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Abstract – In this paper, a visual domain ontology 

(VDO) is constructed using OWL-Lite Language. The 
VDO passes through two execution phases, namely, 
construction and inferring phases. In the construction 
phase, OWL classes are initialized, with reference to 
annotated scenes, and connected by hierarchical, 
spatial, and content-based relationships 
(presence/absence of some objects depends on other 
objects). In the inferring phase, the VDO is used to 
infer knowledge about an unknown scene. This paper 
aims to use a standard language, namely, OWL, to 
represent non-standard visual knowledge; facilitate 
straightforward ontology enrichment; and define the 
rules for inferring based on the constructed ontology. 
The OWL standardizes the constructed knowledge and 
facilitates advanced inferring because it is built on top 
of the first-order logic and description logic. The VDO 
then allows an efficient representation and reasoning of 
complex visual knowledge. In addition to 
representation, the VDO enables easy extension, 
sharing, and reuse of the represented visual knowledge. 
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1. Introduction 
 

Several image-processing applications, such as 
image classification, object recognition, and image 
disambiguation, are based on a supervised or semi-
supervised learning process, which involves training 
and predicting phases. The training phase used 
training data to construct a model that usually 
handles low-level features and/or image labels. 
Predicting employs an input with unknown or 
ambiguous labels and uses the constructed model to 
predict output labels. These simple applications 
handle minimum visual information provided by the 
constructed model. The new trends in computer 
vision and image processing move toward semantic 
technique for image classification, object 
recognition, segmentation, and disambiguation. 
Implementing the complex recognition and 
predicting tasks of semantic techniques requires an 
extensive and expressive knowledge source to 
replace the temporary models constructed on-the-fly 
in the training phase. Ontology is one of the well-
known sources of knowledge. It is a formal 
knowledge representation that handles a set of 
concepts within a domain, their relationships, and 
properties [1].  

Constructing an ontology to handle visual 
knowledge is not a trivial task. Visual knowledge is 
complex and heterogeneous. For example, features 
may be represented as a vector of numerical values 
with uncertainties. Spatial information may be 
represented as direction in 2D space, and content 
information may be represented as tuple of two or 
more entries. Ontology for the visual domain should 
represent such heterogeneity and enable high-level 
prediction and recognition. Moreover, ontology 
should be general-purpose for various applications 
and for facilitating the links between image 
applications toward a semantic image processing 
pipeline[1].  

Several existing approaches have been proposed to 
construct ontologies for semantic image-processing 
applications, such as using ontologies for semantic 
feature extractions [2],[3],[4], semantic image 
segmentations [5],[6], and semantic object 
recognition [7],[8]. These approaches are pioneers in 
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using ontologies, and their constructed and utilized 
ontologies are task oriented but suffer from the 
following drawbacks: storing low-level features and 
their object identities only; having a weak structure; 
and limited ability to fit the task at hand because of 
the utilization of simple encoding languages and 
techniques. Moreover, these techniques cannot 
construct a consistent complex visual knowledge 
source.  

Scholars must construct visual knowledge 
ontology by using standard knowledge representation 
languages, such as RDF and Web Ontology 
Language (OWL). This paper introduces visual 
domain ontology (VDO), a formal representation of 
visual domain knowledge, by using OWL Lite. The 
well-defined syntax of OWL represented in RDF 
triples and RDF graph, its formal semantics, and its 
sufficient expressive power can efficiently represent 
complex knowledge in a restricted visual domain [9]. 
This paper is organized as follows. Section 2 
provides a brief description of the ontology. Section 
3 highlights some of the previous works in the 
ontologization of image knowledge. Section 4 
describes the structure and components of the 
proposed VDO, its implementation using OWL Lite, 
and the reasoning mechanisms that must be 
incorporated with the ontology. Section 5 presents 
the implication of the proposed work. Section 6 
concludes the study. 

 
 

2. Ontology 
 
Ontology is a conceptual knowledge representation 

that can be interpreted by both human and computer. 
Ontology of a given domain should cover the abstract 
information for that domain, that is, domain 
components. Ontology of visual knowledge should 
represent visual information, which can be 
summarized as follows: low-level features that are 
directly extracted from the images and images’ 
objects; the association of the low-level features to 
object identity (feature-to-object) under uncertainty 
values; content information that represents the 
presence/absence of several objects together in the 
scene; and objects’ spatial relationships and context 
information represented by non-visual domain-
knowledge [10]. For ontology components, 
ontology involves concepts and hierarchical 
relationships, which are used to represent and 
categorize the domain components. In an ontology, 
each category is represented by a concept and 
different categories are connected to each other 
through hierarchical relationships. In addition, 
ontology may involve additional components, such 
as properties and other relationships, which enrich 
the ontology and enable efficient knowledge 
representation. Concepts are connected to each other 

via hierarchical and non-hierarchical relationships to 
create the ontology structure, which allows the 
ontology to be represented broadly by general-
purpose data structures of graphs and trees. The 
stated relationships between the underlying ontology 
concepts are guaranteed through the relationships 
(represented by edges) among these concepts. 
Moreover, these edges infer relationships in the so-
called reasoning. The ontology specification can be 
represented using general-purpose programming 
languages or tools; this representation is denoted as 
general representation of ontology. However, this 
representation cannot construct complex knowledge 
because the ontology grows; this phenomenon leads 
to high chance for inconsistency and connectivity 
loss because of the lack of rules to control the 
construction. Figure 1. shows a simple visual 
ontology that represents visual information by using 
a general-purpose graph. “Outdoor” is a concept 
connected through a hierarchy relationship to 
“Everything” in high levels and “Animal” in low 
levels. Non-hierarchy relationship “on-top” connects 
concepts to one another. Properties such as “has-
Texture” and “has-Color” associate property values 
with a specific concept.  

 

 
Figure 1. Graph Representation of Visual Knowledge 

Ontology  
 
Advances in ontology representation have been 

associated with the semantic web and the emergence 
of standard ontology languages, such as RDF and 
OWL. OWL prevents inconsistency and looseness 
and is considered an inference technique because it is 
built on top of the first-order and description logic. 
Ontology concepts are defined using such languages, 
besides existing hierarchical relationships and 
properties, as ontology classes; actual objects, which 
belong to a specific ontology class, are represented as 
individuals. The OWL syntax is represented in RDF 
triples. The triple structure is {subject – relationship 

Everything 

Outdoor Indoor 

Grass Sand  

Animal 

Green 

0.3 

Smooth 

0.1 

on-Top 
has-Texture 

uncertainty uncertainty 

has-Color 



TEM Journal. Volume 8, Issue 2, Pages 372-382, ISSN 2217-8309, DOI: 10.18421/TEM82-08, May 2019. 

374                                                                                                                                  TEM Journal – Volume 8 / Number 2 / 2019 

– object}. Figure 2. shows an example triple. 
However, visual knowledge requires a tuple of more 
than three elements. For example, a five-tuple 
representation is required, structured as {Object – 
hasFeature – Feature – hasUncertainty – 
Uncertainty}, to encode low-level features with 
associated uncertainty. A triple can encode the first 
three elements by using RDF triples to represent five 
tuple, and the last two elements should be 
represented in another triple and connected to one of 
the elements of the first triple (subject, object or 
relation). This construction is not trivial and a real 
problem in visual knowledge ontologization.  

 

 
Figure 2. Example of RDF triples 

 
To dwell on this issue, scholars represent visual 

knowledge as: {Grass – hasColor – Green – 
hasUncertaintyValue – 0.7}, {Apple – hasColor – 
Green – hasUncertaintyValue – 0.6}, {Apple – 
hasColor – Red – hasUncertaintyValue – 0.4}. These 
relationships are represented in five tuples and 
should be divided into triples to be represented using 
OWL. The first triples out of each tuple can be 
constructed easily as follows: {Grass – hasColor – 
Green}, {Apple – hasColor – Green}, {Apple – 
hasColor – Red}. The second set of triple contains 
two elements, and the third element should 
intuitively be used as the connector between the first 
and second set of triples. If the second triple is 
associated with the subject of the first triple set, then 
a disassociation problem arises. For example, if the 
following two triples exist in a single ontology 
{Grass – hasColor – Green}, {Apple – hasColor – 
Green}, then adding uncertainty values to the object 
(Green) in a new triple will then lead to the following 
two triples {Green – value – 0.7} and {Green – value 
– 0.6}. The four triples will lead to the situation 
where the association between the objects (Apple, 
Grass) and their green color uncertainty values has 
been lost. In this example (Green), each concept in 
the ontology will have multiple relationships with 
other concepts. Adding the uncertainty value to the 
objects of the triples (Apple, Grass) will not solve the 
problem because these concepts might have 
relationships to other elements in the ontology. For 
example, in the triples {Apple – hasColor – Green}, 

{Apple – hasColor – Red}, {Grass – hasColor – 
Green}, the uncertainty triples associated with the 
(Apple, Grass) are {Apple – value – 0.6} and {Grass 
– value – 0.7}. These five triples will also lead to 
disassociation. The same convention applies if the 
uncertainty triples are associated with the 
relationships (e.g. “hasColor”).  

The disassociation problem can be tuned if the 
actual represented objects (Apple, Green, and so on) 
are encoded as classes and not as individuals and by 
using constructors, such as “intersectionOf” and 
‘UnionOf’ with these classes. The demonstration of 
this problem is shown in Figure 1. The objects in the 
figure cannot be represented as classes connected via 
hierarchical sub-super class relationships because the 
sub-super relationships carry out the classification 
task; however, in the visual domain, the hierarchy 
conducts the encapsulation task. The problem with 
such representation will arise when the visual 
ontology is integrated into the domain knowledge 
that intuitively will represent the objects as 
individuals according to the definition of ontology. 
This representation spoils the inferring process [11]. 

The utilization of triples as the basics of the 
ontology languages renders the construction of 
complex visual knowledge as non-trivial. Such 
difficulties have forced previous ontologization 
approaches to limit the represented knowledge to one 
feature to avoid the association problem. The 
association problem occurs when multiple features 
are used in the same ontology. Another problem, 
encoding problem, appears when classes are used in 
place of individuals in modern ontology languages. 

 
3.  Related Work 

 
Visual ontologization approach can be evaluated 

based on the following five criteria to solve the 
association and encoding problems: included visual 
components, utilized ontology components, 
ontology structure, utilized ontology 
representation, and utilized ontology reasoning. 
The visual components are the forms of visual 
knowledge that are represented by the ontology; 
these components include low-level features, object 
identities, content, and context information. The 
ontology structure enables the connectivity between 
the visual components and can be simple or 
advanced. The ontology structure has a major rule 
in the reasoning process. The included ontology 
components play a major rule in the quality and 
amount of the represented visual components. These 
components might be limited to classes and 
hierarchical relationships or might be extended to 
involve many components. The ontology 
representation can be general with or without 
restrictions using formal representation, which 

<owl:Class rdf:ID="Animal"> 
  <rdfs:subClassOf> 
        <owl:Class rdf:ID="Outdoor"/> 
     </rdfs:subClassOf> 

 </owl:Class> 

Animal            sub-Class-Of  Outdoor 

Means: 
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exhibits the advantages of preventing knowledge 
conflicts, allowing complex knowledge 
representation, and supporting reasoning. Ontology 
reasoning is used to predict knowledge from stated 
facts. These criteria affect the efficiency of the 
constructed ontology in two ways: the richness of 
visual knowledge and the capability to implement 
efficient reasoning. 

Existing visual knowledge ontology can be 
categorized into two groups: general and task-
oriented. These approaches are discussed with 
emphasis on ontology-discriminating criteria and 
capability to solve common problems. In the task-
oriented approach, Liu has developed a visual 
ontology for bird recognition, in which shape feature 
is used to represent the birds’ visual information 
[12]. The visual components of the developed 
ontology refer to the shape feature along with the 
birds’ identities. The ontology components of the 
developed ontology are classes that represent 
features, identities, and hierarchical relationships that 
connect the classes at various levels. The ontology 
structure is built by connecting the shape features 
encoded in classes with higher classes that represent 
the birds’ identities. The representation used to 
encode the ontology is a general-purpose graph. 
Reasoning makes use of the constructed hierarchical 
relationships. This ontology does not come across the 
association and encoding problem. Overall, the 
constructed ontology represents only a single low-
level feature, single object, and specific dataset for a 
given task [13]. Khan and Wang [14] and Torresani 
et al. [15] developed and used similar ontologies, 
which all fall under the task-oriented category and 
represent features, object identities, and specific 
dataset for a task.  

Penta et al. [11] constructed refined visual 
ontology based on a set of visual components, 
namely, spatial relationship, uncertainty of the 
concepts, association of low-level features, and 
object identity. The ontology components of the 
developed ontology are classes that represent both 
features and identities and the hierarchical 
relationships that connect classes at various levels. 
The ontology structure is built by connecting 
features that are encoded in classes with object 
identities that are represented by high-level classes. 
The hierarchical structure of the developed ontology 
is rich to some extent and facilitates reasoning. The 
representation used to encode the ontology is a 
general-purpose graph. This ontology does not come 
across the association and encoding problem. A 
similar approach was developed by Iakovidis et al. 
[16] and Minu et al. [17]  

Overall, task-oriented leaks standard representation 
(e.g., does not use standard representation languages) 
and does not enable general-purpose semantic-based 

processing and knowledge enrichment by which the 
knowledge can be realistic and rational. Moreover, 
encoding heterogeneous visual knowledge is difficult 
using graphs. Such ontologies have been used for 
specific applications.    

The general-purpose approach aims to construct an 
ontology that can be applied with a wide range of 
semantic-based techniques. A major contribution in 
this field is the ontologization of MPEG-7 [18]. 
MPEG-7 is an XML-based standard for describing 
the multimedia content. As an XML-based standard, 
MPEG-7 can establish a well-defined standard 
format for human understanding and machine 
manageability. Ontologization of MPEG-7 has 
produced a rich source for describing multimedia 
contents. The visual components included are the 
spatial relationships, uncertainty of the concepts, 
association of the low-level features, and object 
identities. The ontology components used are 
classes that represent the features, objects, and 
relationships which create the ontology structure. 
The disadvantages of using MPEG-7 ontologies are 
the inability to include domain-specific knowledge 
and enable knowledge enrichment as XML does not 
facilitate reasoning.  

Multimedia OWL (M-OWL), a formalism 
ontology language that supports the description of 
media contents based on MPEG-7, was developed. 
For the visual components, M-OWL considers the 
following different layers of knowledge abstraction 
in the multimedia data: the observable features (local 
and global) which are represented by MPEG-7 and 
the abstract knowledge (concept) which is 
represented by OWL language. Moreover, M-OWL 
considers Feature-to-Concept association, wherein 
features are associated with the corresponding 
concepts. Concept-to-Concept probability based on 
Bayesian theory has been also addressed [19],[20]. 
M-OWL sets a solid base for ontologizing the 
multimedia but exhibits the following disadvantages: 
low-level features are embedded in MPEG-7, which 
require a special mechanism that deals with MPEG-7 
structure; and the actual visual knowledge is encoded 
in the MPEG-7 and not in OWL, which gives a 
secondary role to OWL itself. Thus, M-OWL is 
bounded by the limited reasoning support of MPEG-
7 that is equal to the reasoning supported by a graph 
[21].  

In contrast to task-oriented ontologies, general 
visual ontologies enable general-purpose semantic-
based processing but do not fully enable knowledge 
enrichment and knowledge reasoning to make the 
knowledge realistic and rational. This limitation 
could be due to the fact that these ontologies do not 
use standard languages, such as RDF and OWL, 
which enable full reasoning capabilities. Table 1. 
shows the comparison between general and task-
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oriented approaches for ontologizing of visual 
knowledge. In conclusion, scholars must develop an 
ontology that optimizes the representation of the 
visual knowledge, allows efficient reasoning and 
enrichment, solves the association and encoding 
problems, and maximizes the usability.  

 
Table 1. Comparison between task-oriented and general 
purpose approaches for ontologizing the visual knowledge 
 

 Task Oriented General Purpose 
Visual 
Components 

Low-level 
features and 
object 
identities. 
Uncertainty 
relationships 
in few cases. 

Low-level 
features, object 
identities spatial 
relationships and 
content 
relationships.  

Ontology 
Structure 

Hierarchical 
with mostly 
two levels 
(features and 
objects). 

Hierarchical with 
mostly two levels 
(features and 
objects) 

Ontology 
Components 

Concepts 
(classes) and 
hierarchical 
relationships.  

Concepts 
(classes), 
hierarchical 
relationships and 
spatial 
relationships. 

Ontology 
Representations  

Graph-based. Standard ontology 
representation 
languages. 

Ontology 
Reasoning 

Non-standard 
(hierarchical 
only with 
uncertainty in 
few cases.  

Limited standard 
(hierarchical with 
uncertainty). 

 
4. Proposed Work 

 
This work aims to construct general-purpose 

ontology for solving the association and encoding 
problems while considering the five criteria 
discussed earlier. This paper proposes VDO, which is 
represented using OWL Lite. The considerations and 
goals of the VDO are listed as follows:  

 
• To ease the problem of visual recognition by 

dividing this problem into sub-problems. 
Subsequently, multiple-scale encoding of the 
visual information will be used and connected 
via a hierarchy as equivalent to the region 
merging mechanism used in image segmentation 
[22].  

 
 

• To control predicting by uncertainty values, 
which makes the predicting and the analysis 
process more accurate with an element of risk.   

• To solve the disassociation problem and to avoid 
the encoding problem discussed earlier.  

 
The components of the constructed VDO are: 
 

• Metadata: identifies the ontology components 
(classes, relationships, and properties) and 
creates the structure of the underlying ontology. 

• Visual knowledge: the facts in the visual 
domain, obtaining, and encoding using the pre-
defined metadata. 

• Enrichment procedure: the process of 
integrating the domain knowledge to the visual 
knowledge at the individual’s level 

• Rules: the reasoning mechanism. 
 
 

4.1. VDO Metadata 
 
The metadata for the VDO are built using the 

following OWL-Lite ontology components: classes, 
individuals, relationship, properties, constructors, and 
axioms. The core elements of the metadata are made 
up of classes. The utilized classes are of scale 
variety, which are ordered from low-scale to high 
scale, as follows: Feature, Blob, Object, Region, 
Scene, and Domain. A VDO class of low-order 
indicates single real-object or part of an object in a 
visual domain, whereas a class in the high-order 
refers to a region or a scene which contains a group 
of objects that share the characteristic of being in the 
same spatial space (e.g. complete scene). These 
classes are represented in OWL-Lite by using the 
owl:class tag. Only Feature class is associated with 
sub-classes; each represents a single feature type, 
such as shape, texture, and so on. The 
rdfs:subClassOf  tag connects a sub-class to its 
super-class.  

 

Table 2. presents the metadata class components of 
VDO. Individuals are used to represent the actual 
objects that belong to a class. Figure 3. shows an 
example of the VDO classes in OWL-Lite with 
enriched facts represented in individuals. 

 

 
 

Figure 3. Example of Object and Feature Classes with 
Enriched Facts Represent using an “Object” Individual 
 
 

<owl:Class rdf:ID="Object"/> 
<owl:Class rdf:ID="Shape"> 
  <rdfs:subClassOf> 
               <owl:Class rdf:ID="Feature"/> 
     </rdfs:subClassOf> 
 </owl:Class> 
<Object rdf:ID="Apple"> Fact 

Metadat
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Table 2. The class elements of the VDO Metadata 
 

Name/ 
Descriptio
n 

Usability OWL 
Element 

Feature/ 
low-level 
features 

It is used to describe blobs, 
objects, regions and scenes. 
Examples: Shape, Color.. 
etc. 

owl:class 
rdf:ID="F
eature" 

Blob/ part 
of object. 

It is used to describe another 
blob or an object. However, 
several blobs may combine 
together to represent another 
blob. Blobs are mainly 
described by low level 
features. 

owl:class 
rdf:ID=" 
blob " 

Object/ 
real-object 

Represents a real object. 
Multiple objects represent a 
scene and can be located in 
a specific region. Object is 
described by low-level 
features or blobs, or both. 

owl:class 
rdf:ID="O
bject" 

Region/ 
meaningfu
l region in 
the space. 

Region in the space, several 
regions combined to 
represent a scene. 
Region is described by low-
level global features, and 
objects. 

owl:class 
rdf:ID="R
egion" 

Scene Scene is described by low-
level Global features, and 
items. 

owl:class 
rdf:ID="S
cene" 

Domain/ 
domain of 
interest. 

Domain is described using 
one or more scene. 

owl:class 
rdf:ID="D
omain" 

 
The scale variety classes are connected to each 

other to create a hierarchy of features-blobs-objects-
scenes, which allows smooth prediction and 
recognition by fact flooding. Transitive relationships 
with the name Located-in have been identified to 
create a hierarchical structure in the VDO. A 
relationship Contain is created as an inverse to the 
relationship Located-in. The relationship Contain 
allows propagation in the inverse direction. 
Intuitively, the inverse of the transitive is also 
transitive. The relationship Located-in is associated 
with several sub-relations; each relation connects two 
classes of different scales. These sub-relationships 
are as follows: Feature-Located-in relationship 
connects feature to higher-scale classes, more 
specifically blobs. A blob-Located-in relationship 
connects blobs to objects and other high-order 
classes. Object-Located-in relationship connects 
object to regions and scene. The sub-relationships are 
identified in OWL using rdfs:subPropertyOf  tag. 
The inverse relationship of Located-in, Contain 
relationship is also associated with sub-relationships 
inverse to the sub-relationships of Located in, which 
are as follows: Contain-Feature, Contain-Blob, and 
Contain-Object. Using OWL, the hierarchical 

relationships are identified using owl:ObjectProperty 
tag and the inverse relationships are identified using 
owl:inverseOf tag. These relationships are 
summarized in Table 3. Figure 4. shows an example 
of the VDO classes and their hierarchical 
relationships in OWL-Lite with enriched facts. 

The content relations connect individuals 
belonging to classes of scales identical (seldom of 
different scales) to each other. In the constructed 
VDO, the content relationships are captured by the 
spatial relations, which encode the matrix directions 
of left, right, bottom, and top. The relationship 
Adjacent-to is identified in VDO with four sub-
relations that represent four directions, and their 
inverse relationships are also identified and used in 
VDO, as follows: Top-of and its inverse Bottom-of, 
the Left-of relationship and its inverse Right-of. In 
OWL these relationships are identified using 
owl:ObjectProperty tag. The sub-relationships are 
identified in OWL using rdfs:subPropertyOf tag. The 
inverse relationships are identified in OWL using 
owl:inverseOf tag. These relationships are 
summarized in Table 4.    
 

 
 

Figure 4: Example of Object and Feature Classes with 
Enriched Facts Connected with Hierarchical 

Relationships  

 
Table 3. The hierarchical relationships elements of the 
VDO Metadata 
 
Name/ 
Description 

Usability OWL Element 

Located-in/ 
hierarchy 
relation 

Relationship that 
connects the scale 
variety classes. 

owl:ObjectProperty 
rdf:ID="Located-in" 

Contain/ 
hierarchy 
relation 

Inverse relationship 
of ‘Located-in’ 

owl:ObjectProperty 
rdf:ID="Contain" 

 
Table 4. The content relationships elements of the VDO 
Metadata 
 
Name/ 
Description 

Usability OWL Element 

Adjacent/ 
content 
relation 

Relationship that 
connects the classes 
of similar scale. 

owl:ObjectProperty 
rdf:ID="Adjacent-
to" 

<owl:ObjectProperty rdf:ID="Contain-Feature"> 
  <rdfs:subPropertyOf> 
           <owl:TransitiveProperty rdf:about="#Contain"/> 
  </rdfs:subPropertyOf> 
  <rdfs:range rdf:resource="#Feature"/> 
  <owl:inverseOf> 
     <owl:ObjectProperty rdf:ID="Feature-Located-in"/> 
  </owl:inverseOf> 

</owl:ObjectProperty> 
<Object. rdf:ID="Apple"> 

   <Contain-Feature> 
          < Shape rdf:resource="#Circle"/> 
  </Contain-Feature> 

</Object.> 
 

Fact 
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Multiple types of low-level features are utilized in 
the visual ontology (such as color and texture); each 
feature is a sub-class of the Feature class. The values 
of these features, which will be connected to visual 
objects, are encoded as properties. The association 
between the values of the low-level feature and the 
real objects must be tied with an uncertainty value. 
Similarly, the association of objects to each other 
using the Located-in and Adjacent-to relationships 
should also be tied with uncertainty value. The 
uncertainty value describes the degree of belief 
associated with some relationships. To solve the 
association problem and avoid the encoding problem, 
the VDO uses a complex class, a notion of 
anonymous individuals, and complex relationships. 

 In a single triple, the subject and relationship are 
defined typically; the object of the triple is a complex 
class, which encapsulates the object itself and the 
uncertainty using another triple. Thus, two triples are 
overlapped to allow the five tuples to be represented 
using the RDF triples. Consider the following 
example: the two following five tuples {Apple 
hasColor Green hasUncertainty 0.6}, {Apple 
hasColor Red hasUncertainty 0.6} and {Grass 
hasColor Green hasUncertainty 0.7} are represented 
in VDO using the following triples for the first tuple: 
{Apple hasComplexClass UnnamedClass1}, 
{UnnamedClass1 hasColor Green}, 
{UnnamedClass1 hasUncertainty 0.6} The following 
triples for the second tuple: {Apple hasComplexClass 
UnnamedClass2}, {UnnamedClass2 hasColor Red} 
and {UnnamedClass2 hasUncertainty 0.4}. The 
following triples for the third tuple: {Grass 
hasComplexClass UnnamedClass3}, 
{UnnamedClass3 hasColor Green} and 
{UnnamedClass3 hasUncertainty 0.7}. The 
“UnnamedClass” is a typical class in OWL that is 
defined using owl:class tag. In VDO, various 
complex classes are defined, as follows: Complex-
Feature, Complex-Blob, Complex-Object, and 
Complex-Region. Similarly, the “hasComplexClass” 
is a typical relationship in OWL that is defined using 
owl:ObjectProperty tag. The complex relationships 
in VDO are: Contain-Complex-Feature, Contain-
Complex-Blob, and Contain-Complex-Object. 

Overall, this representation enlarges the ontology 
extensively and increases the unnecessary naming for 
the complex classes. To solve this problem, the VDO 
makes use of the notion of Anonymous instance, 
which is provided by the ontology language OWL to 
eliminate the unnecessary naming. Therefore, each 
instance of the complex class is an anonymous 
instance which has no name as represented in the 
previous triples using ‘UnnamedClass1’ and 
‘UnnamedClass2’. The uncertainty property is given 
in Table 5. The structure of the complex classes is 
illustrated in Figure 5.  
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Figure 5. Structure of classes’ metadata 

 
Table 5. The uncertainty element of the VDO Metadata 
 

Name/ 
Description 

Usability OWL Element 

Uncertainty Property that is 
combined with 
other properties and 
relationships. 

owl:DatatypeProperty 
rdf:ID="Uncertainty" 

 
Figure 6. illustrates a part of VDO metadata with 

facts. Figure 7. illustrates a part of the VDO for fruit 
domain visualized using TGViz. 1  

 

 
Figure 6: Part of VDO using OWL 

                                                           
1 http://users.ecs.soton.ac.uk/ha/TGVizTab/ 

<Object rdf:ID="Apple"> 
    <Contain-Complex-Feature> 
        <Complex-Feature> 
             <Contain-Feature> 
                  <Color rdf:ID="Red"/> 
             </Contain-Feature> 
            <Uncertainty  
            rdf:datatype="http://www.w3.org/2001/XMLSchema  
             #float"> 0.3 </Uncertainty> 
      </Complex-Feature> 
    </Contain-Complex-Feature> 
    <Contain-Complex-Feature> 
      <Complex-Feature> 
         <Uncertainty rdf:datatype="http://www.w3.org 
          /2001/XMLSchema #float">0.6</Uncertainty> 
     <Contain-Feature rdf:resource="#Green"/> 
    </Complex-Feature> 
  </Contain-Complex-Feature> 
  <rdf:type rdf:resource="#Fruit"/> 
 </Object.> 
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Figure 7. Visualization of VDO Metadata and  

Facts using TGViz 
 

4.2. VDO Overall Structure with Example 
 

Figure 8. illustrates a simple VDO example that 
represents visual facts acquired from a single image 
(image acquired from pascal [23]). The hierarchical 
structure is built using the relationships Located-in. 
The lower classes are parts of the higher one. 
Moreover, some of the classes can be Located-in 
other components with the same scale, especially for 
blobs. As such, several blobs can be combined to 
form another blob, and so on. Using such ontology in 
recognition process, a blob is recognized/predicted 
through a given color. A higher-scale object that is 
connected to that region can be recognized/predicted 
sequentially. As shown in Figure 8., the leg in the 
structure, which attaches to the human and animal, 
can infer the nature-scene in a Bottom-up flooding 
mechanism.  

 

 
Figure 8. Structure of classes’ metadata for specific image 

 
 

4.3. Ontology Enrichment and Domain Knowledge 
 

Semantic image processing through the extracted 
visual data (low-level features, spatial relationships, 
and content information) remains inaccurate in a 

general sense. The context knowledge can aid in 
disambiguating objects from one another. For 
example, if a soccer field is recognized, then the 
ambiguity of an object can be resolved to a person 
not a scarecrow; having recognized a person in a 
soccer field, the person may be further categorized as 
a player or referee, and so on. The context 
knowledge is represented in domain-specific 
ontology. The individuals in the domain knowledge, 
according to the ontology formalism, are the real 
objects which are also the same as in the case of the 
developed visual ontology. Thus, the VDO integrates 
the domain knowledge with the visual knowledge at 
the individual level.  

The set of the classes in the domain-specific 
ontology is referred to as the abstract type, 
comparing to the scale variety classes for the visual 
ontology. The hierarchy of the abstract classes is 
carried out in the classification relationships. For 
example, the triple {Pets – subClassOf – Animal} 
represents a relationship between pets and animals. If 
the triple {Cat – instanceOf – Pets} exists in the 
domain ontology, and the triple {Cat – instanceOf – 
Object} exists in the visual ontology, then the 
integration of the visual and domain-specific 
ontologies occurred at ‘Cat’ node. Thus, the VDO 
will have Cat as an object, and cat is a pet, and pet is 
a subclass of animal.  

 
4.4. Reasoning 

 

Reasoning is used to extract knowledge that is not 
explicitly stated in the ontology or verify some 
assertions. OWL and most of the semantic web 
ontology languages are based on description logic 
and first-order logic. Thus, OWL uses a set of first-
order rules/formula to reason about the elements of 
the ontology. For the VDO, most common reasoning 
rules that are required are presented in Table 6. These 
rules are simplified to allow easy implementation and 
avoid conflictions.  Reasoning about the context is 
based on the ‘InstanceOf’ and ‘subClassOf’ Axioms, 
which allow transitive propagation between the 
physical objects of the scale variety classes and the 
knowledge in the abstract type. Reasoning about the 
spatially-connected classes is based on the transitive 
relationship ‘Located-in’ and the developed notion of 
complex classes. This reasoning is combined with a 
probability calculation. However, the theory of 
probability-based reasoning is not addressed in this 
work and left to be determined based on the task at 
hand. Bayesian theory and Markov chain can be used 
for this purpose. Moreover, more reasoning rules 
may be added subsequently as needed.  
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Table 6. Reasoning Rules 
 

Name/ 
Description 

OWL Element Usability 

Transitive 
Property 

(Pro.Rdf:type 
owl:TransitivePropert
y)^ (X Pro. Y) ^ (Y 
Pro. Z) à (X Pro. Z) 

Recognize round 
shape lead to 
recognize car.  
(Located-in Rdf:type 
owl:TransitivePropert
y)^ (feature:Round 
Located-in  Wheel) ^ 
(Wheel Located-in 
Car) à (Round 
Located-in Car) 

Inverse 
Property 

(Pro. InverseOf 
Pro.2)^ (X Pro. Y) à 
(Y Pro.2 X) 

(Located-in inverseOf 
Contain) ^ (Round 
Located-in Car) à 
(Car Contain Round)  

subClassOf (X subClassOf Y) ^ (Y 
subClassOf Z) à (X 
subClassOF Z) 

(Color subClassOf 
feature) ^ (Feature 
subClassOF 
Descriptor) à (Color 
subClassOf 
Descriptor) 

Instance of (I instanceOf X) ^ (X 
subClassOf Y) à (I 
instanceOf Y) 

(farmer instanceOf 
Human) ^ (Human 
subClassOF Creature) 
à (farmer 
sinstanceOf Creature) 

 
5. Implication 

 
The practical utilization of the proposed VDO is 

subject to the availability of annotated image dataset 
and domain ontology. First, the metadata, classes, 
and other components are represented using OWL-
support tools and APIs such as JENA [24] or Protégé 
[25]. Second, the labels in the image dataset are 
utilized with the OWL metadata as follows: The top-
level labels in the images (e.g. those representing 
complete sense or sub-scene names) are added as 
individuals to the class scene. The individuals of the 
scene and sub-scene classes are connected via the 
established relationships located-in. Next, the labels 
of the objects in the images are added as individuals 
of the class object. The same process is then applied 
for the object-parts which are added as individuals of 
the class blob. Third, the image features for each 
label are extracted and initially saved in a table, and 
an uncertainty value is mined for each. The features 
and the uncertainty values are then attached to the 
ontology as explained earlier. Fourth, the spatial and 
content relationships are extracted and saved, 
associated with or without uncertainty value, and 
then attached to the ontology. Finally, the ontology is 
linked to the domain ontology; WordNet [26] can be 
used for this purpose.  

The prediction/recognition of image labels is 
implemented by an over-segment of an input image 
with unknown labels. Features are extracted from 
each segment. The recognition/predicting process is 
performed over the VDO by using the flooding 

mechanism over the scale variety classes. The 
flooding process is started by matching the extracted 
low-level features with the features in the VDO. If 
the matched features are associated with blobs, the 
recognized blobs are led to recognize individuals of 
classes at higher scale. Otherwise, if the matched 
features are associated with objects and scenes, then 
a flooding is not needed. As individuals of different 
scales classes are recognized, a repeated flooding 
process can be implemented to extract the final 
individuals and use them to label the input image. 
Figures 9. and 10. illustrate the flow chart for 
construction and predicting phases respectively. 

 

 
 

Figure 9. Construction phase of the VDO 
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 Figure 10. Predicting phase in VDO 
 

6. Conclusion 
 
Existing ontologies in the visual domain use 

general-purpose forms for ontology representation 
that do not allow formal representation, robust 
reasoning or enrichment for the represented 
knowledge. For an efficient representation and 
reasoning of complex visual knowledge, and to 
facilitate knowledge extension, sharing, and reuse, a 
formal ontology language such as OWL should be 
used. However, the simplicity of the OWL encoding, 
embodied in triples, renders the utilization of OWL 
in representing complex visual knowledge as non-
trivial.  

This paper proposes VDO using OWL-Lite. The 
VDO represents visual facts in a specific domain 
using the standard ontology representation OWL. 
The VDO passes through two execution phases: 
construction phase and inferring phase. In the 
construction phase, the visual components contain 
scale variety chain of classes that represent feature, 
object, and scene. As such, the low-level features are 
represented and linked to blobs; parts of an object are 
linked to their object identities; and objects of a 
scene are linked to the scene identity through 
hierarchical relationships. As for the ontology 
components, the visual components of features-
blobs-objects-scenes are represented in OWL classes. 
These classes relate to hierarchical relationships that 
create the ontology structure. The components are 
also linked to each other through non-hierarchical 
content and contextual relationships.  

 
 
 

Generally, the proposed VDO solved the problems 
of the previous works by enabling general purpose 
semantic-based processing, knowledge enrichment, 
and knowledge reasoning by which the knowledge 
can be more realistic and rational. The advantages of 
the VDO over existing ontologies are as follows: this 
ontology provides a standard representation of the 
visual knowledge using OWL and enables the 
representation of complex relationships (uncertainty, 
spatial, and contextual) in a single structure, thereby 
enabling advanced inferring and predicting process. 
VDO enables general-purpose semantic-based image 
processing and fully enables knowledge enrichment 
and knowledge reasoning by which the knowledge 
can be more realistic and rational. VDO provides a 
standard manner to represent visual knowledge using 
OWL, a standard language that is built on top of 
RDF and has well-defined syntax and semantics that 
allows for easy representation and reasoning process. 
Using a standard representation also eases the 
interpretability of complex information (uncertainty, 
spatial, and contextual information). Such 
representation of complex knowledge in a single 
source enables efficient inferring and predicting 
process. Subsequently, the contributions of this paper 
encompass using a standard language, OWL, to 
represent non-standard visual knowledge and 
defining the rules for inferring from such 
representation.  

 
References  
 
[1].  Abu-Shareha, A. A., & Rajeswari, M. (2015). A 

Review on Ontology-Based Label Extraction from 
Image Data. Journal of Theoretical & Applied 
Information Technology, 71(2), 268-280. 

[2]. Kohnen, M., Vogelsang, F., Wein, B. B., Kilbinger, 
M. W., Guenther, R. W., Weiler, F., ... & Dahmen, J. 
(2000, June). Knowledge-based automated feature 
extraction to categorize secondary digitized 
radiographs. In Medical Imaging 2000: Image 
Processing (Vol. 3979, pp. 709-718). International 
Society for Optics and Photonics. 

[3]. Lehmann, T. M., Güld, M. O., Deselaers, T., Keysers, 
D., Schubert, H., Spitzer, K., ... & Wein, B. B. (2005). 
Automatic categorization of medical images for 
content-based retrieval and data 
mining. Computerized Medical Imaging and 
Graphics, 29(2-3), 143-155. 

[4]. Rahman, M. M., Antani, S. K., Demner-Fushman, D., 
& Thoma, G. R. (2014, March). Biomedical image 
representation and classification using an entropy 
weighted probabilistic concept feature space. 
In Medical Imaging 2014: PACS and Imaging 
Informatics: Next Generation and Innovations (Vol. 
9039, p. 903908). International Society for Optics and 
Photonics.  

 
 

Segmentation 

Feature to Region 

Feature
 Spatial 

Relations 

Spatial 
Feature 

 

End 

Input: image 

Segmented Image 

Feature Extraction 

Feature Clustering 

Codebook 
 

Classification 

Features 

Trained Cluster 

Vectors 
Reasoning 

Ontology 

Labels 



TEM Journal. Volume 8, Issue 2, Pages 372-382, ISSN 2217-8309, DOI: 10.18421/TEM82-08, May 2019. 

382                                                                                                                                  TEM Journal – Volume 8 / Number 2 / 2019 

[5]. Berka, P., Athanasiadis, T., & Avrithis, Y. S. (2006, 
December). Rule-based Reasoning for Semantic 
Image Segmentation and Interpretation. In SAMT 
(Posters and Demos). 

[6]. Bauer, T., & Strauss, P. (2014). A rule-based image 
analysis approach for calculating residues and 
vegetation cover under field conditions. Catena, 113, 
363-369.  

[7]. Maillot, N. E., & Thonnat, M. (2008). Ontology based 
complex object recognition. Image and Vision 
Computing, 26(1), 102-113. 

[8]. Kanimozhi, T. and A. Christy.(2014). Applications of 
Ontology and Semantic Web in Image Retrieval and 
Research Issues. International Journal of Computer 
Science and Information Technologies, 5(1), 763-769. 

[9]. Abu-Shareha, A. A., & Mandava, R. (2011, June). 
Semantics Extraction in Visual Domain Based on 
WordNet. In 2011 Fifth FTRA International 
Conference on Multimedia and Ubiquitous 
Engineering (pp. 212-219). IEEE. 

[10]. Hanbury, A. (2008). A survey of methods for image 
annotation. Journal of Visual Languages & 
Computing, 19(5), 617-627. 

[11]. Penta, A., Picariello, A., & Tanca, L. (2007, 
September). Towards a definition of an Image 
Ontology. In 18th International Workshop on 
Database and Expert Systems Applications (DEXA 
2007) (pp. 74-78). IEEE.  

[12]. Liu, Y., Zhang, J., Tjondronegoro, D., & Geve, S. 
(2007, December). A shape ontology framework for 
bird classification. In 9th Biennial Conference of the 
Australian Pattern Recognition Society on Digital 
Image Computing Techniques and Applications 
(DICTA 2007) (pp. 478-484). IEEE. 

[13]. Lorenzatti, A., Abel, M., Nunes, B. R., & Scherer, C. 
M. (2009, November). Ontology for imagistic 
domains: Combining textual and pictorial primitives. 
In International Conference on Conceptual 
Modeling (pp. 169-178). Springer, Berlin, Heidelberg.  

[14]. Khan, L., & Wang, L. (2002, October). Automatic 
Ontology Derivation Using Clustering for Image 
Classification. In Multimedia Information 
Systems (Vol. 56, p. 65). 

[15]. Torresani, L., Szummer, M., & Fitzgibbon, A. 
(2014). Classemes: A compact image descriptor for 
efficient novel-class recognition and search. 
In Registration and Recognition in Images and 
Videos (pp. 95-111). Springer, Berlin, Heidelberg. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[16]. Iakovidis, D. K., Schober, D., Boeker, M., & Schulz, 
S. (2009, November). An ontology of image 
representations for medical image mining. In 2009 9th 
International Conference on Information Technology 
and Applications in Biomedicine (pp. 1-4). IEEE. 

[17]. Minu, R. I., & Thyagarajan, K. K. (2013). A novel 
approach to build image ontology using texton. 
In Intelligent Informatics(pp. 333-339). Springer, 
Berlin, Heidelberg.  

[18]. Agius, H. (2008). Mpeg-7: Multimedia content 
description interface. Encyclopedia of Multimedia, 
475-483.  

[19]. Ghosh, H., Chaudhury, S., Kashyap, K., & Maiti, B. 
(2007). Ontology specification and integration for 
multimedia applications. In Ontologies (pp. 265-296). 
Springer, Boston, MA. 

[20]. Harit, G., Chaudhury, S., & Ghosh, H. (2006, 
December). Using multimedia ontology for generating 
conceptual annotations and hyperlinks in video 
collections. In Proceedings of the 2006 
IEEE/WIC/ACM International Conference on Web 
Intelligence (pp. 211-217). IEEE Computer Society. 

[21]. Abdelmoty, A. I., Smart, P. D., Jones, C. B., Fu, G., 
& Finch, D. (2005). A critical evaluation of ontology 
languages for geographic information retrieval on the 
Internet. Journal of Visual Languages & 
Computing, 16(4), 331-358. 

[22]. Fauqueur, J., & Boujemaa, N. (2004). Region-based 
image retrieval: Fast coarse segmentation and fine 
color description. Journal of Visual Languages & 
Computing, 15(1), 69-95. 

[23]. Everingham, M., Van Gool, L., Williams, C. K., 
Winn, J., & Zisserman, A. (2010). The pascal visual 
object classes (voc) challenge. International journal 
of computer vision, 88(2), 303-338. 

[24]. Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., 
Seaborne, A., & Wilkinson, K. (2004, May). Jena: 
implementing the semantic web recommendations. 
In Proceedings of the 13th international World Wide 
Web conference on Alternate track papers & 
posters (pp. 74-83). ACM.  

[25]. Knublauch, H., Fergerson, R. W., Noy, N. F., & 
Musen, M. A. (2004, November). The Protégé OWL 
plugin: An open development environment for 
semantic web applications. In International Semantic 
Web Conference (pp. 229-243). Springer, Berlin, 
Heidelberg.  

[26]. Miller, G. A. (1995). WordNet: a lexical database for 
English. Communications of the ACM, 38(11), 39-41. 

 


