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13C metabolic flux analysis (MFA) is the method of choice when a detailed inference

of intracellular metabolic fluxes in living organisms under metabolic quasi-steady state

conditions is desired. Being continuously developed since two decades, the technology

made major contributions to the quantitative characterization of organisms in all fields

of biotechnology and health-related research. 13C MFA, however, stands out from

other “-omics sciences,” in that it requires not only experimental-analytical data, but

also mathematical models and a computational toolset to infer the quantities of

interest, i.e., the metabolic fluxes. At present, these models cannot be conveniently

exchanged between different labs. Here, we present the implementation-independent

model description language FluxML for specifying 13C MFA models. The core of FluxML

captures the metabolic reaction network together with atom mappings, constraints on

the model parameters, and the wealth of data configurations. In particular, we describe

the governing design processes that shaped the FluxML language. We demonstrate the

utility of FluxML to represent many contemporary experimental-analytical requirements in

the field of 13C MFA. The major aim of FluxML is to offer a sound, open, and future-proof

language to unambiguously express and conserve all the necessary information for model

re-use, exchange, and comparison. Along with FluxML, several powerful computational

tools are supplied for easy handling, but also to maintain a maximum of flexibility.

Altogether, the FluxML collection is an “all-around carefree package” for 13C MFA

modelers. We believe that FluxML improves scientific productivity as well as transparency

and therewith contributes to the efficiency and reproducibility of computational modeling

efforts in the field of 13C MFA.

Keywords: 13C metabolic flux analysis, FluxML, machine-readable format, model specification language,

computational modeling, reproducible science, data models, model exchange

INTRODUCTION

Systems Biology combines high-throughput experimentation with quantitative analysis and
computational modeling to approach an understanding on how cellular phenotypes emerge
from molecular interactions (Wolkenhauer, 2001; Westerhoff and Hofmeyr, 2005). To this end,
a comprehensive set of “omics” techniques has been developed ranging from transcriptomics,
proteomics, metabolomics to fluxomics, the quantification of metabolic reaction rates (fluxes)
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in vivo (Nielsen, 2003). In the field of fluxomics, metabolic flux
analysis (MFA) with stable isotope tracers, typically a 13C labeled
carbon source, is being considered as the “gold standard” for
flux quantification under metabolic quasi-steady state conditions
(Wiechert, 2001; Sauer, 2006). Being systematically developed
in the mid-1990s (Marx et al., 1996; Christensen and Nielsen,
1999), 13C MFA has been applied to a wide variety of organisms
(microbes, plants, mammalian cell lines), cultivated under
different conditions (chemostat, batch, fed-batch), in single, co-
culture and host-pathogen systems (Beste et al., 2013; Ghosh
et al., 2014; Gebreselassie and Antoniewicz, 2015), and probed
with diverse labeling strategies (e.g., 13/14C, 2H, 15N)1 within
isotopic transient or steady-state regimes (Zamboni et al., 2009;
Niedenführ et al., 2015; Allen, 2016; Schwechheimer et al.,
2018). For introductory texts on 13C MFA, the reader is referred
to the literature (Zamboni et al., 2009; Wiechert et al., 2015;
Dai and Locasale, 2017).

Direct procedures to measure fluxes exist solely for
extracellular rates, i.e., uptake and secretion fluxes. The
determination of intracellular fluxes in vivo requires two
additional ingredients: First, the measurement of the labeling
incorporation into the intracellular metabolites. To this end,
various analytical techniques such as homo- or heteronuclear,
scalar- or multi-dimensional nuclear magnetic resonance (NMR)
as well as single or tandemmass spectrometry (MS) are nowadays
applied (Wittmann and Heinzle, 2001; Luo et al., 2007; Lane
et al., 2008; Yuan et al., 2010; Giraudeau et al., 2011; Blank et al.,
2012; Chu et al., 2015; Kappelmann et al., 2017). Second, and in
contrast to other omics technologies, a powerful computational
machinery is mandatory for data evaluation and flux inference.
This means that the measured information, i.e., the isotopic
data of intracellular metabolites together with the extracellular
rates, does not directly uncover the desired flux information.
The relation between isotopic enrichments and the fluxes is
captured in a mathematical model which predicts the emerging
fractional labeling patterns from given flux values. Clearly, this
model has to be operated in the inverse direction to infer the, in
reality, unknown fluxes from the observed data. These fluxes are
then determined in an iterative fitting procedure in which the
log-likelihood function, expressing the discrepancies between
the model-predicted and measured quantities, is minimized.
Finally, statistical measures estimate the confidence with which
the fluxes are inferred from the data in view of their precision
(Wiechert et al., 1997; Theorell et al., 2017).

As a consequence of this procedure, the results of any 13C
MFA intimately depend on the metabolic network model used.

1The use of 13C labeled tracers is the mainstream scenario for 13C MFA.

The utilization of other stable isotope labeling strategies such as 15N or

simultaneous hetero-isotopic tracer combinations such as 13C-15N is conceptually

equivalent. Since it is the established notion in the field, the term “13C MFA”

is used throughout, although we extend its meaning to all of these alternative

labeling strategies.

Abbreviations: FluxML, FluxMarkup Language; FTBL, Flux TaBuLar format; ILE,

isotope labeling experiment; INST, isotopically non-stationary; MFA, metabolic

flux analysis; MID, mass isotopomer distribution; MS, mass spectrometry; NMR,

nuclear magnetic resonance; OED, optimal experimental design; (S)LOC, (single)

lines of code.

Metabolic networks for 13C MFA heavily vary in size, from
focused representations consisting of only a few tens of reaction
steps (Zamboni et al., 2009) to comprehensive descriptions
with hundreds of reactions (Gopalakrishnan and Maranas, 2015;
McCloskey et al., 2016b). Since the flux estimation procedure
with such networks is computationally demanding, a number
of algorithms have been proposed over the last two decades
to speed up the core computation steps (Wiechert et al., 1999;
Zamboni et al., 2005; Antoniewicz et al., 2007;Weitzel et al., 2007;
Tepper and Shlomi, 2015). Unsurprisingly, these developments
have led to the emergence of a variety of software tools that
are almost as diverse as the experimental scenarios of 13C MFA
(see Supplementary S1 Table 1.1).

More on the 13C MFA methodology and the assortment of
flux analysis methods being applied is found elsewhere in the
literature (Zamboni et al., 2009; Niedenführ et al., 2015;Wiechert
et al., 2015). For the following considerations, it is sufficient
to recognize that 13C MFA in practice means a combinatorial
variety of possible experimental, analytical, and computational
configurations as well as model incarnations. The pros and
cons of these different frameworks should not be scrutinized
here. However, one aspect has to be emphasized: Despite of
the heterogeneity of use cases, there is little debate about the
principal conditions under which a 13C MFA experiment must
be conducted (i.e., metabolic pseudo-stationarity, homogeneous
cell populations), and the input required for setting up
the computational model (e.g., the structural description of
the biochemical network underlying the model, specification
of tracers, and measurements). Consequently, the precise
configuration for an individual case comprises lots of specific
details about the experimental-analytical setup and is, as
evidenced in Section FluxML IN A NUTSHELL, rather complex.

Why Is There a Need for a Standardized
Model Exchange Format in 13C MFA?
Bundling all the aspects specific to an individual 13C MFA study
in a standardized document is undoubtedly of tremendous value
for the community. This has already been proven by the success
of the Systems Biology Markup Language (SBML, Hucka et al.,
2003), which is today used as lingua franca to handle model-
exchange between hundreds of different computational systems
biology tools, as well as various other established modeling
languages such as CellML (Lloyd et al., 2004) and NeuroML
(Gleeson et al., 2010). Transferred to the 13C MFA domain,
this means to have a flux document formulated in a universal,
i.e., network, algorithm-, tool-, and measurement-independent
modeling language that is governed by controlled vocabularies
and covers all current application cases.

A universal 13C MFA modeling language allows sharing
and publishing models in a complete, unambiguous, and re-
usable way. At present, this is only wishful thinking as existing
guidelines (Crown and Antoniewicz, 2013) are, as we argue, not
sufficiently strict. As a result, published papers do almost never
supply all the information required to enable full reproduction
of the model(s) used in the study. Partly, this incompleteness
is due to the configuration processes that are too complex for
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full reproduction in a paper. But also, implicit assumptions
made in the modeling process—either by the modeler or hidden
in the encoding of the software tool—remain undocumented,
maybe unintentionally. In this sense, a standardized 13C MFA
modeling language provides a rule set to scientists for reporting
re-usable models.

In a wider context, model exchange formats are an essential
component for the reproduction of simulation results within
the complex computational pipelines (Ebert et al., 2012; Dalman
et al., 2016). As a practical benefit, a 13C MFA modeling
language empowers modelers to concentrate on the specification
of the underlying network model, independent of the specific
implementation in a software tool (cf. Figure 1). Such an
“Esperanto” format is, thus, the central component for serving
the FAIR Data Principles (Wilkinson et al., 2016). To put it
straight, a standardized model exchange format fills the void and
resolves many, if not all, of the current deficiencies. In addition, it
paves the way for enhancing the models’ shelf lifes and increases
the efficiency of modeling efforts.

In this work we discuss the question: How should a universal
model specification look like that digitally codifies all data
required to carry out a 13C MFA? By expanding on our former
work (Wiechert et al., 2001), we motivate the benefits of a
modern computer readable markup language for 13C MFA,
called Flux Markup Language (FluxML), and describe the
governing principles of its design. To this end, we work out
the required content that constitutes a model, formally known
as syntax standard. Here, special focus is given to the model-
data integration and extensibility aspects to keep pace with
ongoing experimental-analytical developments. Clearly, to be
adopted, such a general model representation effort must be
accompanied by a set of supporting tools facilitating validation
and modification tasks. We supply several computational tools
with the modeling language, making the FluxML collection
an “all-around carefree package” for modelers. The collection
is illustrated with typical 13C MFA examples at hand: First,
we demonstrate that the FluxML model format unlocks the
comparability of state-of-the-art simulators, an aspect that is
dearly missing, even 20 years after advent of the first simulators.
Secondly, we illustrate how easy the configuration task of parallel
labeling experiments is with FluxML.

A CONTENT STANDARD FOR THE
EXCHANGE OF MODELS AND DATA IN
13C MFA

A model exchange document has to encapsulate all (necessary
and optional) components, their interconnections, and the
parameter information from which the computational model is
built. In addition, since 13C MFA is an experimental method,
experimental data descriptors have to be defined from which
the fluxes are to be inferred. To illustrate this in more
detail, the specification of an isotope labeling experiment (ILE)
and the corresponding measurement data includes the following
elements (Wiechert, 2001; Wiechert et al., 2001):

1. Reaction stoichiometry, i.e., the structure of the metabolic
model that defines the scope of the flux analysis.
Depending on the desired resolution, metabolic pathways
are formulated in full detail or as simplified, lumped
reaction chains.

2. For modeling the flow of the relevant isotope tracer through
the metabolic pathways, atom transitions for each reaction
step, e.g., carbon atom transitions in case of 13C labeling
or carbon and nitrogen transitions in case of simultaneous
13C-15N tracers. The atom transitions specify the precise
mapping between the atoms of the reactions’ substrates and
products. For reactants with rotation-symmetrical molecular
structure multiple combinatorial atom mapping possibilities
ensue (scrambling reactions).

3. Settings for metabolic fluxes as, for example, reaction
directionality, range restrictions to keep flux values in
physiologically sensible or desired limits, or to constrain
believed-equal fluxes through scrambling reactions.

4. Tracer composition of the substrate or substrate mixture
used for the ILE. This includes the exchange of intracellular
metabolites with isotopically unlabeled external ones (such as
rich media components, CO2 etc.).

5. The types of measurements that are attained from the ILE (or,
at the stage of a priori experimental design, are envisioned to
be attainable), i.e., themeasurement configuration:

a. Extracellular rates (or external fluxes), as derived
from concentration profiles of exometabolites or
bioprocess models.

b. Fractional labeling enrichments obtained by analytical
instruments (e.g., positional labeling, mass isotopomer
fragments, multiplets, etc.). For isotopically steady state
conditions one set of labeling data is specified, while under
isotopically non-stationary conditions (INST 13C MFA) a
time series of such sets is to be integrated representing the
transient incorporation of label.

c. Intracellular pool sizes (i.e., concentrations) are
key determinants of the labeling incorporation
velocity and should, thus, be specified in
INST 13C MFA if experimentally accessible
(Wiechert and Nöh, 2005; Nöh et al., 2006).

Importantly, eachmeasurementmust be accompanied with an
associated standard deviation quantifying its precision.

6. A set of variables that parametrizes the underlying
computational model and enables its execution, e.g., the
set of free fluxes (Wiechert and de Graaf, 1996).

This list can be regarded as minimal content standard for
13C MFA models in the notion of Minimum Information
Requested In the Annotation of biochemical Models
(MIRIAM) (Le Novère et al., 2005). However, to define
a language, a syntax standard (or format) is needed that
provides structures for formatting the information laid
down in the content standard. In addition, terminology
and rules to specify valid models have to be declared,
therewith enabling the semantic interpretation of the
model descriptions.
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FIGURE 1 | Central role of a canonical model representation for 13C MFA.

The requirement to deal with the broad diversity of 13C MFA
options renders the design of a modeling language a challenging
endeavor. Before discussing the design decisions for FluxML in
detail, former developments in the computational field should be
briefly reviewed.

A Short History of 13C MFA Modeling
Software systems developed in the past have used different
approaches to supply the information needed to execute
13C MFA. Several of the first generation flux analysis tools
developed in the 90ies did not rely on dedicated specification
formats but rather formulate the network and associated
measurements by a set of matrices: atom mapping matrices to
describe atom transitions (Zupke and Stephanopoulos, 1994)
or isotopomer mapping matrices that unfold the system of
isotopomer balance equations (Schmidt et al., 1997). One
obvious problem with this matrix-centered approach is that
it is prone to introduce specification errors which are hardly
detectable afterwards.

To overcome this weakness, many second generation tools
such as FiatFlux (Zamboni et al., 2005), tcaSIM/tcaCALC (Sherry
et al., 2004), Metran (Young et al., 2008), INCA (Young, 2014),
or WuFlux (He et al., 2016) have been equipped with graphical
user interfaces (GUI) for a convenient model formulation (cf.
Supplementary S1 Table 1.1). Such solutions are designed with
having the end-user, typically an experimentalist, in mind who
does not want to care about too many technical details. While
the user-friendliness of these GUI-based tools is unraveled, they
come at the price of a substantially restricted modeling flexibility:
the abilities to change the reaction network or to formulate
different measurement configurations are rather limited.

The first software framework for 13C MFA that was able to
deal with any isotopically stationary experimental setup in a
freely configurable manner was 13CFLUX (Wiechert et al., 2001).
Owing to the popularity of spreadsheets among experimentalists,
13CFLUX relies on tabulator-delimited text files for model
and data specification, the FTBL (Flux TaBuLar) format.
FTBLs’ concept to divide the required information into several
contextual sections has been adopted by many software packages
such asOPENFLUX(2) (Quek et al., 2009; Shupletsov et al., 2014),
FIA (Srour et al., 2011), and influx_s(i) (Sokol et al., 2012).

Despite the widespread use of FTBL, recent trends for
automated lab experimentation and computational analysis
pipelines (Dalman et al., 2010, 2016; Heux et al., 2017)
call for contemporary model specification formats that are
computationally easier to access and better verifiable than
spreadsheets. Consequently, with our second generation
13C MFA software 13CFLUX2 (Weitzel et al., 2013) an
update to FTBL was proposed: the Flux Markup Language
FluxML. FluxML exploits the powerful eXtensible Markup
Language (XML) framework which has been designed
to ease the computational processing of structured text
documents. However, at the time of its publication, FluxML
supported exclusively the formulation of isotopic stationary 13C
MFA models.

DECISIONS ON THE DESIGN OF FLUXML

Universal 13C MFA Model Exchange
Formats—Why an Update Is Needed
13C MFA has been developed rapidly in the last decade. These
developments have been impelled, in particular, by advances
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in analytical measurement technologies where MS and NMR
based approaches have been extended in scope and optimized
in speed, resolution, precision, and accuracy (Moseley et al.,
2011; Choi et al., 2012; Giraudeau et al., 2012; McCloskey
et al., 2016a; Nilsson and Jain, 2016; Borkum et al., 2017;
Kappelmann et al., 2017; Mairinger and Hann, 2017; Su et al.,
2017). In turn, these developments triggered the setup of
more comprehensive network models (Gopalakrishnan and
Maranas, 2015; McCloskey et al., 2016b; Nilsson and Jain, 2016).
Also INST 13C MFA application scenarios have become more
commonplace (Niedenführ et al., 2015; Cheah and Young, 2018;
Delp et al., 2018; Gopalakrishnan et al., 2018). In view of these
developments, existing formats have several limitations making a
revision necessary.

Two decades of experiences with planning, modeling
and analyzing ILEs and the continuous exchange with the
13CFLUX(2) user community have led to the specification of
the updated FluxML format, which we present in this work.
FluxML now covers isotopically stationary and non-stationary
ILEs and is fully universal in terms of network, atom transition,
measurement (error), and constraint formulation, including
the use of multiple isotopes as tracers. It should be noted
that the involved design processes, which we discuss in the
following, were driven by the pragmatism to support modelers.
Nevertheless, the FluxML format aims at a canonical model
representation and follows the recommendations provided by
the COMBINE (COmputational Modeling in BIology NEtwork,
http://co.mbine.org/) initiative.

Design Decision 1—Scope: Data
Pre-processing Is Not Part of FluxML
Measurement instruments generate raw data that first must be
processed to be utilizable for 13C MFA. For example, fractional
labeling patterns must be extracted from NMR or MS spectra.
This includes the identification of target fragments followed by
the determination of their abundance by peak integration. For
INST 13C MFA, in addition, absolute intracellular pool sizes are
to be determined. Here, special care has to be taken to correct
for known biases in the sampling procedure (e.g., quenching,
cell separation, and metabolite extraction). For example, the
loss of intracellular metabolites during quenching (known as
leakage effect) has to be counteracted by application of advanced
protocols (Noack and Wiechert, 2014). For both quantities,
the labels and pool sizes, standardization and modeling the
propagation of the measurement error throughout the analytical
processing pipelines is becoming best practice (Tillack et al., 2012;
Mairinger et al., 2018).

On the other hand, most software systems for 13C MFA
emulate metabolite backbones rather than the analytically
observed molecules. This means, that the data derived from
the raw mass spectra must be corrected for “artificial” and/or
“natural” isotope labeling contributions before conforming with
13C MFA (Lee et al., 1991; Fernandez et al., 1996; Wahl et al.,
2004; Jungreuthmayer et al., 2016; Niedenführ et al., 2016; Su
et al., 2017). Also, the specific chemical nature of the analyte
mixture and the analysis technique employed might lead to

distorted observations, such as proton-loss/gain, which require
correction prior to model integration (Poskar et al., 2012).
In addition, non-negligible inoculation residues or preliminary
labeling sampling times may bias the interpretation of labeling
enrichments in the classical case and need, thus, to be corrected
(van Winden et al., 2001; Wiechert and Nöh, 2005). Finally,
cell-specific external rates and their errors are calculated from
cultivation data (concentration time courses of extracellular
metabolites, off-gas analysis, biomass composition etc.) by means
of simple regression (Murphy and Young, 2013), differentiation
after smoothing (Llaneras and Picó, 2007), stochastic filtering
(Cinquemani et al., 2017), or tailored bioprocess models
(Noack et al., 2011).

That said, it becomes clear that such pre-processing
procedures are extremely eclectic and heterogeneous, require
a high degree of expertise, and underlie continuous change
due to changing experimental setups, instrumentation, vendor
formats, and analytical method developments. Recently, the
metabolomics community got sensitized about their needs for
reporting standards. Data formats and repositories are now
under development, to report and store raw data along with its
meta-information (Kale et al., 2016; Rocca-Serra et al., 2016). To
avoid duplication, FluxML includes only those details about the
evaluation procedures that contain the necessary key information
about the measurement data that is actually used for producing
the flux map (i.e., the use data, s. a. Section Experimental
Data). The decision to not incorporate data pre-processing
is also reasonable from a computer science perspective, since
encapsulating complex designs in compact, orthogonal modules
limits the overall complexity of the specification and eases
future developments.

Design Decision 2—Technical
Considerations: An XML Format for
13C MFA
Generally, a modeling language must have a clearly defined
syntax and succinct and precise specification of its semantics,
for the computer but also for the human if necessary. Re-
employing language concepts that are accepted by the target
audience help to reduce learning hurdles. With SBML, a XML
dialect is already available that is familiar to systems biologists.
Technically, the design of FluxML was influenced by SBML as
well as the following general considerations:

13C MFA is embedded in workflows consisting of raw
data acquisition, customized pre- and post-data evaluation,
visualization, computational experimental design and further
processes interfacing digital data. Repeated and iterative
tool application is commonplace (Dalman et al., 2016).
Therefore, it must be possible to use a 13C MFA tool on a
distributed computing platform, at best as a web service. In
this scenario, XML is by far the most ubiquitous information
exchange format worldwide. Nowadays, XML formats are
commonly used for the structured information exchange in
computational biology.
For large-scale networks and complex experimental setups
the specific software configuration tasks, i.e., how the
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computational model is actually created and mapped to the
internal data structures of a simulator, are error-prone. For
this reason, all required data structures must be generated
automatically by some kind of model compiler. For dealing
with XML files, hundreds of off-the-shelf parsing, verification
and transformation tools are available. This eases the writing
of processing software for developers.
Clearly, XML is not designed for a human reader, risking
low acceptance among biologists. However, as the SBML
success story exemplifies, this argument becomes invalid as
soon as convenient, at best graphical, tools for model editing,
validation, and formatted export are available. In the scenario
of large-scale modeling and proofreading, diagnosis of
inconsistencies in the model formulation is vitally important.
Using structured XML entails the capability to benefit from
powerful validation mechanisms that allow for the precise
diagnosis of syntactical and semantical errors.
XML combines the flexibility of full configurability with the
user-friendliness of lowering complexity. It is very easy to
extract partial information from XML files or to extend XML
formats with additional information. With this, XML allows
model pre-configuration to present only those parts to the
experimentalist that are relevant, e.g., because they change
over a series of experiments.
A frequently discussed issue in simulation technology is
the separation of model structures, model parameters, and
measurement data. For instance, it is desirable to use the
same model structure for identically configured ILEs, with
parameters and data changed. Using XML, this poses no
problem as long as model, parameters, and data are deposited
in different branches of the XML tree. Furthermore, XML
provides mechanisms to store associated model structures and
data in separate files.

Design Decision 3—FluxML a
Domain-Specific Language
One of the key design objectives of FluxML was to allow for
automated model interpretation (analysis and code generation)
for large-scale isotope labeling networks without forcing the
modeler to resort to text-based specifications of low-level model
description languages. Here, it could be argued that the flexibility
of general description languages like CellML, offering a low-level
description of the mathematical equations, is unraveled when
new experimental or analytical paradigms become available.
However, the generality comes at the price of readability and
clearly challenges the proofreading capabilities of the modeler.

On the other hand, isotope labeling networks share many
aspects with stoichiometric metabolic network models. For this
reason, FluxML and SBML have a common subset of information
that contains the metabolite and reaction names as well as
the network stoichiometry and flux constraints. While reaction
kinetic information is currently not in the scope of 13C MFA,
atom transitions, tracer mixtures, as well as experimental data are
not part of SBML. Thus, the set of common features is not that
large. Recently, an attempt has been made to encode the surplus
information required for 13C MFA in the SBML notation (Birkel

et al., 2017). Here, the construct notes (extending reaction
and species in the notion of SBML) has been utilized to
express carbon atommappings and measurement data. However,
because atom transitions and measurement specifications are
vital for generating the essential mathematical system (Weitzel
et al., 2007), it is clear that specifying this information in optional
add-on elements, such as notes, complicates validation and
consistency checking enormously. Hence, such a solution is not
recommended by the SBML designers2.

Taken together, these reasons speak in favor of the domain-
specific standalone XML-based language. We followed the
example of SBML and adopted those parts belonging to the
common language subset with only minor changes to FluxML.
The common subset is then extended by the information
necessary to specify ILEs. Firstly, this way the entry level for
a newcomer already familiar with SBML is lowered. Secondly,
extracting the common information from a FluxML file and
generating a rudimentary SBML document, or vice versa, is
fairly straightforward.

FLUXML IN A NUTSHELL

FluxML development branches are organized in major Levels and
minor Versions. Level 1 is dedicated to isotopically stationary
13C MFA (Weitzel et al., 2013) while Level 2 covers both, the
isotopically stationary and non-stationary cases. During language
design special care has been taken to keep Level 2 backward
compatible to Level 1, meaning that existing simulation tools
designed for using the published FluxML version (Weitzel et al.,
2013) do not need adaption when being used with Level 2 files.
This helps third-party software developers using Level 1-models
as input in keeping their versions stable. Lastly, FluxML Level 3
has been developed which extends Level 2 to the general case of
multiple isotopically labeled elements. Here, for obvious reasons,
backward compatibility could no longer be maintained.

The general hierarchical structure of FluxML documents that
are common for all Levels is shown in Figure 2. Figure 2A
overviews the main elements of the FluxML language while
Figure 2B shows a code excerpt from the serialization of a
model. The top-level element fluxml contains the elements
info, for providing basic information about the model, and
reactionnetwork containing metabolites and reactions
which, together with the constraints element define the
isotope network structure. An important key concept of FluxML,
which is not present in SBML, is that of configurations.
configurations entail the convenient possibility to connect
the same model structure with different experimental or
simulation settings. In this way, instances that, for example,
differ in the selection of the tracer mixture, flux parametrization,
and/or measurement configuration can be stored in different
configurations sections within one model file. Another
core concept of FluxML, distinguishing it from SBML, is the
incorporation of experimental data. Here, the measurement

2“In particular, it is critical that data essential to a model definition . . . is

not stored in annotations” [http://sbml.org/special/specifications/sbml-level-3/

version-2/core/release-1-rc1/sbml-level-3-version-2-core.pdf].
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FIGURE 2 | Structure of FluxML. (A) Overall hierarchical structure of FluxML. The top-level element fluxml contains a number of child elements. Dashed lines indicate

relationships between elements. A class diagram showing FluxML data structures in the Unified Modeling Language UML (ISO/IEC 19505) are provided in

Supplementary S1 Figure 2.1. (B) Excerpt of a FluxML document.

data declaration is separated from the data specification by the
measurement sub-elements model and data, respectively.
Finally, the simulation element contains details about the
model parameterizations in terms of free model parameters as
well as their values.

Instead of an exhaustive language description, only the major
features of each FluxML section should be highlighted in the
following, in particular those that eliminate limitations of the
FTBL format and represent novel developments in the field.

Metabolites, Reaction Network Structure,
and Atom Mappings
Clearly, biochemical reaction steps and their atom transitions
constitute the core of any 13C MFA model. The section
reactionnetwork defines the metabolite pools, the reactions
interconnecting them, and atom transitions which, altogether,
give rise to the network structure of the 13C MFA model.
Each metabolite and reaction is labeled with a unique identifier
(id) which assures its consistent usage throughout the FluxML
document (cf. Figure 2B). Here, the atom enumerations are of
particular importance not only for tracking the atoms, but also
the correct association of the measured labeling fractions with
the reactants.

Before going into specification details, it is appropriate
to briefly summarize the most important facts about the
network and atom transition compilation. Although there are
plenty of ways to retrieve information from reaction databases
(KEGG [http://www.genome.jp/kegg/], BioCyc [https://biocyc.
org/], MetRxn Kumar et al., 2012), fluxomics collections
(Zhang et al., 2014) [http://www.cecafdb.org], model repositories
such as Biomodels [https://www.ebi.ac.uk/biomodels-main/] and
BIGG [http://bigg.ucsd.edu/], as well as algorithmic approaches
(Kumar and Maranas, 2014; Hadadi et al., 2017), there
is currently no “one” curated source containing all the
structural information needed for setting up a 13C MFA
model. In this context it is worthwhile to remember that
solid biochemical knowledge beyond simple net reaction
stoichiometry is needed. One prominent example is the

transketolase- and transaldolase-catalyzed reaction complex in
the pentose phosphate pathway (PPP) where the kinetic enzyme
mechanism impacts the formulation of the associated carbon
atom transitions (van Winden et al., 2001; Kleijn et al., 2005).
Considering this, it is fallacious to solely rely on information
available in biochemistry textbooks and reaction databases.
Further study-specific factors to be considered are reaction

reversibilities, transamination reactions, isoenzymes showing
evidence for differences in substrate affinity and activity, and

(micro-)compartmentalization due to metabolite channeling or

metabolically inactive pools (van Winden et al., 2001). All these
factors may influence flux inference from available labeling

distributions. On the other hand, it is common to simplify

reaction networks, e.g., by lumping “linear” reaction chains
into one surrogate reaction when the labeling distribution (and
incorporation speed in case of INST) is not affected.

The mentioned considerations imply that the 13CMFAmodel
compilation procedure is hardly automatable, at least for non-
standard cases. Currently the best way to build and verify

the network model from scratch is to use various information
sources and a visual tool for specification and proofreading
purposes (Nöh et al., 2015). Having a list of relevant reactions
and metabolites at hand, different naming conventions exist for
representing the associated atom transitions. Traditionally, case-
sensitive characters have been used to specify carbon transitions,
as exemplified by the Fructose-bisphosphate aldolase reaction in
glycolysis (in biochemical enumeration and FTBL notation):

emp4: FBP > GAP + DHAP
#abcdef > #cba + #def

Although this notation is convenient for an end-user, and
still used by many software tools, it obviously does not
fulfill the aforementioned requirements of a universal language.
For this reason, atom transitions are specified in FluxML
as follows:

<reaction id="emp4">
<reduct cfg="abcdef" id="FBP"/>
<rproduct cfg="cba" id="GAP"/>
<rproduct cfg="def" id="DHAP"/>

</reaction>
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This way, a reaction (reaction) can accommodate an arbitrary
number of educts (reduct) and products (rproduct). These
refer to unique metabolite names that are declared in the
metabolitepools section of the FluxML document along
with the definition of label-carrying atom types and numbers
(cf. Figure 3B).

An implicit assumption underlying both emp4 representations
is the use of the IUPAC recommendation for coding the
carbon atom-character relation of the metabolites. Herein, the
lettering starts with the highest oxidized group of a molecule
following the main carbon chain etc. For instance, following the
biochemical enumeration the first carbon atom of glyceraldehyde
3-phosphate (GAP) is the one in proximity of the phosphate
group (cf. Figure 3A). Due to its popularity among biochemists
the IUPAC “biochemical enumeration scheme” has settled
as pseudo-standard.

However, having genome-sized networks and multi-element
ILEs in mind, this enumeration practice becomes questionable.
In this situation, a veritable alternative is the International
Chemical Identifier (InChI) (Heller et al., 2015). The InChI
identifier is a computer-generated unique character string for
encoding molecular structures that is widely accepted in the
chemical community. The InChI identifier does not only
facilitate database/web-search and information exchange in the
field of metabolomics, it also comes with an outstanding merit
for 13C MFA model exchange: InChI gives an identifier and
canonical ordering to each atom of a metabolite (except for
hydrogen). Thereby, employing InChI strings for metabolite
declaration and atom enumeration makes network descriptions
self-contained and exchangeable.

As an example, Figure 3 shows the atom numbering as
provided by the InChI software [http://www.inchi-trust.org/].
Accordingly, the carbon atom transitions for the aldolase reaction
emp4 in FluxML notation is:

<reaction id="emp4">
<reduct cfg="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1
C#6@1" id="FBP"/>

<rproduct cfg="C#4@1 C#1@1 C#3@1"
id="GAP"/>

<rproduct cfg="C#5@1 C#2@1 C#6@1"
id="DHAP"/>

</reaction>

Herein, the atoms of the educt FBP are represented
by white-space separated list of entries of the form
element#canonical_atom_index@educt_index
which are mapped to the respective atom positions in the
products. Of course, the mapping can still be expressed by
letters3. However, the use of the more complicated #@ notation
pays off immediately when ILEs with multiple isotopic tracers
are considered. Using the InChI notation, generalization
of transitions is straightforward, without losing readability,
as exemplified with the glutamate dehydrogenase gdhA
converting α-ketoglutarate (AKG) and ammonia (NH3) to
L-glutamate (GLU):

3Notice that a simple permutation transforms the atom positions in the

biochemical lettering and the InChI-based canonical enumeration into

one another.

<reaction bidirectional="false" id="gdhA">
<reduct cfg="C#1@1 C#2@1 C#3@1 C#4@1
C#5@1" id="AKG"/>

<reduct cfg="N#1@2" id="NH3"/>
<reduct id="NADPH"/>
<reduct id="H"/>
<rproduct cfg="C#1@1 C#2@1 C#3@1 C#4@1
C#5@1 N#1@2" id="GLU"/>

<rproduct id="H2O"/>
<rproduct id="NADP"/>

</reaction>

Herein co-factors NADPH, NADP, H, and H2O (i.e., metabolites
that do not carry labeled material in the scope of the
model) are explicitly specified as reaction partners, a feature
that helps to keep FluxML and SBML reaction network
representations consistent.

Stoichiometric Constraints
Constraints on the fluxes that impose bounds on the
reaction rates on top of the stoichiometric mass balances
are important components of any flux model. Typically,
such constraints express principled condition-dependent
biological or simulation settings. Unfortunately, these equality
or inequality relations remain undocumented in 13C MFA
publications and are, in our experience, a frequent reason why
the reproduction of published flux maps fails. Hence, it is vitally
important to bundle the complete constraint set together with
the model.

An aspect which is conceptually closely related to flux
constraints is that of reaction directionality. Here, it
often depends on the actual in vivo conditions whether a
reversible reaction operates in forward and backward direction
(bidirectional) or only in one of the directions (unidirectional).
In 13C MFA this setting must be carefully considered since it
impacts flux inferences. Technically, in purely stoichiometric
models bidirectional reactions are split into non-negative
forward and backward parts. In 13CMFA, however, it is common
to use an alternative description for bidirectional reactions, i.e.,
that of net and exchange fluxes (Wiechert and de Graaf, 1997).
Exchange fluxes are net-neutral intracellular material exchanges
between reactants (not to be confused with extracellular
rates). An advantage of the net/exchange flux system over the
backward/forward formulation is that it leads to a “decoupling”
of the underlying mathematical equation system for the two flux
types, making it easier to express assumptions on both of them.

In FluxML, reaction directionalities are set with
the Boolean attribute bidirectional="true" or
bidirectional="false" (cf. gdhA reaction above). Since
net fluxes can take positive and negative values (n.b., exchange
fluxes are always non-negative), typical assumptions on net
fluxes are “sign” constraints (e.g., vnet ≥ 0) indicating known
net flux directions owing to thermodynamic reasoning, upper
limits to individual fluxes from enzyme capacity measurements
(vnet ≤ vnetmax), or specific flux ranges (vnetmin ≤ vnet ≤ vnetmax).
Similarly, upper boundaries for exchange fluxes may be
applicable for thermodynamic (Wiechert, 2007) or numerical
reasons (Theorell et al., 2017). Finally, net and exchange
fluxes, respectively, can be related through equality and
inequality relations to express further specific relationships
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FIGURE 3 | Fructose-bisphosphate aldolase reaction emp4. (A) Carbon atom transitions. Atoms are enumerated according to their appearance in the InChI string.

Off-the-shelf chemistry programs provide visualization of the molecule structures and atom numbers. Specialized tools, such as the Omix visualization software, allows

for visual specification of atom transitions as well as the export of the results as in FluxML, releasing the user from any peculiar enumeration issue (Nöh et al., 2015).

(B) Metabolite specifications in FluxML format annotated with InChI strings. The cfg argument reports the atomic elements involved in the transition network (C6 for

the six carbon atoms of F6P), while the InChI string implicitly contains the enumeration order of the atoms. Once specified in the reactionnetwork section of the

FluxML tree, atoms and cfg specifications for the metabolite with the name id are binding for the whole document.

such as the rate equalities of scrambling reactions (cf. Section
Symmetric (Scrambling) Reactions). The following excerpt gives
a typical example:

<constraints>
<net>

<!-- BM-coeff: [mumol/gCDW], fluxes
[mumol/gCDW/s] -->

<textual>
Glc_upt=2.38;
TCA7_v26_1=TCA7_v26_2;
0=488∗mu_v-Ala_bm;

</textual>
</net>
<xch>

<apply>
<!-- MathML -->

<eq/><ci>TCA7_v26_1<ci/>
<ci>TCA7_v26_2</ci>

</apply>
</xch>
<psize>

<!-- Poolsizes [mumol/gCDW] -->
<textual>

ALA&gt;=0.2327;
ALA&lt;=1.49286;

</textual>
</psize>

</constraints>

Here the glucose uptake rate (Glc_upt) is assigned to a value of
2.38 [µmol/gCDW/s] and net as well as exchange fluxes of the
two succinate dehydrogenase reaction variants (TCA7_v26_1,2)
converting succinate to fumarate are equalized. The third entry
encodes a biomass efflux (Ala_bm) that is proportional to the
cell growth flux (mu_v). Importantly, mathematical relations
can be expressed in human-friendly text-string representation as
well as in Content-MathML [https://www.w3.org/TR/MathML3/
chapter4.html] (cf. Supplementary S1 Section 4.1 for an
example). Besides the fluxes, pool sizes may also be subject to
restrictions. For alanine (ALA) a lower and upper boundary is

specified, indicated by the XML entities &gt; (>) and &lt;
(<), respectively.

Symmetric (Scrambling) Reactions
Scrambling reactions constitute a special class of reactions
that involve symmetric molecules, i.e., molecules that
are biochemically indistinguishable due to their rotational
symmetry. For instance, the metabolite LL-2,6-diaminopimelate
(LL-DAP), an intermediate of the lysine biosynthesis
pathway, contains a rotation axis which gives two symmetric
groups (cf. Figure 4). In the general case of n symmetric
groups, n! different mapping variants exist, which all
have to be specified to describe the emerging labeling
patterns correctly.

Technically, any scrambling reaction can be specified
as a set of reaction variants, implementing the alternative
atom mappings. Here, it is typically assumed that the
catalyzing enzyme treats all biochemically indistinguishable
isotopomers equally, resulting in identical fluxes of each
of the mapping variants. In turn, the associated fluxes are
set equal by formulating appropriate equality constraints.
Depending on the symmetry level this approach can lead
to numerous “virtual” reactions that have to be handled
appropriately, also in the post-processing of the results,
e.g., the visualization of the flux map. To alleviate the
specification process, specific elements (variant) and
attributes (ratio) for modeling scrambling reactions
have been introduced to FluxML. The following listing
showcases the specification the diaminopimelate decarboxylase
scrambling reaction AA13_v49 by means of the variant
notation (cf. Figure 4 and Supplementary S1 Section 4.2 for the
traditional specification):
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FIGURE 4 | Scrambling reaction. Carbon-nitrogen mapping variants for the diaminopimelate decarboxylase reaction catalyzing the decarboxylation of

LL-2,6-diaminopimelate (LL-DAP) to L-lysine (LYS) and CO2. Due to its rotation symmetry, LL-DAP has two biochemically indistinguishable carboxyl groups, resulting

in two different mapping variants.

<reaction id="AA13_v49_1 AA13_v49_2">
<annotation name="pathway">

Lysine Biosynthesis
</annotation>
<annotation name="name">

AA13_v49
</annotation>
<reduct id="LL_DAP">

<variant cfg="C#1@1 C#2@1 C#3@1 C#4@1
C#5@1 C#6@1 C#7@1 N#8@1 N#9@1"
ratio="0.5"/>

<variant cfg="C#1@1 C#3@1 C#2@1 C#5@1
C#4@1 C#7@1 C#6@1 N#9@1 N#8@1"
ratio="0.5"/>

</reduct>
<rproduct cfg="C#6@1" id="CO2"/>
<rproduct cfg="C#1@1 C#2@1 C#3@1 C#4@1 C#5@1
C#7@1 N#8@1 N#9@1" id="LYS"/>

</reaction>

Herein, two reaction variants AA13_v49_1 and AA13_v49_2
are specified, induced by the symmetry of the educt LL_DAP,
having fixed equal fluxes (ratio="0.5"). Furthermore, the
FluxML excerpt shows how elements can be enriched with
additional information, e.g., associating the reaction variants to
their superordinate reaction (AA13_v49) and the pathway names.

Configurations
Experience shows that after an initial set-up phase, 13C MFA
evaluation workflows are accompanied by a series of minor
model modifications. Here, the majority of differences lie
in the settings of constraints, parameter sets and values,

and the composition of data sets, while the model structure
itself remains largely untouched. Configurations are created
having these experiences in mind. In a configuration
branch of the FluxML tree, input-, constraints-,
measurement-, and simulation-settings are bundled,
each specific to one ILE or simulation experiment. A
FluxML document can then contain an arbitrary number
of such configurations.

<configuration name="config_0">
<comment>

some comment about config_0
</comment>
<input pool="input_pool_0"
type="isotopomer"> ... </input>
<constraints> ... </constraints>
<measurement> ... </measurement>
<simulation method="auto" type="auto">

<variables>
<fluxvalue flux="flux_0"
type="net">2.3</fluxvalue>
<fluxvalue flux="flux_1"
type="xch">70.1</fluxvalue>
<poolvalue pool="pool_0">
0.36725</poolvalue>
...

</variables>
</simulation>

</configuration>
<configuration name="config_1"> ...
</configuration>

Combined with the reaction network, each single configuration
constitutes a complete 13C MFA model. Consequently,
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the use of configurations releases the modeler from the
necessity to duplicate files beyond necessity and, thus,
makes model management more transparent and less
error-prone. A typical application scenario where this is
enormously useful, are so called parallel ILEs (cf. Section
Parallel Labeling Experiments for a worked example).
Therewith, configurations are one of the most powerful
paradigms of FluxML, as compared to its predecessor
FTBL and other modeling languages such as SBML. In
the following, the single configuration elements are
briefly overviewed.

Input Mixture Specification
A broad variety of labeled substrates has been used in 13C
MFA, individually or in mixtures, to elucidate metabolic fluxes
(Crown et al., 2015; Nöh et al., 2018). Optimal experimental
design (OED) heuristics give guidance on the selection of
the tracer mixture to maximize the chance of the ILE to
be informative about the fluxes. How to select the labeled
species for a specific question under study, rather than taking
a standard experimental design, is a computational question
par excellence (see Section Special Settings for ILE Design).
As such, the composition of the substrate pools in terms of
labeled species has been subject of various design studies and
the OED of ILEs has become a built-in feature of contemporary
software systems.

In FluxML, the composition of a substrate labeling is specified
in the input section by supplying the fractions of the input
species present in the substrate pool(s), usually in form of
isotopomers. Here, it must be taken into account that neither
“unlabeled” nor “labeled” proportions are 100% pure in practice:
the abundance of 12C and 13C isotopes (0.9893 and 0.0107,
respectively) leads to a natural variation in the isotopomer
compositions. In case of naturally labeled substrates, it is
sufficient to correct for the variation in each single atom position
while neglecting occurrences of combinations of two or more
labeled positions (the error due to the occurrence of multiple
labeled molecules is below 1.1·10−4 and decreases rapidly with
increasing number of labeled positions). As an example, the
formulation for [12C] glucose is:

<input pool="GLC_ext" type="isotopomer">
<!-- the set has to sum up to 1.0 -->
<label cfg="000000">0.9375</label>
<label cfg="000001">0.0107</label>
<label cfg="000010">0.0107</label>
<label cfg="000100">0.0107</label>
<label cfg="001000">0.0107</label>
<label cfg="010000">0.0107</label>
<label cfg="100000">0.0107</label>

</input>

Commercially available isotopic tracers vary in their isotopic
purity in a cost-dependent manner, implying that not only the
natural abundance impacts the fractions of the single labeled
species, but also the manufacturing and purification quality. In
FluxML, the attributes purity and costs have been created
to precisely express these contributions. As an example, a glucose
mixture consisting of 77% [1-13C]-, 20.5% [U-13C]-, and 2.5%
[12C]-glucose is specified in the following succinct way:

<input pool="GLC_ext" type="isotopomer">
<!-- InChI numbering; EUR/g -->
<label cfg="000001" purity="0.996"
cost="147.0">0.770</label>

<label cfg="111111" purity="0.995"
cost="134.0">0.205</label>

<label cfg="000000" purity="0.989"
cost="0.3">0.025</label>

</input>

The extension to the multiple-element input
substrate specification is then straightforward (cf.
Supplementary S1 Section 4.3).

For designing ILEs, different substrate sources are mixed
with the aim to determine those tracer proportions that are
optimally informative about the fluxes. Arbitrary mixtures of
labeled substrates are modeled in FluxML by specifying one
uptake flux per tracer in the metabolic network. All these uptake
fluxes then amount to the total uptake rate of the corresponding
substrate which is specified in the constraint section of a FluxML
document, for example:

<!-- tracer specification -->
<input pool="GLC_ext_12C" type="isotopomer">

<label cfg="000000" purity="0.989"
cost="0.04">1</label>

</input>
<input pool="GLC_ext_13C1" type="isotopomer">

<label cfg="000001" purity="0.996"
cost="93.0">1</label>

</input>
<input pool="GLC_ext_U13C" type="isotopomer">

<label cfg="111111" purity="0.995"
cost="188.0">1</label>

</input>
...
<constraints>

<net>
<textual>

Glc_upt=Glc_upt_12C+
Glc_upt_13C1+Glc_upt_U13C

</textual>
</net>

</constraints>

where Glc_upt is the total uptake rate and Glc_upt_12C,
Glc_upt_13C1, Glc_upt_U13C are the individual uptake
rates of naturally [12C]-, [1-13C]-, and fully [U-
13C]-labeled glucoses, respectively. Uptake fluxes are
canonically unidirectional, usually with an extracellular
rate assigned (cf. Section Extracellular Rates). For
the case that intra- and extracellular metabolites
are exchanged, a specification example is given in
Supplementary S1 Section 4.4.

Principally, the labeling states of the intracellular metabolites

depend on the input labeling composition which is usually

constantly administered. For INST ILEs such kind of restriction
is no longer mandatory, therewith paving the way for the

targeted exploitation of dynamic labeling profiles to design
highly informative ILEs. Certainly, the most simplistic form of
labeling profiles is a repetitive switch between two isotopomer
species of a substrate. But also more sophisticated profiles,
such as sinusoidal and pulse-width modulated waveforms,
have been considered theoretically (Sokol and Portais, 2015).
Another scenario, where profiles are of practical value, is
when ILEs are conducted under cultivation conditions where
the administered carbon source is present in excess. In
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FIGURE 5 | Isotopic substrate labeling profiles. Showcased are a simple repetitive switch between fully (red solid line) and naturally labeled glucose (blue dashed line)

specified via a Boolean condition for each time interval (A), a sinus with wavelength 2π (B), and an exponential enrichment-decay curve (C). Shown are fractional

labeling enrichments (FLE). The species of each input pool must sum up to 1.0 to define a valid profile. Contributions attributed to impurities are not displayed in

the charts.

FluxML, such labeling profile functions can be flexibly specified
(cf. Figure 5).

Specific Constraints
Besides constraints that are inherently linked to the network
structure irrespective of the experimental conditions (i.e.,
globally valid constraints, cf. Section Stoichiometry Constraints),
FluxML configurations allow to specify additional specific
constraints, i.e., those that may only be valid in the context of
a concrete experimental setting. For instance, the flux solution
space can be tightened by such specific constraints in the
context of simulation experiments. Both types of constraints are
syntactically equivalent.

Experimental Data
Measurements are an integral part of 13C MFA models,
being the basis of flux inference. But also, 13C MFA

codes are tuned for specific measurement types (mostly
MS, cf. Supplementary S1 Table 1.1). The reason is
that the labeling system that is actually needed to
describe the sub-set of observable labeling states can be
tremendously smaller than the labeling network describing all
intracellular labeling states. For the reduction of the high-
dimensional labeling systems powerful graph theoretic
algorithms have been developed (Weitzel et al., 2007),
which are implemented in the high-performance code
13CFLUX2. Consequently, the resulting reduced labeling
systems intimately rely on the specific measurement
configuration. Notably, the reduction crucially impacts
the computational efficiency of flux fitting, rather than
the final flux map. Before explaining how the specific
measurement setup of an ILE is specified in FluxML, some
general remarks on the present measurement equipment
are appropriate.
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Modeling Data
Measurement models provide a link between the models’ state
variables and parameters (fluxes, pool sizes in the case of INST)
and the observables (extracellular rates, pool sizes, labeling
measurements). These three data models are essentially linear,
which is trivial to see for the first two types. Therefore, we
concentrate on the modeling of the labeling patterns. Consider
a metabolite fragment M with n atom positions. Each atom can
be present in one of k labeling states ({0,1} for 12C, 13C, and 14N,
15N, {0,1,2} for 16O, 17O, 18O etc.). For the isotopomer fractions
ofM then it holds:

0 ≤ mk1, k2 , ... , kn ≤ 1.0 with
∑

k1,k2 , ...,kn

mk1 ,k2 ,...,kn = 1.0 (1)

With the isotopomer fractions any labeling measurement is
formulated based on the following criteria, which should be
obeyed by any well-calibrated measurement procedure:

Each single isotopomer of M contributes to the spectrum
(including a zero contribution).
All isotopomer contributions superpose linearly.
The signal intensities scale proportionally with the total
amount of the specific isotopomer in a sample.
This superposition of contributions results in number of
distinguishable peaks.
These peaks can be properly identified.
Signal intensities are quantified, usually by integrating the
respective peak areas.

To make these considerations more concrete, the case of a mass
isotopomer distribution (MID) generated inMS is discussed. The
MID of an analyte is the vector of fractional labeling enrichments
that are derived from the contribution of the single peak areas
relative to the sum of all peak areas of the respective analyte.
Apart from aspects of pre-processing (cf. SectionDesignDecision
1—Scope: Data Pre-processing Is Not Part of FluxML), an ideal
MS ion chromatogram of a metabolite fragment M with three
carbon atoms, contains four distinguishable peaks (m.0, m.1, m.2,
m.3) to which in total 23 = 8 isotopomers contribute. Precisely,
the M000 isotopomer contributes to the m.0, M001, M010, M100
isotopomers to the m.1, M011, M101, M110 isotopomers to the
m.2, and the M111 isotopomer to the m.3 peak, respectively. The
relation between isotopomers (xM) and the MID of M (yM) can
be represented using matrix notation:







ym.0
M
ym.1
M
ym.2
M
ym.3
M







︸ ︷︷ ︸

yM

=







1 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1







︸ ︷︷ ︸

MM

·















m000

m001

m010

m011

m100

m101

m110

m111















︸ ︷︷ ︸

xM

(2)

with MM the MS measurement matrix of metabolite fragment
M. In principle, this measurement matrix scheme holds true for

other analytical techniques (with different sparsity pattern of the
measurement matrix MM), as long as the measurements obey
the common criteria of good analytical practice described before.
Because in Equation (2) appropriate re-scaling of the intensities
by (unknown) group-specific scaling factors ωM may be required
to match the simulated enrichments (Wiechert et al., 1999), the
generalmeasurement models read:

yM = ωM ·MM · xM , yM (ti) = ωM, ti ·MM, ti · xM (ti) (3)

for the isotopically stationary and non-stationary cases,
respectively. It should be remarked that isotopomer fractions
are not the only systematic that can be used for expressing
labeling states. Alternatives are cumomers (Möllney et al., 1999),
EMUs (Antoniewicz et al., 2007), or tandemers (Tepper and
Shlomi, 2015). Since all three labeling systematics can be linearly
transformed into isotopomer fractions, the general measurement
model formulations given in Equation (3) are equally valid for
these alternate frameworks.

Measurement Specification in FluxML
Experimental data are located in the measurement branch
of the FluxML tree. By design, we distinguish between
the declaration of the measurements (<model>) and the
specification of the quantitative data (<data>):

<measurement>
<mlabel>some notes on the measurements
</mlabel>
<model>

<fluxmeasurement> ...
</fluxmeasurement>
<labelingmeasurement> ...
</labelingmeasurement>
<poolsizemeasurement> ...
</poolsizemeasurement>

</model>
<data> ... </data>

</measurement>

As in the case of reactions and metabolite pools, each
measurement group must be accompanied with a unique
identifier (id) to unambiguously crosslink the declared reactions
and metabolite pools with the specified measured entities
(cf. Figure 2).

Extracellular rates (<fluxmeasurement> section,

Level 1+)
Flux measurements are essential to any network-wide
13C MFA study. Uptake and secretion fluxes are net
rates, specified one-by-one with the following notation:

<netflux id="fm_0">
<textual>Glc_upt</textual>

</netflux>

On the other hand, FluxML also allows for the formulation
of functional relations between model parameters and to equip
these withmeasurements. This feature can be used to incorporate
flux ratios, e.g., obtained using FiatFlux or SUMOFLUX
(Kogadeeva and Zamboni, 2016):
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<netratio id="frm_0">
<!-- flux ratio between glycolysis and
PPP -->

<textual>
emp2/(emp2+ppp1)

</textual>
</netratio>

Isotopic labeling (<labelingmeasurement> section,

Level 1+)

The remarks on measurement models above make clear
that in practice only one approach works for a universal
specification language: The user should be enabled to
compose specific measurement configurations from predefined
basic expressions (primitives) with which more complex
measurement specifications can be expressed. These
primitives describe (real or envisioned) measurements
with concise code fragments. Consequently, in FluxML
labeling spectra are composed by linear combinations of
measured signals:

1. The most basic primitive specifies a single
isotopomer fraction:

M#010
This means that the isotopomer M010, which carries a labeled
atom only at its second atom position, contributes to the
measurement matrix. As an extension of the isotopomer
notation, a positional atom entry can be marked by an “x”
expressing that no information is available for this position or,
with other words, any labeling state is allowed. For example,

M#01x
denotes the set of isotopomers {M010, M011} (if the third
atom position of M codes for an element with two possible
isotopic labeling states). In terms of the measurement models
Equation (3) this means that all isotopomers of the set
contribute a “1” to the row of the measurement matrix while
all other isotopomers lead to a zero entry in MM . If only
the symbols “1” and “x” are used, the notation coincides
with the cumomer notation (Wiechert et al., 1999). Labeling
patterns of fragments are identified by the associated atom
numbers given in squared brackets, e.g. M[1-2]#. This way,
the seven EMUs (moieties comprising any distinct subset of
the compound’s atoms Antoniewicz et al., 2007) of M are
represented by M[1]#, M[2]#, M[3]#, M[1-2]#,
M[1,3]#, M[2-3]#, and M[1-3]# (or M#)

2. Apart from these primitives, FluxML contains convenient
short-notations for expressing measured signals for a plethora
of measurement techniques:

a. One-dimensional 1H-NMR generate positional
enrichment information:

<group id="NMR1H_Ala_23">
<textual>ALA#P2,3</textual>

</group>

Here, the positions P = 2 and 3 of the metabolite Alanine
(ALA) are specified, coding for isotopomer fractions that
are 13C labeled at position P. Since the two sets of
positional isotopomers interfere, they are combined to one
measurement group, named NMR1H_Ala_23.

b. Beyond positional observations, two-dimensional 13C-
NMR can discriminate between certain labeling positions
in the direct neighborhood of a 13C-labeled position,
giving rise to multiplets: peak singlets (S) occur, when
the focused position is surrounded by unlabeled atoms.
Right or left doublets (DR, DL) emerge if exactly one
of the adjacent carbon atoms is labeled with 13C. If two
surrounding positions are occupied with 13C isotopes,
double doublets (DD) or triplets (T) may be obtained. In
the following FluxML snippet, two measurement groups
of ALA are listed, targeting the second and third carbon
position, respectively:

<group id="NMR13C_Ala_2">
<textual>ALA#S2,DL2,DR2,DD2</textual>

</group>
<group id="NMR13C_Ala_3">

<textual>Ala#S3,DL3</textual>
</group>

c. In MS measurements all isotopomers with the same
number of labeled atoms are pooled, resulting in MIDs as
exemplified for the C9 metabolite phenylalanine (PHE):

<group id="MS_Phe" scale="one">
<textual>

PHE[1-9]#M0,1,2,3,4,5,6,7,8,9
</textual>

</group>

This measurement group specifies 10 mass isotopomers
(m.0,. . . , m.9) which share a common scaling factorω , as
represented by the scale attribute (Möllney et al., 1999).
The scale factor is a nuisance parameter that translates
between the simulated ([0,1]) and measured ranges of the
enrichment data (cf. Equation (3)). This attribute is either
one, all measurement values of the PHE measurement
group are taken as specified, or auto, meaning that the
scale factor is to be determined within the fitting procedure.
With FluxML Level 3, also MS data from multiple-
isotope tracer experiments can be conveniently specified
(cf. Supplementary S1 Section 4.5 for an example).

d. Beyond simple MS, tandem MS has proved to be very
informative about fluxes, since it can deliver positional
information. In FluxML, tandem MS measurements of
PHE are specified as follows:

<group id="MSMS_Phe_2_9" scale="auto">
<textual>

PHE[1-9:2-9]#M(0,0),(1,0),
(1,1),(2,1),(2,2),(3,2),(3,3),
(4,3),(4,4),(5,4),(5,5),(6,5),
(6,6),(7,6),(7,7),(8,7),(8,8),
(9,8)

</textual>
</group>

Here, the first atom range (1-9) refers to the precursor ion,
whereas the second range (2-9) relates to the product ion
(i.e., the first carbon atom is filtered). The tuples specify
the tandemmass isotopomers defined by the precursor and
product ion, respectively.

Aside from such shortcuts to specify measurement
configurations, the FluxML notation is fully universal because
any possible linear measurement combination can be described.
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This way, arbitrary setups can be expressed, for instance, a
13C-NMR measurement of valine (VAL, cf. Figure 6). The
flexibility of the FluxML syntax is further demonstrated with
the formulation of the summed fractional labeling, the sum of
the fractional labeling of the atoms contained in a molecule
(fragment) (Christensen et al., 2002). The summed fractional
labeling can be specified by either using the generalized
isotopomer notation:

<group id="gen_SFL_Ala_1" scale="auto">
<textual>

(ALA#1xx+ALA#x1x+ALA#xx1)/3
</textual>

</group>

or, alternatively, in terms of MS measurements:

<group id="gen_SFL_Ala_0" scale="auto">
<textual>

(0∗ALA#M0+1∗ALA#M1+2∗ALA#M2+3∗ALA#M3)/3
</textual>

</group>

The isotopically non-stationary case (Level 2+): In contrast to
classical, isotopically stationary 13CMFAwhere labeling data sets
consist of one single labeling measurement vector, in the INST
case labeling measurements are time series data. In FluxML, with
Level 2 upwards, the measurement time points are introduced as
attributes of the measurement groups. This way, time resolved
MIDs of ALA can be formulated as follows:

<group id="MS_Ala_0" scale="auto",
times="0.0,0.1,0.5,1.0,INF">

<textual>ALA#M0,1,2,3</textual>
</group>

expressing that MIDs of ALA are available at five time points
(0.0, 0.1, 0.5,1.0,∞). This notation enables joining
isotopically stationary and non-stationary data in a single
measurement group.

A consideration, which becomes especially important in
the INST case, is that fluxes, pool sizes, and time need to
be formulated in a coherent physical unit system to produce
meaningful results4. Metabolic fluxes (and extracellular rates)
are amounts of substance transported per time unit. Practically,
this means that with the choice of the flux unit, the units of the
pool sizes and time are implicitly determined as well. Fluxes are
reported in diverse units, e.g., [mmol/gCDW/h], [mmol/LCell/s],
or [nmol/106 cells/h]. Due to this variety, FluxML does not
enforce a specific unit system. However, modelers are strongly
advised to document the applied units in the FluxML elements
fluxunit, poolsizeunit, and timeunit.

Pool sizes (<poolsizemeasurement> section, Level

2+)

Likewise important for flux inference in the INST case are
intercellular pool size data. In FluxML they are specified
as follows:

4Note that in classical 13C MFA the fluxes can be scaled arbitrarily, as long as they

share the same units.

<poolsize id="psm_0">
<textual>ALA</textual>

</poolsize>
<poolsize id="psm_1">

<textual>RU5P+R5P</textual>
</poolsize>

for single and pooled measurements, respectively. Due to
the metabolic steady state, pool sizes and extracellular rates
remain constant throughout the ILE. Thus, specification of one
measurement per entity is appropriate in both cases.

Specification of Experimental Data
To decouple the model structure from the corresponding
measurement data is good practice in model-based data
evaluation. In FluxML the network formulation and the data
descriptors are located in different sub-branches of the document
tree (cf. Figure 2). This way, model specification and data can
be combined in one single document or, alternatively, in two
separate files. Principally all measured quantities have to be
supplied together with a (strictly positive) measurement error.
This measurement uncertainty may refer to data precision or
accuracy and cover solely technical or biological uncertainty.
Although standard deviations are often based on experiences,
such kinds of assumptions are better explicitly documented. In
FluxML the description of the measurements and their errors is
located within the data -branch:

<data>
<dlabel>

<date>2018-08-30</start>
<strain>E. coli K12</strain>
<experiment>Experiment 2018-09-01
</experiment>

</dlabel>
...
<datum id="MS_Ala_0" stddev="0.01"
weight="0" time="10.0">0.40669

</datum>
<datum id="MS_Ala_0" stddev="0.01"
weight="1" time="10.0">0.03156

</datum>
<datum id="MS_Ala_0" stddev="0.01"
weight="2" time="10.0">0.30904

</datum>
<datum id="MS_Ala_0" stddev="0.01"
weight="3" time="10.0">0.03579

</datum>
...
<datum id="fm_0" stddev="0.12">2.39
</datum>
...
<datum id="psm_0" stddev="0.26">0.78
</datum>
...

</data>

Here, the identifier MS_Ala_0 refers to the time-
resolved MIDs of ALA, distinguished by the number of
labeled ions contained (weight). Each datum element
specifies exactly one measurement value along with its
associated standard deviation (stddev) and sampling
time point. The measurements for the uptake rate
Glc_upt (fm_0) and the pool size of ALA (psm_0) are
specified similarly.

Simulation
Whether fluxes and pool sizes are specified as free parameters
or being constraint to fixed values impacts flux estimation and
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FIGURE 6 | Hypothetical 13C-NMR measurement of the amino acid valine (VAL). The multiplet of valine-β is given in generalized isotopomer notation. Numbers

indicate positions of carbon atoms in InChI enumeration. The labeling states of the first and second carbon atom (γ1, γ2) are indistinguishable by 13C NMR, leading to

the sum signal VAL#0110x+VAL#1010x. In this case, no information about the fifth carbon position is available (gray).

the statistical assessment of the final flux map (Heise et al.,
2015; Theorell et al., 2017). Thus, the parametrization of the
model should also be part of a model. To this end, in FluxML
the variables element within the simulation branch collects
the models’ variables (free fluxes and, in case of INST, pool
sizes) and their values as well as the minimum information to
connect the model description with the simulation framework
of choice:

<simulation method="auto" type="auto">
<!-- example: method = cumomer, type = INST -->

<variables>
<fluxvalue flux="Glc_upt"
type="net">2.234</fluxvalue>

<fluxvalue flux="emp6_v6"
type="xch">1383.3</fluxvalue>

<poolsizevalue pool="ALA"
edweight="0.1">0.46</poolsizevalue>
...

</variables>
</simulation>

Being designed as a simulator-independent language, details
about specific simulation scenarios and settings (solver
parametrization, integration times etc.) are intentionally
not part of FluxML. For this purpose, scientific workflow, and
provenance data description languages have been developed
such as CWL [www.commonwl.org/].

Special Settings for ILE Design
OED of ILEs aims at customizing the experimental settings
in a way that the ILE’s information gain is maximized. As
such, optimal ILE design has become an integral part of 13C
MFA workflows. Many contemporary software systems provide

decision metrics for selecting “informative” tracer mixtures
(Möllney et al., 1999; Weitzel et al., 2013; Millard et al.,
2014; Shupletsov et al., 2014; Young, 2014). In optimal ILE
design, the information gain of an ILE is tested in silico
by assuming hypothetical experimental-analytical settings. In
this context it is important to recognize that OED strategies
require not only the measurement model of the envisioned
(but physically not yet available) data sets, but also an
estimation of their associated standard deviations. Literature
mining indicates that errors of labeling enrichments can
be heteroscedastic, rather than obeying constant absolute or
relative variances (Nöh et al., 2018). For a universal modeling
language this implies the need to formulate arbitrary functional
dependencies between the “envisioned” measurements and their
errors to overcome a lack of real data. How this is solved in
FluxML, is exemplified for a tandem-MS measurement group
of ALA:

<group id="LCMSMS_Ala_3_2">
<errormodel>
<!-- one model for all tandem mass

isotopomers -->
<textual>

0.01650∗meas_sim+0.0017
</textual>

</errormodel>
<textual>

ALA[1-3:1-2]#M(0,0),(1,0),(1,1),
(2,1),(2,2),(3,2)

</textual>
</group>

Within the errormodel construct, functional expressions
derived from analytical expert knowledge relate the simulated
measurement values (meas_sim), to their associated errors. In
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an analogousmanner, errormodels for extracellular rate and pool
size measurements can be formulated.

Besides a full experimental design, scenarios can be envisioned
in which some parameters is given a higher importance than
others. The importance of a parameter can be specified by the

edweight attribute in the variables section (cf. listing in

Section Simulation, where the pool size of ALA is given minor
importance compared to the two flux values). In this way, partial
experimental designs can be realized (Möllney et al., 1999).

Housekeeping: Enriching FluxML
With Annotations
Developing a model requires documentation which puts the
model into the context of the analysis scenario it is built for.
FluxML has various dedicated fields to deposit such kind of
information. For instance, the top-level info element contains
the necessary information to achieve MIRIAM-compliance:

<info>
<date>2018-08-28</date>
<modeler>info@13cflux.net</modeler>
<strain>Escherichia coli K12</strain>
<version>2.0</version>
<comment>

Version 1.0 from
10.1016/j.ymben.2015.01.001
Version 2.0: N transitions added
Document license: CC BY-SA 4.0

</comment>
</info>

Owing to the configuration concept, also the data-branch
contains dedicated elements to carry information about the
experiment, analytics and data, such as units. Furthermore,
annotation elements can be added to any FluxML element,
in which XML-compliant content can be stored. For instance,
pathway information is helpful to structure comprehensive
models or, associating a reactant with its InChI code enables
metabolite identification and database matching.

FLUXML COLLECTION AND SUPPORTING
TOOLS

Although human-readable, FluxML documents are not made
for direct editing by modelers. Additional software tools are
necessary to verify, read, write, and edit the information
contained in a document, to display its contents in a digestible
form, and to check the documents’ syntax and semantics. These
tools fall into three categories:

1. The FluxML language definition.
2. A FluxML parser to analyze model files according to the

rules laid down in the language definition and to check their
syntactic and semantic validity, as well as for completeness.

3. Converters and utility tools providing facilities for convenient
access of FluxML files.

FluxML Schema
A language is commonly defined by a formal syntax description
(the grammar). Accordingly, for each released FluxML Level,

the formal syntax is defined in W3C XML Schemas [http://
www.13cflux.net/fluxml]. Each XML Schema Definition (XSD)
describes the structure of a FluxML document and defines strict
syntax rules for the elements and attributes contained. This
grammar definition constitutes the essential basis for checking
the well-formedness of model files and, therefore, any further
FluxML processing procedure. The checking procedure itself is
the task of the FluxML parser.

The FluxML Parser fmllint
The parser fmllint is an error-detection oriented software tool
that analyzes the syntactical and semantical validity of FluxML
model files according to the rules defined in the associated
FluxML Schema. The parser loads a specified FluxML document,
traverses through the tree structure and turns the textual
representation into a set of objects, the in-memory Document
Object Model (DOM) tree [www.w3.org/DOM]. To this end,
fmllint uses the capabilities of the DOM XML parser Xerces-
C [www.xerces.apache.org] to perform strict validation according
to the XSD file. To facilitate precise semantic model validation,
in addition to the grammar, an extensive set of semantic rules
is implemented in fmllint. Thus, with parsing, existing
document structure inconsistencies and context-sensitive issues
are detected and expressive error messages and warnings are
reported, mostly along with specific correction suggestions.

Figure 7 gives an example where the metabolite pool F,
which participates in the reaction w, has been forgotten to be
specified. Here, during the parsing process, fmllint detects the
missing metabolite F and reports an error. The error message
provides precise information such as the error location (row and
column number) which helps to quickly fix the issue. Several
examples, typical for erroneous 13C MFA models, are given in
the Supplementary S1 Section 3. Some of the most important
validity checks of fmllint, specific to 13CMFA models are:

- Validation of reaction network, atom transitions and the
labeling sources:

◦ Missing labeling sources or effluxes
◦ Dead-end and disconnected metabolites
◦ Traps and isles in the metabolic and atom
transition networks

◦ Missing metabolite/reaction declarations or duplicates
◦ Invalid and elementally imbalanced atom transitions
◦ Infeasible/inconsistent input (mixture) specification
or purities

- Validation of stoichiometric balances and constraints:

◦ Too few/many equality constraints leading to under- or
overdetermined stoichiometry

◦ Duplicate or linearly dependent equality constraints
◦ Infeasible inequality constraints
◦ Too few/many free parameters
◦ Infeasible parameter values violating the set of constraints

- Validation of the measurements:

◦ Missing measurement declarations or duplicates
◦ Invalid measurement specification or duplicates
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FIGURE 7 | Error backtracking provided by the FluxML parser fmllint. In the FluxML model network.fml, the metabolite pool F, which participates in the reaction w is

not declared in the metabolitepools section. fmllint provides an expressive error log, pointing to the origin of the error.

◦ Missing and infeasible values for labeling fractions, pool
sizes or measurement times

- Validation of the FluxML structure:

◦ Missing or invalid XML namespace

◦ Well-formedness of textual- or MathML notations

◦ Missing or invalid element nodes

◦ Invalid attributes or attribute combinations

Currently, in total more than 500 different errors are detected.

This number emphasizes the complexity of model specification
and the critical importance for having a concise and clean

language standard definition. It also demonstrates the complexity

and power of the fmllint parser which is written in ANSI/ISO
C/C++ and consists at the time of writing of more than 70 k
LOCs (lines of code). The implementation solely depends on
standard ANSI C libraries only and is, thus, highly portable.
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Converters and Utilities
Tools for Model Reuse
To enable the effective reuse of models was the main driver
for developing the FluxML language. To support this goal, the
following language translators are supplied:

ftbl2fml: The FTBL-to-FluxML converter conveniently
transfers the tabular-separated FTBL format to FluxML Level
1. The converter is implemented in Python and uses the C++

program expr2mml to analyze the equality- and inequality-
constraints. By employing the ftbl2fml converter, only
minimal steps are needed to transform models built for the
13CMFA tools such as influx_s and OpenFLUX into FluxML.
fmlupdate: Modeling languages evolve over time.
Therefore, it is important to support modelers with handling
changes in language constructs. The FluxML update tool
fmlupdate transforms FluxML documents to new versions.
This makes model reuse convenient for end-users when
updates of simulation tools inquire newer FluxML versions.
sbml2fml, fml2sbml: Due to their shared language subset,
part of the metabolic network and flux constraints can be
translated between FluxML and SBML. For easy translation
of such network structures, the Python-based converters
sbml2fml and fml2sbml have been developed.

Auxiliary Tools for Everyday Operations
From a users’ perspective graphical tools for model building
and configuration are preferable. To this end, the comprehensive
Fluxomix modeling suite has been developed as plugin-suite for
the visualization software Omix (Nöh et al., 2015). However, for
integrating model configuration procedures into computational
evaluation workflows, programmatic model access is much
more convenient than visual modeling. To support commonly
performed steps, tools that have been initially released with the
13CFLUX2 software suite, are lifted as standalone Python tools:

fmlstats: Summarizes the most important information
about the model structure
setinputs: Tool for manipulation of the mixture
composition of input pools
setparameters: Tool to transfer fluxes and/or pool sizes
from CSV into FluxML files
setmeasurements:Tool for transferring labeling and flux
measurements from CSV documents into FluxML files

A Software Library for FluxML Tool Developers
The software library libFluxML is a library for reading,
writing and altering FluxML documents. The library provides
a rich application programming interface (API) enabling full
access to the FluxML language content and a range of functions
that facilitate the creation, validation, and manipulation of
FluxML documents. libFluxML offers helper functions
for processing and manipulating mathematical formulas in
both, human-readable textual notation and machine-readable
Content-MathML format, as well as the ability to interconvert
mathematical expressions between these forms. Many higher-
level convenience features are included, such as for obtaining the
number of reactions or constructing the stoichiometric matrix

of the reaction network. The library is written in standard
ANSI/ISO C/C++ and uses the FluxML parser fmllint for
parsing and validity checking.

Availability
The FluxML collection consisting of the formal schema
definitions, the fmllint parser, versatile tools and the core
library libFluxML represents an all-inclusive suite to validate
and manipulate FluxML documents. Schema files are located at
http://www.13cflux.net/fluxml. The source codes of the FluxML
parser fmllint, the libFluxML library, and the auxiliary
tools are available at the github repository https://github.com/
modsim/FluxML/ with full built instructions, comprehensive
documentation and usage examples. In addition, precompiled
binary distributions for Linux and Mac OS X are provided. The
FluxML collection is licensed under the open-source Creative
Commons Attribution-ShareAlike (CC BY-SA 4.0)5 and MIT6

licenses. In addition, for model checking without installation, a
web-based FluxML validator is available at http://www.13cflux.
net/fluxml/validator/. Altogether, this collection provides a set of
tools for interfacing and validating FluxML documents and, as
such, provides a solid tool base for future developments of the
modeling language FluxML.

HARNESSING THE BENEFITS OF FLUXML

Finally, we give two examples for the utility and usability of the
FluxML language. We first illustrate how using one single model,
formulated in FluxML, can be used with different 13C MFA tools
to facilitate the comparison of results. Secondly, we demonstrate
how parallel ILEs are efficiently modeled starting from a single
ILE setup.

FluxML for Simulator Comparisons
From a users’ perspective, the lack of abilities to compare
and validate numerical results generated by different 13C MFA
tools is unsatisfactory. Clearly, a precise and unambiguous
representation of amodel provides the basis for any of these tasks.
Extracting the encoding of a model formulated for one piece of
software and transferring it to another format is a step prone to
errors that should be subjected to converters. Here, we exemplify
a simulator comparison, taking the deterministic forward
simulation step with 13CFLUX2 (v2.0) and Sysmetab (v5.1,
Mottelet et al., 2017) as representative test case. The comparison
is done with a central metabolism model of E. coli contained
in the Sysmetab distribution, precisely, a isotopically stationary
and non-stationary variant mimicking ILEs with a 3:7 [U-13C]:
[1-13C]-glucose mixture. The fmlstats tool reports that the
network consists of 51 metabolites and 86 reactions. In total 9MS
measurement groups and one extracellular flux measurement
are contained.

In the classic isotopically stationary case, the corresponding
Sysmetab FluxML was conform with the FluxML Level 1
definition. Both simulators were invoked and simulated labeling

5https://creativecommons.org/licenses/by-sa/4.0/legalcode
6https://opensource.org/licenses/mit-license.php
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FIGURE 8 | Parity plots showing simulation results generated by 13CFLUX2 and Sysmetab. Classical, isotopically stationary approach (A) and INST 13C MFA

approach (B). One color is used per measurement group. For comparability, both simulators were configured to use the same labeling framework, i.e., the reduced

cumomers (Weitzel et al., 2007). Both simulators use sparse LU factorization for solving the cascaded cumomer systems. The differential equation systems were

solved using Sundial’s CVODE solver [https://computation.llnl.gov/projects/sundials/cvode/] (13CFLUX2) and a 4th order singly diagonally implicit Runge-Kutta

method (Sysmetab). Both solvers used adaptive stepsize control with error tolerance (10−6). Simulation results and scripts for generating the parity plots are available

in the Supplementary Data Sheet 2.

patterns extracted from the tools’ output. The comparison of the
simulated fractional enrichments shows perfect agreement (cf.
Figure 8A). For the isotopically non-stationary case, it turned
out that the model shipped with Sysmetab lacks pool sizes
and is, thus, syntactically invalid with respect to the Level
2 specification for INST 13C MFA. Since Sysmetab internally
allocates positive random values to the pool sizes in the
simulation step, these model parameters had to be extracted
from the simulation output. After updating the INST FluxML
model to conform with the Level 2 Schema definition using
the fmlupdate tool, the pool sizes were incorporated into
the file utilizing the setparameters command. Lastly, the
13CFLUX2 simulator was called to execute the simulation
step. Again, the simulated MIDs for the nine measurement
groups produced by the two simulators were extracted from
the output files and plotted in a parity plot, showing excellent
agreement (cf. Figure 8B). This example shows the importance
of syntactic model validation in view of reporting standards.
Besides a clear and complete language definition, appropriate
converters, and auxiliary tools are needed to tame the zoo
of available model files, often developed specific to 13C MFA
software systems.

Parallel Labeling Experiments
Experimental design has been an essential part of the general
flux analysis workflow since the beginnings of 13C MFA. As
such, numerous studies investigated how specific experimental
configurations, predominantly the input tracers, and substrate
mixtures, but also the number, type and quality of measurements
influence the statistical quality of the flux estimates. To increase
the information gain about fluxes, it has been suggested to
use multiple experiments operated under exactly the same
physiological conditions, each with a different tracer (Schwender

et al., 2006; Antoniewicz, 2015). The evaluation of such, so called,
parallel ILEs (pILE) requires the modeler to merge all data sets
in one measurement specification. By expressing pILEs in the
FluxML language, their simulation can be readily achieved by
employing standard 13C MFA tools. In particular, we show that
the evaluation of pILEs becomes a special case of the traditional
single ILE-based 13CMFA.

The general principle is in fact simple: When N different
experiments are performed (in practice usually up to tens),
one option is that the modeler supplies the original network
formulation in N multiple copies. In each of the copies
all metabolites and reactions are multiplied (practically by
appending their identifiers with an additional suffix relating them
to the experiment to which their associated measurement sets).
In addition, for each flux (and pool size, in the case of INST) an
additional constraint must be specified in the FluxML document
which assures that the values of the model parameters are the
same for all network copies7. Clearly, to perform these operations
manually is laborious and means to pay painstaking attention
to details.

By using the available FluxML capabilities, automation of
this operation is straightforward. To this end, the program
multiply_fml was implemented with only 400 single LOCs
(SLOC) of Python code. multiply_fml expects an FluxML
file with N configurations each equipped with the input
specification and a corresponding measurement set for one
ILE. The duplication process is showcased with 14 different
ILEs with the setting reported by Crown et al. (2015). First,
the different input mixtures are specified one-at-a-time in 14
different configurations of the reference network by invoking the
setinputs function:

7Another option is to double the metabolites and add the pool copies to the

reactions, along with the formulation of pool size constraints in case of INST.
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setinputs -i crown.fml -c config_01 -C
input_01.csv -o crown.fml

etc. Secondly, the measurement data sets are sequentially
incorporated by using the setmeasurements tool:

setmeasurements -i crown.fml -c config_01
-C data_01.csv -o crown.fml

Finally, the network duplication step is performed using the
multiply_fml program:

multiply_fml -i
crownl.fml -o crown_multiplied.fml

The resulting model file (crown_multiplied.fml) consists
of one network description and a single configuration comprising
all 14 ILE data sets (all FluxML and CSV files used in this
showcase are available in the Supplementary Data Sheet 3).
With this model at hand, all 13C MFA tools can be invoked. For
example, optimal tracer design for a series of pILEs is possible,
rephrased as the choice of the best substrates per experiment.
This makes application of experimental design tools of 13C MFA
software straightforward.

CONCLUSION

13C MFA is the primary experimental technique for measuring
intracellular fluxes at metabolic pseudo-steady state conditions.
After two decades of active research there is consensus about the
minimal information set needed to specify a computational 13C
model and its associated data. However, this consensus has not
yet found its way into a model format that contains the complete
information set of an ILE configuration in a well-structured
manner. Most importantly, implicit assumptions made in the
modeling process are rarely included in publications because they
are considered to be common sense or of purely technical nature.
This makes it essentially impossible to reproducemany published
flux analysis results.

On the one hand, the complexity and depth of ILE
specifications should not hinder experimentalists to deliver
complete 13CMFAmodels. In this context, it is of great advantage
that tailored model templates can be configured (often only once
for an organism or strain) whereas experiment specific data is fed
into these templates using preconfigured scripts. For power users,
on the other hand, computational model components should

be programmatically accessible, so that they are embeddable in
computational pipelines.

Following these two guiding principles, here we describe
the Flux Markup Language FluxML along with its design.
The major aim of FluxML is to offer a sound universal,
open source, simulator-independent, and future-proof platform
that conserves all the necessary and optional information for
model description, reuse, exchange and comparison. Specifically,
FluxML enables practitioners to describe valid isotopically
stationary and non-stationary models, while the format is fully
universal in term of network, atom mapping, measurement
(error) and constraint formulation, including the use of homo-
and hetero-isotopic tracers. With the language, the FluxML
collection is supplied which contains the powerful FluxML
parser fmllint for model (in)validation and several auxiliary
tools for easy handling, but also to allow for a maximum
of flexibility. We believe that FluxML improves scientific
productivity, efficiency as well as transparency and contributes to
the reproducibility of computational modeling efforts in the field
of 13CMFA.
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