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Background: Xeroderma pigmentosum (XP) is a rare autosomal, recessive, inherited
disease. XP patients exhibit high sensitivity to sunlight and increased incidence of skin
cancer. The different XP subtypes, which are caused by mutations of eight distinct
genes, show some specific clinical manifestations. XP variant (XPV) is caused by
mutations in the gene encoding DNA polymerase eta (POLH).

Case Presentation: We report a family that included two XP patients whose parents
were first cousins. The proband is a 36-year-old male who developed a large number
of pigmented freckle-like lesions starting at 4 years of age; later, he displayed typical
psoriasis manifestation, abnormal renal function and hyperglycaemia. He was suspected
as suffering from dyschromatosis symmetrica hereditaria (DSH), but negative results
were obtained in candidate gene analyses. Whole-exome sequencing was performed
in four subjects, including the two patients and two controls, and a new pathogenic
homozygous nonsense mutation (c.353dupA, p. Y118_V119delinsX) of the POLH gene,
which was identified in all nine family members by Sanger sequencing, was detected
in the patients.

Conclusion: A novel XPV pathogenic homozygous nonsense mutation in the POLH
gene was identified. Our case proves that next-generation sequencing is an effective
method for the rapid diagnosis and determination of XP genetic etiology.

Keywords: whole-exome sequencing, xeroderma pigmentosum (XP), DNA polymerase eta (POLH) gene, novel
mutation, psoriasis

BACKGROUND

Xeroderma pigmentosum (XP) is a rare autosomal recessive disorder resulting from deficiency in
base excision repair caused by single-nucleotide mutations, especially in skin exposed to sunlight
(Okamura et al., 2015). XP is classified into eight subtypes. Patients with XP show light sensitivity
and skin pigmental changes in sun-exposed areas and have a higher incidence of neurological
abnormalities, skin cancer, and other tumors (Ben Rekaya et al., 2018). Although the different
XP subtypes present some specific clinical manifestations, the conditions are usually difficult to
diagnose, and subtypes are defined only based on clinical manifestations if patients display mild
phenotype or early-stage uncharacteristic manifestations.

The gene responsible for each type of XP has been identified. Most of the eight
distinct genes encode proteins associated with the nucleotide excision repair (NER) function
(Lehmann et al., 2011). The XP variant (XPV) type is the only variant that does not involve
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mutation in NER pathway components and instead results from
mutations in the XPV gene. XPV is also named the DNA
polymerase eta (POLH) gene and encodes the Y-DNA polymerase
that participates in the repair of damaged DNA (Ohmori et al.,
2001). POLH mutations weaken DNA of replication under
exposure to ultraviolet light (Cordonnier et al., 1999).

In this study, we performed whole-exome sequencing
of an XP family, which had been suspected as having
dyschromatosis symmetrica hereditaria (DSH), and a novel
XP pathogenic homozygous nonsense mutation (c.353dupA,
p. Y118_V119delinsX) was identified in the POLH gene
(NM_006502). Our case proves that next-generation sequencing
(NGS) is an effective method for the rapid diagnosis and
determination of XP genetic etiology.

CASE PRESENTATION

We report a family that included two patients whose parents
are first cousins. The proband (Figure 1: IV:5) is a 36-year-
old male who developed many pigmented freckle-like patches
in the skin starting at 4 years of age. These changes were
particularly located in UV-exposed areas, such as the face
(Figure 2a), upper thorax, upper limbs, dorsal hands (Figure 2b),
feet and legs, and gradually worsened before 18 years of age,
after which the condition stabilized. Over the entire time
period, sunlight aggravated the disease. The palms, planta
pedis, scalp, mucous membranes and nervous system were not
affected. Histopathological examination of the skin lesions was
performed and revealed melanin pigmentation in the basal
layer and extension of the furcella into the dermis with a
bud shape (Figures 2c,d). The patient presented a typical
psoriasis manifestation at 35 years of age. Irregular geographic
erythema appeared mainly in the extremities and gradually
progressed. The skin lesions were covered with thick scales
that had characteristics of the wax droplet phenomenon, the
membrane phenomenon and dotty hemorrhage (Figure 3a).
Upon histopathological examination of the skin lesions, the
epidermal layer showed continuous parakeratosis and Munro’s
microabscesses. The dermis layer exhibited dilated superficial
vessels and infiltration of a few lymphocytes (Figure 3b).
Abnormal renal function was also found, with elevated levels
of creatinine 152.2 µmol/L (normal 44–132.6 µmol/L) and
uric acid 552 µmol/L (normal 44–132.6 µmol/L), at the
age of 35. At 36 years of age, the patient was found to
have hyperglycaemia, with elevated fasting blood glucose in
multiple tests. No skin tumors were found. The proband’s older
sister (IV:1) is a 41-year-old female without any concomitant
disease. The sister presented pigmented lesions that were similar
to those observed in the proband. Other members in this
pedigree were healthy.

This study was approved by the Ethical Committee and was
carried out according to the Declaration of Helsinki Principles.
Nine people, including the two patients in the family, provided
written consent to join the study, including authorization
to extract peripheral anticoagulation blood and to publish
these case details.

DESCRIPTION OF LABORATORY
INVESTIGATIONS AND DIAGNOSTIC
TESTS

Whole-Exome Sequencing and
Variant Analysis
Genomic DNA was isolated from whole blood samples using
a Flexigene R© DNA kit based on the manufacturer’s protocol.
DNA was available for all nine people in the family, including
the two patients.

Whole-exome sequencing was conducted for the patients
(IV:1, IV:5) and normal controls (IV:4, V:2). At least 0.6 µg
of DNA from each of the subjects was fragmented into
180–280 bp segments using a Covaris S220 sonicator. The
Agilent SureSelect Human All Exon V6 kit was employed to
enrich, hybridize and capture these fragments following the
manufacturer’s specifications. Qubit 2.0 and Agilent 2100 were
used for preliminary quantification and detection of the library
insert size. qPCR was used for accurate quantification of the
effective concentration to ensure the library quality, and an
Illumina HiSeq 2000 was utilized for library sequencing.

The Burrows-Wheeler Alignment tool (BWA) was used
to match the clean reads without adapters or debased reads
to the human reference genome (UCSC hg19)1, (Li and
Durbin, 2009). Duplicate reads were marked by Picard after
the deletion or insertion of nucleotide fragments, and single-
nucleotide polymorphisms (SNPs) were identified by Sequence
Alignment/Map tools (SAMtools) (Li et al., 2009). The variants
were filtered with SNP database 147 (dbSNP147) (Sherry et al.,
2001), 1000 Genomes Project (version 2015 August) (Genomes
Project et al., 2012), and NHLBI Exome Sequencing Project (ESP)
6500. Sorting Intolerant from Tolerant (SIFT) (Ng and Henikoff,
2003) and Polymorphism Phenotyping version2 (PolyPhen-2)
were employed to predict protein function (Adzhubei et al.,
2013). Highly suspicious mutations were noted by Annotate
Variation (ANNOVAR) software (Wang et al., 2010).

We generated over 40 GB of data by exome sequencing.
Among the four samples, there were 77,073,558, 74,946,888,
67,801,236, and 76,068,580 clean data reads obtained, and
99.87, 99.90, 99.84, and 99.93% of the reads were mapped to
the human reference genome; the average sequencing depths
were 126.61×, 112.91×, 104.50×, and 117.42×, respectively.
At least 99.6, 99.3, 97.9, and 99.3% of the targeted exomes
were covered and exceeded 10 × depths, which was considered
a meaningful standard for identifying SNPs and insertion or
deletion mutations. The bases with quality above 99.9% accuracy
represented over 90% of the total data. Because XP is an extremely
rare genetic disorder, we excluded variants, including those in the
1000 Genomes Project database (Genomes Project et al., 2012),
with minor allele frequencies over 0.5%, dbSNP147 (Sherry et al.,
2001) with a frequency higher than 0.1%, and NHLBI ESP6500.
PolyPhen-2 (Adzhubei et al., 2013) and SIFT (Ng and Henikoff,
2003) were used to predict functional changes due to the
candidate mutations as a reference. Ten possible mutation sites,

1http://genome.ucsc.edu/
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FIGURE 1 | The pedigrees of the patients. � affected male,  affected female, � unaffected male, © unaffected female, X mark: deceased.

FIGURE 2 | Clinical and histopathological appearance of hyperpigmentation.
Hyperpigmented lesions on the face (a) and dorsal hand (b); melanin
pigmentation in the basal layer and extension of the furcella into the dermis in
a bud shape (c) HE stain, × 100; (d) HE stain, × 400.

including a novel homozygous nonsense mutation (c.353dupA,
p. Y118_V119delinsX) in the POLH gene and a homozygous
missense mutation (c. T214C, p. S72P) in the t-complex-
associated-testis-expressed 1 (TCTE1) gene (NM_182539) were
identified in the two patients. Exome sequencing processing
showed that these mutation sites were not present in the normal
controls (IV:4, V:2).

FIGURE 3 | Clinical and histopathological appearance of psoriasis. Lesions on
the lower limbs (a) continuous parakeratosis and Munro microabscesses in
the epidermal layer, dilated superficial vessels, and infiltration of a few
lymphocytes in the dermis layer (b) HE stain, × 100.

Sanger Sequencing and Functional
Prediction
To verify pathogenic mutations, the entire pedigree was subjected
to direct Sanger sequencing using an ABI3500 sequencer
(Applied Biosystems, Foster City, CA, United States). Primer
sequences for candidate pathogenic variants were designed,
and segmented primer sequences for the ADAR gene were
also designed to exclude DSH. The change in a potential
pathogenic variant’s function was predicted by MutationTaster
(Schwarz et al., 2014). Protein models of DNA polymerase eta
were constructed using Swiss-Model (Waterhouse et al., 2018).

Based on Sanger sequencing for the 10 possible mutation sites
in all 9 family members, eight sites not fitting the phenotype
were excluded (Supplementary Table 1). The POLH variant
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FIGURE 4 | Sanger sequencing of POLH and TCTE1. Normal control (IV:2, IV:3, IV:4, V2) (a), homozygous mutations (IV:1, IV:5) (b) and heterozygous mutations
(III:1, III:2, V1) (c) of POLH (c.353dupA, p. Y118_V119delinsX); normal control (IV:2, IV:3, IV:4, V2) (d), homozygous mutations (IV:1, IV:5) (e) and heterozygous
mutations (III:1, III:2, V1 (f) of TCTE1 (c. T214C, p. S72P). The mutational bases were arrowed.

(c.353dupA, p. Y118_V119delinsX) and the TECE1 variant (c.
T214C, p. S72P) were confirmed by Sanger sequencing and
identified as being heterozygous in the patients’ normal parents
and another family member (III:1, III:2, V1; Figures 4c,f). They
were both homozygous variants in the patients (IV:1, IV:5;
Figures 4b,e). However, the variants were not found in the
rest of the family (IV:2, IV:3, IV:4, V2; Figures 4a,d) and was
not reported in the databases searched or previous genome-
wide association studies. The homozygous POLH variant co-
segregating with the disease phenotype in the family was
predicted to lead to a change in amino acid sequence and a
premature termination codon and to affect protein features and
splice site changes, as assessed by MutationTaster (Schwarz et al.,
2014); this may be a morbigenous variant in this pedigree.
According to Swiss-Model (Waterhouse et al., 2018), the
protein model of DNA polymerase eta exhibits different lengths
and configurations in the normal controls and patients with
mutations in the POLH gene, suggesting significant functional
deficiency (Supplementary Figure 1). TCTE1 and POLH are
both on 6p21.1, and the mutation in TCTE1 also co-segregated
with the phenotype in the entire family.

DISCUSSION OF THE UNDERLYING
PATHOPHYSIOLOGY AND THE NOVELTY
OF THE CASE

The proband (IV:5) is a 36-year-old male who presented with
hyperpigmented macules that appeared in early childhood.
His parents are of a consanguineous marriage, and his
sister has features similar to his own. We investigated some
genetic pigmentation diseases, such as Bloom syndrome,
Rothmund-Thomson syndrome, Peutz-Jeghers syndrome, and
Cockayne syndrome. Combined with the medical history, DSH
was suspected. Indeed, because histopathological examination
revealed melanin pigmentation in the basal layer, the diagnosis
of DSH seemed reasonable. DSH is caused by a heterozygous
mutation in the adenosine deaminase RNA-specific gene (ADAR)
on chromosome 1q21 and shows a high-penetrance, autosomal
dominant inheritance pattern (Xing et al., 2003). Although the

genetic model of this family appears to fit recessive inheritance
and the patients did not have hypopigmented macules, Sanger
sequencing of the ADAR gene for five family members, including
the two patients (III:1, III:2, IV:1, IV:3 and IV:5), was performed
to eliminate possible errors in penetrance and information
collection. However, no ADAR mutation was detected in
this family. Considering that the proband had concomitant
symptoms, including psoriasis and multiple organ damage,
diagnosis of the disease remained challenging.

Whole-exome sequencing analyses genetic information in
a rapid and effective manner, allowing hereditary speculation
of complex and monogenic genetic diseases, including skin
pathology (Choi et al., 2009). For rare disorders, the application
of whole-exome sequencing can minimize mistakes in detecting
mutations in hot-spot regions. Specifically, for Mendelian
disorders, NGS can be helpful for inferring pathogenesis
and exploring new mutations of genes associated with
the disease (Yang et al., 2013). Furthermore, this method
is very effective for the study of genetic diseases with
recessive genetic patterns because it can effectively identify
homozygous pathogenic mutations through contrast analysis of
the coding sequence between affected and unaffected individuals
(Bamshad et al., 2011).

Because the sequencing results for the ADAR gene were
negative, we utilized high-throughput sequencing to identify
the genetic nature of the disease. Through whole-exome and
Sanger sequencing, the POLH mutation was found to be the
pathogenic factor. Combined with the medical history, clinical
manifestations, laboratory findings and previous reports (Inui
et al., 2008), the diagnosis of XPV caused by a POLH mutation
was confirmed. This gene encodes certain DNA polymerases
that repair DNA damage and inhibit the mutagenicity of
UV-induced DNA changes. In addition, POLH is proposed to
be related to hypermutation in the process of immunoglobulin
class switch recombination. To date, approximately one hundred
POLH mutations have been shown to be associated with
XPV pathogenesis (Yuasa et al., 2000; Inui et al., 2008;
Opletalova et al., 2014; Karass et al., 2015). In most situations,
these mutations result in premature termination codons in
mRNA that lead to degradation by the nonsense-mediated decay
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(NMD) system (Inui et al., 2008). Opletalova et al. (Opletalova
et al., 2014) summarized the relationship of phenotype/genotype
in 23 XPV patients, showing that the type of missense
mutation was clearly related to the clinical severity. For patients
with truncating mutations, life-cumulated UV exposure is
probably the best predictor of cancer incidence, and it is very
necessary to avoid sun exposure. In our case, the variant was
a nonsense mutation. The proband showed a stable general
condition without any tumor, consistent with another report
(Ben Rekaya et al., 2011).

TCTE1 has not been previously reported as a pathogenic
gene. Kwiatkowski et al. (1991) identified highly informative
dinucleotide repeat polymorphisms in the TCTE1 locus that
were previously called D6S46. As our proband had some
concomitant diseases, such as psoriasis, abnormal renal function
and hyperglycaemia, the missense mutation in TCTE1 may be
due to multiple unknown factors or may be meaningless. It is
worth mentioning that the homozygous missense TCTE1 variant
completely co-segregated with the disease phenotype in the
pedigree and was expected to lead to changes in amino acid
sequences and protein features, as well as splice site changes
and disease, as assessed by MutationTaster. Both of the mutated
genes are located at 6p21.1. Although pure linkage inheritance
is highly possible, we cannot exclude the possibility that it is
a pathogenic factor related to XPV, a possibility that requires
further exploration.

Xeroderma pigmentosum variant patients constitute
approximately 20% of all patients with XP. Compared with
XP groups A-G, XPV is more benign, presenting with mild
skin lesions and low tumor incidence. In addition, symptoms
occur late, and patients have a longer life expectancy, with few
developing neurological abnormalities (Gratchev et al., 2003).
The individuals affected by analogous pigmented diseases and
sun sensitivity, such as in XPV, are usually underdiagnosed
because patients do not display attentional symptoms, such
as apparent damage or carcinomatous degeneration of the
light-exposed skin, until a late age. In some cases, skin lesions in
XPV patients can vary greatly in the degree of severity (Inui et al.,
2008). Overall, molecular diagnosis remains very challenging for
these patients (Ben Rekaya et al., 2018).

Xeroderma pigmentosum variant is a cancer-prone syndrome
that results in photosensitivity, dermatic and ocular injury, and
skin precancerous lesions after sun exposure (Broughton et al.,
2002). Tumors of various pathological forms and neurological
symptoms are concomitant symptoms. The proband in the
current study presented with psoriasis, renal dysfunction and
hyperglycaemia. However, the relationship between the primary
disease and associated symptoms is unknown. Ezzedine et al.
(2008) reported XP accompanied by psoriasis. The pathogenesis
of both diseases is completely different, and psoriasis may
be another primary disease or may be influenced by XPV.
Further investigations are required to determine how these likely
irrelevant diseases can coexist. Some previous XP cases exhibited
manifestations of end-stage renal disease (Radwan et al., 2015),
renal cell carcinoma (Loghin et al., 2016) and diabetes (Das et al.,
2018). There are many connections between these conditions,
but it is difficult to determine the specificity because renal

dysfunction and hyperglycaemia appear to be more similar to the
primary disease.

The use of NGS technology is a double-edged sword. Because
we cannot accurately diagnose diseases and because known genes
have many exons, first-generation sequencing of all exons is
difficult and time-consuming (Ben Rekaya et al., 2018). Diseases
with unknown mutations have yet to be discovered, and NGS
is more efficient than first-generation sequencing approaches,
with similar costs (Kleijer et al., 2008). Nonetheless, Ortega-
Recalde et al. (2014) reported a bottleneck of downstream
bioinformatics analysis of data, and transformation of next-
generation technologies into clinical practice remains challenging
(Smith et al., 2014). Although some distinct bioinformatics tools
have been implemented, much time and high costs have been
invested in establishing a reliable NGS platform.

Regardless, our experience proves that whole-exome
sequencing is an efficient method that can be used for
XP diagnosis and etiology classification in the future.
Through various technologies, our understanding of XP
will gradually deepen, thus promoting continuous improvement
in treating this disease.
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