding area has 

shrunk, which results directly from the higher casting speed and the fact that the billet 

spends shorter times in the impingement zone.  

In order to study the effect of billet diameter on the state of residual thermal stresses 

and the failure probability, simulations were run under the conditions mentioned for 
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Case 3 (Table 1). The results are shown in Fig. 6. Similar to increasing the casting 

speed, the increase in the billet diameter results in a deeper sump (Fig. 6a) mainly due 

to the longer thermal diffusion path to the surface [17, 42]. This results in higher 

temperature gradients especially in the axial direction of the billet (-y). According to 

Fig. 6b, the mean stress does not change noticeably compared to Case 2, i.e. 103 MPa 

in the center and 36 MPa in the WIZ. Unlike the mean stress, the maximum principal 

stress (Fig. 6c) increases even more in the center of the billet and reaches 135 MPa. In 

the WIZ it remains more or less the same as in Case 2, i.e. 105 MPa. The critical 

crack size in the center of the billet is in the range of 3-5 mm and 5-6 mm in the WIZ 

(Fig. 6d). The calculated thumbnail crack size at the surface of the billet is similar to 

Case 2, i.e. 3.8 mm.  

It is worth mentioning that at small billet diameters and low casting speeds (Case 1) 

the maximum principal stress in the center of the billet is oriented either in the radial 

or circumferential directions, while by either increasing the casting speed or billet 

diameter it turns toward the axial direction of the billet [17]. This, results in the 

rotation of the crack plane that will be discussed further in Section 4. 

 

4. Validation of the simulation results upon casting a 7xxx series aluminum alloy 

 

4.1 Experimental procedure 

 

In order to check the validity of the cold cracking criterion, a high strength 7xxx 

aluminum alloy, which is highly prone to both hot and cold cracking, was selected. 

The material was cast in the form of a 260-mm diameter billet at Corus-Netherlands 

(IJmuiden) through DC casting with a conventional mold (without hot top) from the 

melt that was degassed in the furnace. Constitutive parameters and mechanical 

properties of the alloy were determined by fitting the extended Ludwik equation [30] 

to the true stress-strain curves [29]. The plane strain fracture toughness of the material 

was also determined following the regulations of ASTM-E399 [43]. The mechanical 

properties of this alloy resemble that of AA7050 [29] except for the fact that the new 

alloy exhibits more plasticity at 200°C and the KIc values are higher compared to 

AA7050. The thermophysical properties of the material were obtained from the JMat-

Pro data-base provided by Corus-Netherlands. Finally, mechanical as well physical 
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properties data-bases were prepared to be implemented in ALSIM5 for 

thermomechanical simulations and calculation of critical crack sizes. 

In order to check the validity of the simulation results, DC-casting trials were 

performed on billets with two different diameters. 260-mm diameter billets were cast 

under the conditions mentioned in Table 6 to examine the effect of casting speed and 

water flow rate. The effect of casting speed on the cracking propensity of the billets 

was additionally examined on 315-mm diameter billets. DC-casting of two billets    

(Ø 315-mm) was simulated and experimentally checked under the following 

conditions: 1- casting speed: 50 mm/min (0.8 mm/s), water flow rate: 42 l/min; 2- 

casting speed: 90 mm/min (1.5 mm/s), water flow rate: 108 l/min. The casting speeds 

are lowered and the water flow rates are increased correspondingly compared to the 

260-mm billet in order to compensate for the larger heat input generated by the larger 

size of the billet. 

Ultrasonic defectoscopy (with accuracy to measure voids as small as 1.5 mm) was 

performed for the non-cracked billets (Ø 260-mm) to check the presence of voids of 

critical size which did not lead to catastrophic failure. For more detailed examinations, 

samples were randomly cut from the center, mid-radius and surface of the billets. 

They were polished afterwards and prepared for analysis in a Jeol JSM-6500F field 

emission scanning electron microscope (SEM). 

 

4.2 Computer simulation results and discussion 

 

A 260-mm diameter billet, cast at 1 mm/s with water flow rate of 35 l/min was taken 

as the standard case. Casting speed and water flow rate were varied to study the effect 

of these variables on the cracking propensity (Table 6) [44]. As in practice, cold 

cracking frequently occurs at the end of casting when the billet is completely solid, it 

is decided to adjust the simulation conditions in such a way that they resemble the 

ones during the failure of the billets in practical situations. To achieve this, the casting 

conditions were set as follows: 1- the first 500 s were simulated under standard 

conditions (Case I in Table 6), 2- changes in casting speed or water flow rate were 

applied afterwards by ramping up from Case I, 3- the casting was then simulated with 

the new parameters (Cases II, III and IV in Table 6) or the same (Case I) for another 

500 s, 4- eventually, the casting speed was ramped down to zero and the billet was 

cooled down to room temperature during 200 s.  
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Contour maps of the σ11 are shown in Fig. 7 for the cases described in Table 6. In Figs. 

7b,c and d, the lower parts of the billets correspond to the initial casting conditions 

while the upper parts to the new ones. With increasing the casting speed, the σ11 

increases in the centre of the billet (Figs. 7a through 7c). The increase in the 

magnitude of the σ11 is due to the increased heat input and the consequent steeper 

temperature gradients especially in the axial direction of the billet [17]. Water flow 

rate has a negligible effect on the magnitude of the σ11 and the simulation results of 

the billet cast with 70 l/min water flow rate (Fig. 7d) are very similar to Fig. 7a. 

Fig. 8 shows the contour maps of the CCS distribution in billets cast under conditions 

described in Table 6. As expected, increasing the casting speed leads to smaller CCS 

values in the center of the billet, which means higher failure probability (Fig. 8a 

through c). In agreement with our results in Fig. 7d, the water flow rate has a 

negligible effect on the crack size (Fig. 8d). 

The simulation results of the Ø 315-mm billets were in agreement with our previous 

findings for AA7050 (Fig. 6), i.e. increasing the billet diameter results in higher stress 

level in the center of the billet (Fig. 9).  

 

4.3 Experimental results and discussion 

 

DC-casting trials performed for the cases mentioned in Table 6 revealed no cracks in 

cases I, II and IV. A real cold crack however occurred in case III during the casting 

with an audible bang resulting in the failure of the billet. According to Fig. 8, in the 

center of the billet, cracks or defects with a critical diameter between 6-12 mm (3-6 

mm in radius) may lead to catastrophic failure. Further investigation of the fracture 

surface in case III revealed an inclusion with a length of 7 mm, which was located 20 

mm away from the center of the billet and 730 mm above the bottom block (Fig. 10). 

The predicted critical crack size (the diameter of the penny) for the coordinate 

mentioned above is 7.5 mm, which is 0.5 mm longer than the actual observed void. 

The reason for such a deviation might be the fact that the actual crack shape is more 

complicated and irregular than the simplified penny shaped crack. In reality, cracks 

have sharper edges that may approach that of an ideally sharp crack. Under such 

conditions less energy would be required for the brittle fracture of the material to 

occur and the failure may occur at lower CCS values. In practice, this may be taken 

into account by multiplication of the CCS results by a safety factor. 
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It is obvious from Fig. 10 that the 7 mm inclusion has triggered the failure as the so-

called V-shaped chevron markings are all radiating from this defect. Computer 

simulation results showed that the temperature of the corresponding point is around 

55°C at the moment of fracture, which fits in the temperature range where the material 

is expected to be extremely brittle. Thus, the void existed there since the beginning of 

the casting, but its catastrophic propagation was facilitated by the extreme brittleness 

of the material below 200°C and the high corresponding σ11 value. Another feature of 

the crack is that its plane is not oriented parallel to the axial direction of the billet 

(“y”). As discussed in Section 3, investigation of the stress tensors revealed that the 

σ11 axis turns from radial or circumferential direction towards the axial direction (y) 

of the billet with increasing the casting speed. At the high casting speed of 110 

mm/min (1.8 mm/s), the σ11 (in the center) turns toward the axial direction of the 

billet and results in the crack plane oriented normal to “y”. As can be seen in Fig. 11, 

the normal to the crack plane makes an angle θ with the axial direction of the billet 

(direction of casting). In the center of the billet, the crack plane is normal to “y” (Fig. 

10). But, as the crack propagates towards the surface of the billet it deviates and tends 

to orient parallel to the axial direction of the billet. This is mainly due to the rotation 

of the σ11-axis with moving toward the surface of the billet. 

During the ultrasonic defectoscopy of the non-cracked Ø 260-mm billets no specific 

defects were detected, in spite of this, two suspicious locations were marked. After 

stress relief, the billets were cut at those locations and the cross sectional areas were 

polished; however, no cracks were detected. Closer observations of the samples from 

the center and mid-radius revealed that there are some voids such as shrinkage 

porosities in the microstructure with a maximum size in the order of hundred microns 

(Fig. 12 and 13). At the surface of the billet, no specific voids were detected. The 

maximum size of the detected shrinkage porosities are far below the estimated critical 

crack size by fracture mechanics, which explains well why they have not led to the 

failure of the billets. 

DC-casting trials for the Ø 315-mm billets appeared to be more challenging, in spite 

of this a cold cracking occurred only when the casting speed was raised from 0.8 to 

1.5 mm/s. The billet cast at 1.5 mm/s and 108 l/min cracked with a loud audible bang 

15 s after the end of casting in the pit. At the first glance, the cracks seemed to be 

originated from the surface of the billet. However, cutting the billets revealed that the 

cracks initiated in the center of the billet and then propagated catastrophically towards 
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the surface (Fig. 14a, b). Although it is hard to associate an exact size with the 

shrinkage cavity in Fig. 14a, its length appears to be 10.5 mm horizontally and 9.5 

mm vertically. Our simulation results (Fig. 9) showed that for the 315-mm billet cast 

at 1.5 mm/s and 108 l/min, the critical crack size in the center of the billet is 6-12 mm 

for the penny shaped crack (the diameter of the penny corresponding to 3-6 mm 

radius). The size of the shrinkage cavity in the center of the billet matches well to the 

computed range.  

The shrinkage cavities shown in Fig. 12 and 13 are potentially the crack nucleation 

sites, which may lead to the catastrophic failure if they reach the critical size (Fig. 

14a). As explained in Section 1, the combination of poor thermal properties facilitate 

the formation various defects during the solidification. This indicates that the 7xxx 

series aluminum alloys are potentially prone to cold cracking. The occurrence of cold 

cracking however depends on the conditions that may drive such voids to the critical 

size. Increased casting speed or billet diameter may fulfill such conditions by 

steepening the temperature gradients and consequently increasing the thermal stress 

level in the billets. Under such conditions the voids may grow in the tensile stress 

fields and reach the critical size required for the catastrophic failure.    

The effect of the rotation of the σ11-axis on the orientation of the crack plane at higher 

casting speeds was shown in Fig. 11 for the Ø 260-mm billet. Similar effect was 

observed in the Ø 315-mm billet cast at 1.5 mm/s (Fig. 14b). With the rotation of the 

σ11-axis towards the axial direction of the billet (y), the crack plane propagates in such 

a way to orient perpendicular to that component. Another point to bear in mind is that 

the Ø 315-mm billet cracks at a lower casting speed (1.5 mm/s) compared to the 260-

mm billet (1.8 mm/s). This is the result of the stress level rise in the billet through 

increased billet diameter. 

 

5. Concluding remarks 

 

The cold cracking propensity of AA7050 billets was studied under steady state 

conditions during DC-casting. The contour maps of the critical crack size calculated 

by ALSIM5 for the penny shaped crack admitted our earlier findings [17] that the 

center and the water impingement zone are the most vulnerable locations of the billet 

to cracking. The effect of the casting speed and billet diameter were also studied and 

revealed that at higher casting speeds or larger billet diameters the vulnerable area to 
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cold cracking becomes larger in the center while it becomes smaller at the surface in 

the water impingement zone. The larger heat input brought about by the faster casting 

speeds or larger billet diameters results in steeper temperature gradients especially in 

the axial direction of the billet. The direct consequence of the increased temperature 

gradients is the elevation of the stress level in the center as well as the surface of the 

billets in the WIZ, which causes higher cracking probability in these locations.  

The cold cracking criterion was validated quantitatively upon DC-casting of a 7xxx 

series aluminum alloy, which is highly prone to both hot and cold cracking. 

Thermomechanical simulations were run for this alloy under various casting 

conditions. In agreement with our earlier findings [17], the simulation results showed 

that as the casting speed increases, the CCS decreases leading to a higher failure 

probability of the billets. Computer simulations were followed by experimental DC-

casting trials to check the critical crack sizes calculated by ALSIM5. The critical 

crack sizes were validated upon experiments, where a 7 mm inclusion in the centre of 

the Ø 260-mm billet cast at 110 mm/min (1.8 mm/s) and 90 l/min triggered the 

catastrophic failure. The model was further validated by casting a billet of a larger 

diameter, where a shrinkage cavity of critical size triggered cold cracking.  

Our microstructural investigations on non-cracked billets showed that the shrinkage 

cavities formed during the solidification are the potential nucleation sites for cold 

cracking. However, they may only reach the critical size under severe casting 

conditions provided by the higher casting speeds or larger billet diameters. Other 

defects such as hot cracks or inclusions may also reach a critical size and trigger the 

failure. Therefore, the intrinsic propensity of 7xxx series aluminum alloys to cold 

cracking thorough their poor thermal properties and low ductility may actually lead to 

cold cracking when the externally controlled process parameters exceed some critical 

levels, or when an external void of critical size (inclusion) is added to the system 

during the casting. 

Based on our earlier findings [17], increasing the casting speed not only increases the 

magnitude of the maximum principal stress, but it also turns its axis towards the axial 

direction of the billet resulting in the rotation of the crack plane. The orientation of the 

crack plane in the cold-cracked billet with respect to the axial direction of the billet 

proves this simulation result. 
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Figure captions 
 

Fig. 1 Geometry of the DC-cast billet used for simulations showing the hot top, mold, 
bottom block, and the casting aluminum part consisting of cast top, cast expansion 
and cast bottom. Approximate position of the Water Impingement Zone (WIZ) is also 
indicated on the billet surface. 
 
Fig. 2 Schematic view of the crack geometries used in this study: a) a penny shaped 
crack. V(0,s) is the displacement at (0,s) when uniform pressure σ is applied on crack 
surfaces, b) a thumbnail crack in a semi-infinite body (y ≥ 0) (y = 0: free surface) [36].  
 
Fig. 3 Simulation results for the 200-mm diameter billet cast at 1 mm/s after 380 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   
 
Fig. 4 A photo showing a 200-mm diameter 7475 DC-cast billet. The arrows show the 
surface cracks on the bottom of the billet. 
 
Fig. 5 Simulation results for the 200-mm diameter billet cast at 2 mm/s after 310 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   
 
Fig. 6 Simulation results for the 400-mm diameter billet cast at 1 mm/s after 900 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   
 
Fig. 7 Simulation results showing the σ11 (MPa) in the billets cast at various 
conditions mentioned in Table 6. Arrows show the transition between casting regimes 
[44]. 
 
Fig. 8 Simulation results showing the critical crack size distribution (mm) in the 
billets cast at various conditions mentioned in Table 6. Crack sizes larger than 30 mm 
are neglected and appear as gray between the billet surface and the black area at mid-
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radius. Arrows show the transition between casting regimes and the star in (c) 
indicates the location of the inclusion which triggered the catastrophic failure [44]. 
 
Fig. 9  Simulation results showing: (a) the maximum principal stress (MPa) and (b) 
the critical crack size distribution (mm) in the 315-mm diameter billet cast at 1.5 
mm/s and 108 l/min after 980 s of casting under steady state conditions. Crack sizes 
larger than 30 mm are neglected and appear as gray between the billet surface and the 
black area at mid-radius. Arrows show the transition between casting regimes (0.8 
mm/s, 42 l/min to 1.5 mm/s, 108 l/min). 
 
Fig. 10 (a) The cold crack surface in the billet cast at 1.8 mm/s and water flow rate of 
90 l/min. The dark point shown by an arrow triggered the fracture. The chevron 
markings radiating from this Mg-oxide inclusion account for its role in the fracture. (b) 
The same figure at a higher magnification [44]. 
 
Fig. 11 The lateral cross section of the cracked billet shown in Fig. 10. The 
orientation of the crack plane is shown using the axial direction of the billet and a 
normal to the plane. 
 
Fig. 12 Electron backscattered images showing various voids formed during the 
solidification in the mid-radius of a Ø 260 mm billet of a 7xxx alloy. 
 
Fig. 13 Electron backscattered images showing various voids formed during the 
solidification in the center of a Ø 260 mm billet of a 7xxx alloy. 
 
Fig. 14 Photos showing the cracks in the cold-cracked Ø 315-mm billet cast at 1.5 
mm/s and 108 l/min: (a) the cross section of the billet; the arrow shows a shrinkage 
cavity that acted as crack initiator, (b) the outer surface of the billet that shows how 
the crack plane has propagated towards the surface.   
 
 
 
Table captions 
 
Table 1 Description of the casting process parameters for the 7050 alloy. 
 
Table 2 Chemical composition of the 7050 alloy. 
 
Table 3 Thermal properties of the 7050 alloy used for simulations (JMat-Pro). 
 
Table 4 Fraction liquid gained from Scheil equation for the 7050 alloy (JMat-Pro). 
 
Table 5 Constitutive parameters and mechanical properties of the 7050 alloy. 
Poisson’s ratio (JMat-Pro) is also shown. K is the consistency of the alloy (stress at 
 = 1 and  =1 s-1), n is the strain hardening coefficient and m is the strain rate 
sensitivity in the extended Ludwik equation [29]. E is the Young’s modulus. 
 
Table 6 Description of the casting process parameters for the Ø 260-mm billets of a 
7xxx alloy [44]. 
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Table 1. Description of the casting process parameters for the 7050 alloy. 

 

Process parameter Case 1 Case 2 Case 3 

Ingot diameter [mm] 200 200 400 

Final length of the billet [mm] 380 530 900 

Casting speed [mm/s] 1 2 1 

Melt temperature [ºC] 680 680 680 

Water flow rate [l/min] 80 200 400 

Water temperature [ºC] 15 15 15 

 

Table 2. Chemical composition of the 7050 alloy. 

 

Alloying elements, wt % 

Zn Mg Cu Zr Cr Mn Ti Fe Si Al 

6.3 2.42 2.49 0.098 <0.01 0.04 0.03 0.07 0.04 Balance 

 

 
Table 3. Thermal properties of the 7050 alloy used for simulations (JMat-Pro). 

 

Temp. 

[ºC] 

Density 

[kg/m3] 

Thermal 

conductivity 

[W/m.K] 

Coefficient of 

thermal expansion 

[10-5/K] 

Specific heat 

[J/kg.K] 

20 2825.8 149.4 2.29 857 

100 2811.0 156.0 2.45 897 

200 2790.1 162.7 2.67 939 

300 2767.8 168.2 2.88 979 

400 2744.1 173.0 3.10 1020 

500 2699.8 160.9 3.45 1373 

600 2629.9 124.5 4.03 4125 

632 2515.0 80.8 4.88 1115 

700 2491.6 83.2 5.11 1141 

Latent heat of fusion (at 461°C) = 376.14*103 J/kg 

 



Table 4. Fraction liquid gained from Scheil equation for the 7050 alloy (JMat-Pro). 

 

Temp. [ºC] 632 631 630 625 620 610 600 580 540 500 460 

fl 1 0.97 0.94 0.78 0.65 0.49 0.38 0.27 0.16 0.12 0 

 
 
Table 5. Constitutive parameters and mechanical properties of the 7050 alloy. 

Poisson’s ratio (JMat-Pro) is also shown. K is the consistency of the alloy (stress at 

 = 1 and  =1 s-1), n is the strain hardening coefficient and m is the strain rate 

sensitivity in the extended Ludwik equation [29]. E is the Young’s modulus. 

 

Temp. [ºC] K [MPa] n m E [GPa] Poisson’s ratio 

20 774 ± 32 0.42 ± 0.02 0 67.9 0.338 

100 626 ± 13 0.38 ± 0.01 0 64.9 0.341 

200 392 ± 11 0.21 ± 0.006 0 61.2 0.346 

300 199 ± 4.5 0.11 ± 0.007 0.03 ± 0.007 57.4 0.352 

400 174 ± 5 0.09 ± 0.01 0.15 ± 0.009 53.6 0.358 

 
 
 
Table 6. Description of casting process parameters for the Ø 260-mm billets of a 7xxx 
alloy [44]. 

Case Casting speed (mm/min) Water flow rate (l/min) 
I 60 (1 mm/s) 35 
II 80 (1.3 mm/s) 35 
III 110 (1.8 mm/s) 90 
IV 60 (1 mm/s) 70 

 
 
 
 



 

Fig. 1 Geometry of the DC-cast billet used for simulations showing the hot top, mold, 
bottom block, and the casting aluminum part consisting of cast top, cast expansion 
and cast bottom. Approximate position of the Water Impingement Zone (WIZ) is also 
indicated on the billet surface. 
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Fig. 2 Schematic view of the crack geometries used in this study: a) a penny shaped 
crack. V(0,s) is the displacement at (0,s) when uniform pressure σ is applied on crack 
surfaces, b) a thumbnail crack in a semi-infinite body (y ≥ 0) (y = 0: free surface) [36].  

 
 

 



 

Fig. 3 Simulation results for the 200-mm diameter billet cast at 1 mm/s after 380 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   
 

 

Fig. 4 A photo showing a 200-mm diameter 7475 DC-cast billet. The arrows show the 
surface cracks on the bottom of the billet. 



 

Fig. 5 Simulation results for the 200-mm diameter billet cast at 2 mm/s after 310 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   

 

Fig. 6 Simulation results for the 400-mm diameter billet cast at 1 mm/s after 900 s of 
casting: (a) Temperature profile, (b) mean (hydrostatic) stress, (c) maximum principal 
stress and (d) the critical crack size distribution; the arrows show the area with 
temperatures higher than 200°C.   



 

Fig. 7 Simulation results showing the σ11 (MPa) in the 260-mm diameter billets cast 
at various conditions mentioned in Table 6. Arrows show the transition between 
casting regimes [44]. 

 
Fig. 8 Simulation results showing the critical crack size distribution (mm) in the 260-mm 
diameter billets cast at various conditions mentioned in Table 6. Crack sizes larger than 30 
mm are neglected and appear as gray between the billet surface and the black area at mid-
radius. Arrows show the transition between casting regimes and the star in (c) indicates the 
location of the inclusion which triggered the catastrophic failure [44]. 



 
 

Fig. 9 Simulation results showing: (a) the maximum principal stress (MPa) and (b) the 
critical crack size distribution (mm) in the 315-mm diameter billet cast at 1.5 mm/s 
and 108 l/min after 980 s of casting under steady state conditions. Crack sizes larger 
than 30 mm are neglected and appear as gray between the billet surface and the black 
area at mid-radius. Arrows show the transition between casting regimes (0.8 mm/s, 42 
l/min to 1.5 mm/s, 108 l/min). 
 
 

Fig. 10 (a) The cold crack surface in the billet cast at 1.8 mm/s and water flow rate of 
90 l/min. The dark point shown by an arrow triggered the fracture. The chevron 
markings radiating from this Mg-oxide inclusion account for its role in the fracture. (b) 
The same figure at a higher magnification [44]. 



 

Fig. 11 The lateral cross section of the cracked billet shown in Fig. 10. The 
orientation of the crack plane is shown using the axial direction and a normal to the 
plane. 
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Fig. 12 Electron backscattered images showing various voids formed during the 
solidification in the mid-radius of a Ø 260-mm billet of a 7xxx alloy. 
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Fig. 13 Electron backscattered images showing various voids formed during the 
solidification in the center of a Ø 260-mm billet of a 7xxx alloy. 
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Fig. 14 Photos showing the cracks in the Ø 315-mm billet cast at 1.5 mm/s and 108 
l/min: (a) the cross section of the billet; the arrow shows a shrinkage cavity that acted 
as crack initiator, (b) the outer surface of the billet that shows how the crack plane has 
propagated towards the surface.   
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