
Journal of Applied Fluid Mechanics, Vol. 12, No. 3, pp. 961-969, 2019. 

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.29252/jafm.12.03.28816 

Electroosmotic Pressure-Driven Flow through a Slit 

Micro-Channel with Electric and Magnetic  

Transverse Field 

A. Moradmand1, M. Saghafian2† and B. Moghimi Mofrad3

Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran 

† Corresponding Author Email: saghafian@cc.iut.ac.ir 

(Received January 23, 2018; accepted September 18, 2018) 

ABSTRACT 

In the present study, flow through two-dimensional microchannel under an axial electric field, transverse 

electric and magnetic fields and with axial pressure gradient has been investigated numerically. Continuity and 

momentum equations were solved steadily with respect to the non-slip condition by using discrete finite volume 

method and a numerical code. The results show that in the presence of the axial electric field, applying 

transverse magnetic field reduces flow velocity. However, when the transverse electric field and axial electric 

field exist together, applying the transverse magnetic field increases the flow rate to a certain extent and then 

reduces the flow rate. Hartmann number like this amount of magnetic field is known as critical Hartmann 

number. Therefore, with the presence of transverse and axial electric fields and transverse magnetic field, the 

highest possible flow rate is for critical Hartmann number. It was also found that by increasing the pressure 

gradient within the microchannel, the critical Hartmann number decreases. Moreover, by increasing the 

transverse electric field, the sensitivity of critical Hartmann number to the pressure gradient decreases and its 

value tends to a specific number (about 1.5). 

Keywords: Microchannel; Electro-osmotic flow; Electro magneto hydro dynamic; Transverse electrical field; 
Critical hartmann number. 

NOMENCLATURE 

b induced magnetic field 

B applied externally magnetic field 

strength  

By applied magnetic field in y-direction  

Dh hydraulic diameter 

e charge of an electron 

E externally Applied electric field strength 

Ex externally Applied electric field in x-

direction 

Ez externally Applied electric field in z-

direction 

F body force vector 

FEK electrokinetic body force 

H microchannel half height 

Ha Hartmann number 

Hacr critical hartmann number 

J induced electric current density 

KB boltzmann constant 

L micro channel length 

n ionic number concentration 

n0 bulk concentration of the ions 

P pressure 

Rm Magnetic Reynolds number  

S dimensionless electric field in z-

direction  

T absolute temperature 

u flow velocity in x-direction

U dimensionless flow velocity in x-direction 

Uav dimensionless average flow velocity 

uHS Helmholtz-Smoluchowski 

uav average flow velocity in x-direction 

umax maximum flow velocity in x-direction 

Umax dimensionless maximum flow velocity 

v flow velocity in y-direction 

V flow velocity vector 

w flow velocity in z-direction 

Y dimensionless height 

Zi valency of ith ionic species 

α dimensionless electric field in x-direction 

ε relative permittivity of the medium  

ε0 permittivity of free space 

ζ wall zeta potential 

κ debye-huckel parameter 

K dimensionless Debye-Huckel parameter  

λD debye length 

µ viscosity of the electrolyte 

ρe electric charge density 

ρf electrolyte density 

σ electric conductivity of the electrolyte 
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φ electrostatic potential 

ψ electrical double layer potential 

Ω dimensionless pressure gradient 

 

 

1. INTRODUCTION 

Due to their numerous advantages and features, 

micro-electro mechanical systems (MEMS), are used 

in various fields such as industrial automation, 

chemical processing, safety and monitoring, medical 

diagnostics, power and propulsion, and printing and 

computers (Li, 2008). Fluid transfer mechanism in 

microchannel is one of the most important issues 

which should be considered in the evaluation of 

MEMS systems. Generally, micro-pumps are 

classified into general categories of mechanical and 

non-mechanical micropumps (Jang and Lee, 2000). 

In mechanical micropumps, some moving parts have 

been used to create the necessary pressure difference 

for fluid transfer. Due to numerous pressure drops at 

micro scale and complexity of moving parts 

fabrication in this scale, fluid transfer in this method 

may face with serious constraints. Non-mechanical 

micropumps have no moving parts and external 

electric and magnetic fields are usually used in them 

to move the fluid. This method is based on 

electrokinetic phenomenon which has been 

developed in a flow and has many applications in 

medical fields, such as drugs transmission with 

electrical conductivity characteristics and transfer of 

test samples. It also has applications in non-medical 

fields such as pumping a fluid, ionic fluids, mixing 

fluids, separation of impurities in the materials, flow 

control, etc (Al-Habahbeh et al., 2016). 

Electrokinetic effect was discovered for the first time 

by Reuss (1809). He showed that by applying an 

electrical voltage, water can flow in a conduit made 

of clay. However, this subject did not attract the 

attention of researchers for years till finally 

Smoluchowski provided the first analytical solution 

for electrokinetic phenomenon in electroosmotic 

flow in a simple channel and in the presence of 

Newtonian fluid (Li, 2004). Burgreen and Nakache 

(1964) examined electrokinetic flow of a Newtonian 

fluid in a microchannel consists of two parallel 

plates. After them, Rice and Whitehead (1965) used 

Debye-Huckel approximation for low zeta potential 

to investigate extended electro-osmotic flow in a 

circular cross section. Levine et al. (1975) studied 

electrokinetic flow in cylindrical channels at high 

zeta potential (approximately 100-200 mV) to 

develop the method of Rice and Whitehead (1965). 

Yang and Li (1997) examined electro-osmotic flow 

under a pressure gradient in a rectangular 

microchannel. To do so, non-linear Poisson-

Boltzmann equation was once solved numerically 

using finite-difference method and once analytically 

using Green’s function method. They stated that 

induced electrokinetic potential increases as the 

pressure difference increases, however, it decreases 

with an increase in the ionic concentration in 

solution. Patankar and Hu (1998) also provided a 

numerical solution for electro-osmotic flow in 

complicated geometries using computational fluid 

dynamics. Arulanandam and Li (2000) analyzed and 

examined an electro-osmotic flow of a Newtonian 

fluid in a rectangular microchannel. They solved 

Poisson-Boltzmann and momentum equation by the 

finite-difference method in two dimensions and 

obtained velocity distribution within the 

microchannels in terms of flow parameters. In this 

research, the effect of various factors such as the 

cross-sectional geometry, channel dimensions, zeta 

potential, ion density and the electric field on the 

velocity field and volumetric flow rate has been 

examined. Wang et al. (2004) conducted a work for 

simulation of two-dimensional fully developed 

laminar flow. They added Lorentz force to 

momentum equation as a source term instead of 

using the analytical solution of the Lorentz force 

applied to the fluid caused by magnetic field in 

momentum equation. The obtained velocity profile 

from this method is in good agreement with the 
experimental results. 

Chakraborty and Paul (2006) examined fluid flow 

under the effect of controlling forces of 

electromagnetohydrodynamic (EMHD) inside the 

microchannels which consists of two parallel plates 

by considering the pressure gradient. For a specific 

applied pressure gradient, the effect of electric and 

magnetic fields were analyzed. They showed that by 

using a relatively low-strength magnetic field and in 

the presence of a transverse electric, the volumetric 

flow rate increases. However, for a very high-

strength magnetic field and in the presence of a 

transverse electric field, volumetric flow rate 

decreases. Deng et al. (2012) studied unsteady 

electro-osmotic flow of a non-Newtonian fluid in a 

rectangular microchannel. They used linear Poisson-

Boltzmann equation obtained distribution of electric 

potential and solved the obtained momentum 

equations by using finite-difference method. In 

addition, the effects of fluid properties and geometric 

characteristics of the channel have been studied and 

then they expressed that by increasing the Debye-

Huckel parameter, velocity distributions in the 

channel tend to become more uniform. Chakraborty 

et al. (2013) were the first researchers who studied 

heat transfer characteristics of thermally fully 

developed electromagnetohydrodynamic flow 

between two parallel plates, under constant wall heat 

flux. They studied the effects of magnetic and 

electric fields on heat transfer by taking into account 

the viscous dissipation and Joule heating. Their 

results indicate that for a specific value of applied 

pressure gradient and the axial electric field, heat 

transfer characteristics in micro-scales can 

significantly change by controlling the applied 
magnetic field and transverse electric field. 

Escandón et al. (2014) conducted an analytical study 

on the flow field and the temperature of a viscoelastic 

fluid in a rectangular microchannel under the 

simultaneous effect of electric and magnetic fields 
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and pressure gradient. Their results showed that in 

the presence of electric and magnetic fields 

compared to the time when only the electric field is 

applied, without any increase in maximum 

temperature of the fluid, the volumetric flow rate 

increases approximately 40%. Moreover, the 

volumetric flow rate of Newtonian fluid flow 

compared to viscoelastic fluids is more sensitive to 

magneto hydrodynamic forces. Kiyasatfar and 

Pourmahmoud (2016) dealt with the numerical 

analysis of heat transfer and fully-developed steady 

laminar flow of an electrically conducting non-

newtonian fluid in a square microchannel, under a 

transverse magnetic field and taking into account the 

effects of viscous dissipation and Joule heating. The 

governing equations have been solved using finite 

difference method under the assumption of no slip 

condition and constant wall flux. The results 

indicated that an increase in Hartmann number 

reduces the maximum velocity of the fluid in the 

channel and increases the near-wall velocity gradient 

and results in a more uniform velocity profile. 

Moreover, Nusselt number reduces by an increase in 

the amount of viscous dissipation and Joule heating. 

In addition, the effect of Hartmann number on 

temperature field and Nusselt number depend on 

Brinkman number, and the severity of this 

dependence is defined as a function of the flow 

behavior index. Wang et al. (2016) conducted a 

study using Perturbation techniques and numerical 

solutions for EMHD flow of non-Newtonian fluids 

between two parallel micro-plates. They have found 

that in a particular fluid and electrical field, an 

increase in Hartmann number significantly reduces 

convection and thus reduces the temperature and 

velocity. However, the increase in the electric field 

strength increases the velocity distribution and 
temperature in a specific Hartman. 

The present study examines magneto 

electrohydrodynamic flow behavior of a Newtonian 

fluid in a two-dimensional microchannel in the 

presence of pressure gradient. For this purpose, flow 

equations under external fields are numerically 

solved at steady state by using finite volume method. 

Then, the effects of electric and transverse and axial 

magnetic fields on fluid flow inside the 

microchannels are investigated. Finally, in each 

transverse electric field, the critical Hartmann 

number was presented based on fluid flow in the 
microchannel. 

2. MATHEMATICAL MODELING 

2.1   Problem Definition and Assumptions 

In this article, the fluid flow through a microchannel 

between two parallel plates is studied under the 

constant and uniform electric and magnetic field. 

According to Fig. 1, a microchannel with height 2H, 

length L and under an axial electric field Ez along the 

x-axis has been presented. In addition, two transverse 

electric and magnetic fields perpendicular to the 

microchannel axis are applied: a transverse magnetic 

field By along a y-axis and a transverse electric field 

Ez in opposite direction of the z-axis. Coordinate axis 

is set in such a way that the x-axis is along the axis 

of channel microchannel and in line with it, there is 
an axial pressure gradient. 

Fluid examined in this study is a symmetric 

electrolyte solution (z+ = z− = z) which is Newtonian 

and incompressible and has constant physical 

properties. Moreover, according to aspects of the 

problem and physical properties of the fluid, the 

manetic Reynolds number Rm = µσuH <<1.0 has 

been assumed. The electrolyte solution is normally 

neutral. However, if it is in contact with the charged 

surface, electric double layer (EDL) is created near 

the surface. Nonhomonymous ions of the surface are 

attracted to the wall and form the Stern layer. Then, 

immediately stern layer forms diffuse layer where 

the ion density variation obeys the Boltzmann 

distribution (Li, 2004). The thickness of the layer 

depends on the concentration of the electrolyte 

solution and its electrical properties. The plane 

between the stern and diffuse layers in EDL is called 

the shear plane. Ions distribution through the EDL is 

shown by electric potential parameter ψ. Electric 

potential on the surface of the wall is called wall 

potential ψ0 and the electrical potential caused by the 

ions arrangement on the shear plane is called zeta 

potential ζ (Nguyen and Wereley, 2002). Finally, the 

movement of ionized liquid relative to the stationary 

charged surface which is as a result of an external 

electric field is called electro-osmotic flow 
(Karniadakis et al. 2006). 

 

 
Fig. 1. Channel view under external applied 

electric field 

 

2.2   Governing Equations 

in an incompressible and steady fluid flow with 

constant properties, the continuum and momentum 

equations under electric and magnetic fields are 

expressed as follows: 

. 0V


                                                                     (1) 

2( ( . ))f V V P V F 
   

                               (2) 

where V


 = u î + v ĵ +w k̂  indicates the velocity 

field, ρf fluid density, P pressure, µ the fluid 

viscosity, F


 volumetric force resulting from the 

application of electric and magnetic fields which can 

be obtained from the following equation 
(Chakraborty and Paul, 2006): 

EKF F J B
   

                                                                 (3) 

where B


 is the overall magnetic field applied to the 
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channel which is expressed as yB B j b
  

   .In this 

equation, yB j


 is magnetic field applied to the 

channel in the direction of the axis y and b


 is 

induced magnetic field caused by charged particle 

motions inside the channel. However, for small 

values of the magnetic Reynolds number (Rm 

1.0), induced magnetic field is insignificant 

compared to the external magnetic field and the 

effect of fluid flow on the magnetic field is negligible

yB B j
 

  (Davidson, 2001). J


is induced electric 

current density and EKF


 Electrokinetic volumetric 

force, or the force resulting from the application of 

electric fields on the fluid (electroosmotic force) and 

are obtained from equations 4 and 5, respectively 

(Davidson, 2001, Masliyah and Bhattacharjee, 
2006). 

( )J E V B
   

                                                                (4) 

EK eF E
 

                                                                     (5) 

where σ is electrical conductivity of the fluid, 

x zE E i E k
  

   external electric field and is 

obtained using the equation 


 E , where 

electric potential φ is caused by the voltage applied 

to the electrodes(Karniadakis et al. 2006). The Eq.5 

is for the case where there is a homogeneous and 

singlephase liquid (Karniadakis et al. 2006). In this 

equation, σe is electric charge density caused by the 

accumulation of oppositely charged ions near the 
wall (Masliyah and Bhattacharjee 2006). 

e i i
i

z en                                                                          (6) 

where z is absolute value of the ionic valence in the 

electrolyte, e the electron charge, and n the ionic 

number concentration. Moreover, ni is the ionic 

number concentration of the ion i located in a 

specific location can be expressed as a function of 

the electric potential of the same location and is 

calculated by Boltzmann distribution equation 

0 exp( )i
i

B

z e
n n

k T


  (Masliyah and Bhattacharjee, 

2006). In this equation, ni is the number 

concentration of ion i, n0 ionic concentration of ion i 

in neutral condition, zi valence number of ion i, kB 

Boltzmanns constant and T temperature and ψ 

electric potential caused by the electric double layer. 

By combining the Eq. 6 and Boltzmann distribution 

and with the assumption of symmetric electrolyte (z+ 

= z− = z), Eq. 6 is changed into the following 

equation. 

02 sinh( )e
B

ze
zen

k T


                                                      (7) 

To obtain the electric potential distribution and 

concentration of ions caused by the presence of a 

charged surface in a neutral dielectric environment is 

created, Poissons equation can be used as follows, 
(Masliyah and Bhattacharjee, 2006): 

2

0

e


                                                                        (8) 

where ε0 is the vacuum permittivity (electric field 

distribution due to the concentration of ions in a 

vacuum), and ε is the dielectric constant of the 

electrolyte solution. By substituting Eq. 7 in Eq. 8, 

Poisson-Boltzmann equation governing the electric 

potential distribution caused by the electric double 

layer can be obtained. For a microchannel consists of 

two parallel planes, one-dimensional Poisson-
Boltzmann equation is used. 

2
0

2
0

2
sinh( )

B

zend ze

k Tdy






                                                (9) 

By defining the non-dimensional electric potential Ψ 

= zeψ/(kBT ), if the electric potential is small 

compared to the thermal energy of the ions, i.e. |zeψ| 

< |kBT | → Ψ 1 , in Eq. 9 an approximation sinh 

(Ψ) = Ψ with sufficient accuracy can be done. This 

approximation is called the linear Debye-Huckel 

approximation (Li, 2004). For a better 

understanding, in a solution with a temperature of 25

 C ,if the potential of the surface is ψ 25.7mV , 

then Ψ 1 (Hunter, 2013). With defining Debye-

Huckel parameter 

12 2
0 2

0

2
( )

b

n z e

k T



 the simplified 

Poisson-Boltzmann equation which represents the 

electric potential distribution ψ in the electric double 
area can be obtained. 

2
2

2


 

d

dy
                                                                     (10) 

By means of Eq.10, ψ is calculated, and then by using 

the Eq. 8 , ρe can be obtained. By adding the results in 

Eq. 5, the value of FEK can be achieved. Finally 

simplified momentum equation for the electro-osmotic 

flow in a two-dimensional microchannel under applied 

magnetic and electric fields can be obtained as follows: 
Momentum in the direction of x: 

2 2

2 2

2

f

e x z y y

u u P u u
u v

x y x x y

E E B uB

 

  

      
      

        

  

       (11) 

Momentum in the direction of y: 

2 2

2 2f

v v P v v
u v

x y y x y
 

      
      

        

        (12) 

In this article dimensions, velocity, transverse and 

axial electric field, magnetic field, and pressure 
gradient are expressed non-dimensionally. 
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y
Y

H
           0 x

HS

E
u




         

HS

u
U

u
  

max
max

HS

u
U

u
    

avg
avg

HS

u
U

u
              Ha HB




   

xE L



         z

HS

HE
S

u




            

2

HS

H dP

u dx
     


 

B

ze

k T
        K H              mR uH     (13) 

2.3   Boundary Conditions 

The governing equations are solved by taking into 
account the following boundary conditions. 

Inlet: 

inu u ,                0v  ,                0               (14) 

where uin is velocity in the input cross-section Outlet: 

0
u

x





,           0

v

x





,         0                        (15) 

Wall condition: 

No slip: 0u           at             y H           (16a) 

                       at             y H              (16b) 

2.4   Numerical Procedure 

The obtained equations are discretized by using a 

numerical code as finite-volume with the 

implementation of QUICK method on a collocated 

grid, and they have been resolved by applying 

SIMPLEC pressure-correction algorithm. In order to 

evaluate independence of the solution from the grid, 

simple flow through a two-dimensional 

microchannel (between two parallel plates) without 

a magnetic field and without transverse and axial 

electric fields has been resolved for grids with nodes 
50 × 10, 100 × 20, 200 × 40 and 400 × 80. 

In Fig. 2 developed velocity profile in a 

microchannel cross-section for four grids has been 

considered. Since with a change in the solution grid, 

from grid 200 × 40 to grid 400 × 80, the percentage 

of change is very low (approximately 0.28%), the 
grid 200 × 40 is selected to solve the problem. 

2.5   Results Validation 

In this section, by using the obtained grids in the 

previous section (grid 200 × 40), the results of this 

study are validated. To validate the results obtained 

from combining electric fields and magnetic field for 

fluid flow through a long, narrow parallel-plate 

channel with a gap height of about 200 µm, 

Chakraborty et al. (2013) results have been used. To 

validate the obtained results from applying a single 

magnetic field on fluid flow through a parallel plate 

channel, Lahjomri et al. (2003) results have been 

used. Fig. 3a shows the transverse changes in 

developed velocity of flow in a microchannel 

influenced by axial and transverse electric field and 

transverse magnetic field. Non-dimensional 

magnetic field (in the direction of the axis y) with 

Ha=0.5, non-dimensional transverse electric field (in 

the direction of the axis z) with S=50, and non-

dimensional axial electric field (in the direction of 

the axis x) with α = 4500 are applied to the fluid flow. 

In addition, non-dimensional Debye-Huckel 

parameter is K = 4, and non-dimensional pressure 

difference is Ω = 1. As can be seen, the profile 

obtained in this study almost conforms to the 

velocity profile provided by Chakraborty et al. 

(2013). Fig. 3b shows developed velocity profile 

within a microchannel flow under the influence of 

transverse a magnetic field in the direction of the axis 

y with Ha=5 and non-dimensional pressure Ω = 1. As 

can be seen, the answer derived from this study fully 

conforms to the Lahjomri et al. (2003) developed 

velocity profile. 

 

 
Fig. 2. Examining the independency of the 

solution grid, non-dimensional velocity diagram. 

 
 

 
Fig. 3. Developed velocity diagram in 

microchannel cross-section under the influence 

of (a) Ha=0.5, S=50, α = 4500, K=4, Ω = 1. (b) 

Ha=5 and Ω = 1. 

 

3. RESULTS 

Fig.4 shows graph of developed flow velocity 

within the microchannel under the influence of 

various axial electric field and transverse magnetic 
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field and transverse electric field regardless of the 

transverse electric field. In this case, the non-

dimensional axial electric field (along the axis x) 

with the value of α = 4500, the magnetic field 

perpendicular to the axis of the microchannel (in the 

direction of the axis y) with different values of 

Hartmann numbers in constant non-dimensional 

axial pressure difference Ω = 1, and K = 1 have been 

applied to the fluid. Since in this figure axial 

pressure difference within the microchannel has 

been considered constant, changing the axial force 

applied to the fluid changes the flow rate. As can be 

seen in Figure, as Hartmann number increases, flow 

velocity (and therefore flow rate) decreases. The 

existence of axial electric field creates 

electrokinetic force to the fluid. The term ρeEx on 

the right hand side of the momentum equation (Eq. 

11) represents the axial force. Electric density of the 

electrolyte solution (ρe) near the wall has the 

maximum value and is negligible in other areas. The 

electrokinetic force is applied into the near-wall 

fluid and makes it move. Due to molecular diffusion 

of momentum, momentum applied to the near-wall 

fluid is transferred to fluid layers away from the 

wall. The velocity profile in the channel under the 

influence of axial pressure gradient is parabolic. 

However, in the absence of pressure gradient under 

the influence of electrokinetic force, electro-

osmotic flow with flatter velocity profile is created. 

If a transverse magnetic field (By) is applied to the 

fluid flow within the microchannel which is under 

the influence of pressure difference and axial 

electric field, as mentioned in the governing 

equations, a force which is against the direction of 

flow −σuBy
2 is applied to the fluid. With the 

increase in transverse magnetic field (increasing 

Hartmann number Ha), more deterrent force applied 

to the fluid which reduces the velocity in the 

microchannel. However, the existence of axial 

electric field makes the electro-osmotic force apply 

to the fluid surrounding the wall. This may make the 

velocity near the wall of channel become greater 

than the flow rate in the axis of the channel; 

moreover, the concavity of profile velocity may 

change in microchannel cross-section. As can be 

seen in Fig. 4 this phenomenon occurs at high 
Hartmann numbers.  

 

 
Fig. 4. Developed velocity diagram in 

microchannel cross-section under the influence 

of a transverse magnetic field and α = 4500. 

a  

 

b  

Fig. 5. Developed non-dimensional velocity 

diagram in microchannel cross-section under the 

influence of S=5, α = 4500, K=4, Ω = 1 for a. Ha 

≤ 1, b. Ha ≥ 1. 

 
 

Fig. 5a shows the influence of applying a non-

dimensional axial electric field α = 4500 and the non-

dimensional transverse electric field S=5 on velocity 

profile of flow in a microchannel for Ha ≤ 1 , K=4 

and non-dimensional pressure difference Ω. As can 

be observed, in this range of Hartmann number, the 

existence of transverse electric field has led to a 

situation in which the velocity changes are opposite 

the time no-transverse electric field is present. This 

means that in this case, as Hartmann number 

increases, flow velocity increases. Fig. 5b shows the 

influence of applying a non-dimensional axial 

electric field α = 4500 and the non-dimensional 

transverse electric field S=5 on velocity profile of 

flow in a microchannel in numbers Ha ≥ 1, for K=4 

and non-dimensional pressure differenceΩ = 1. As 

can be seen, velocity changes for this range of 

Hartmann number despite the presence of transverse 

electric field are opposite the Ha ≤ 1 numbers 

(Fig.5a). In the range of Ha ≥ 1, as Hartmann number 

increases, flow velocity decreases like the time the 

transverse electric field is not present. This 

phenomenon has also been reported by Chakraborty 

et al. (2013). According to Fig. 5, apparently when 

the transverse electric field is present, with an 

increase in Hartmann number to a certain amount, 

flow velocity increases and after that the flow 

velocity decreases by increasing Hartmann number. 

This specific amount of Hartmann number is called 
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critical Hartmann number (Hacr) (Chakraborty et al. 

(2013)). In Fig. 6a maximum velocity diagram has 

been plotted for S=0.5 and in Fig. 6b the maximum 

velocity has been plotter for S=5, according to 

Hartmann number. These figures are plotted for α = 

4500, K = 4, and the non-dimentional pressure 

difference Ω = 1. By using Fig. 6 the exact amount 

of critical Hartmann number for transverse electric 

fields S=0.5 and S=5 can be achieved. This value for 

S=0.5 equals 0.188 and for S=5 equal to 1.025 . The 

existence of critical Hartmann number is due to the 

fact that applying transverse magnetic field in a 

positive direction of the axis y and transverse electric 

field in the opposite direction of the axis z, 

respectively, creates a simultaneous applying of 

deterrent force and a driving force to the fluid in the 

microchannel. The effect of these two forces in the 

momentum equation is inserted as σEzBy − σuBy
2. In 

a constant transverse electric field, as long as by 

increasing the amount of magnetic field the total of 

two stated terms is a positive value, a force in line 

with the flow is applied to the fluid and increases the 

flow velocity. However, the process of increase in 

the flow velocity reduces as the magnetic field 

gradually increases. Then at a specific value of the 

magnetic field, corresponding to the critical 

Hartmann number (Hacr), the increase in velocity 

stops and from then by increasing the magnetic field, 

the volumetric force applied to the fluid is reduced. 

Fig. 6 has only covered two specific values of the 

transverse electric field; however, this process can be 

generalized to different transverse electric fields. For 

this purpose, for various values of the parameter of 

non-dimensional transverse electric field S in a 

similar way, Hacr is calculated. Fig. 7 shows Hacr in 

terms of S. Fig. 7 consists of two parts: the first part 

in which the critical Hartmann numbers has been 

shown in terms of the amount of transverse electric 

field S in the non-dimensional pressure difference Ω 

= 1. for S > 1 and the second part has been shown for 

values S ≤ 1. Chakraborty et al. (2013) by plotting 

Nusselt number in terms of Hartmann number in 

different transverse electric fields stated that in some 

of the transverse electric fields 0.8 ≤ S ≤ 100 , there 

are two distinct flow regimes. In the first regime, by 

increasing the Hartmann number, the value of 

Nusselt decreases and in the second regime by 

increasing the Hartmann number the value of Nusselt 

number increases. When the Hartmann number 

changes for this reason, they call it critical Hartmann 

number. It also stated that in the range of 0.8 ≤ S ≤ 

100, Hartmann number is located within the range of 

0.7 ≤ Hacr ≤ 2 and for values of S < 0.8 critical 

Hartman number is no longer existed. However, the 

results of present work show that by increasing S, 

value of critical Hartmann number increases rapidly 

at first and then its growth rate slows. According to 

Fig. 7, it can be said critical Hartmann number for 

values of S > 100 tends toward a specified amount 

(about 1.5). Fig.8 has plotted the average velocity of 

the fluid in the microchannel in case of applying 

Hacr to the flow, according to different values of S 

for Ω = 1 and K=4. By using these figures, maximum 

rate and flow rate from the microchannel can be 

achieved for a certain amount of transverse electric 

field. In Fig. 9 critical Hartmann number in terms of 

non-dimensional transverse electric field S for α = 

4500 , K=4 , has been plotted at various pressure 

differences. As can be seen, by increasing the axial 

pressure difference, the critical Hartmann number 

decreases. Because, by an increase in the pressure 

difference, the force caused by applying the external 

magnetic field to the fluid, decreases and the force 

caused by the pressure difference increases. If the 

pressure difference increases, the flow velocity in the 

microchannel increases. Therefore, the term of 

σuBy
2 , on the right hand side of the momentum 

equation in the direction of the axis x will have 

higher values and as a result, the total two right hand 

side terms of the momentum equation σEzBy − σuBy
2 

reaches to its maximum at a lower Hartmann 

number. Fig. 10 has plotted critical Hartmann 

number in terms of non-dimensional pressure 

difference influenced by the non-dimensional axial 

electric field α = 4500 , K=4 and three different 

values for transverse electric field. As can be seen 

with an increase in the amounts of the transverse 

electric field, the decreasing trend in the critical 

Hartmann number becomes less due to the increase 

in pressure difference. Therefore, it can be said at the 

high values of transverse electric fields, the effect of 

pressure difference on the behavior of the critical 
Hartmann number becomes less. 

 

a  

 

b  

Fig. 6. Developed maximum velocity diagram of 

the flow in microchannel under the influence of 

α = 4500, K=4, Ω = 1 according to Hartmann 

number for a. S=0.5, b. S=5. 
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Fig. 7. Diagram of critical Hartmann numbers in 

terms of transverse electric field. 

 
 

 
Fig. 8. Mean flow velocity diagram in terms of 

the transverse electric field in the critical 

Hartmann numbers. 

 
 

 
Fig. 9. Diagram of critical Hartmann numbers in 

terms of parameter S for different non-

dimensional pressures. 

 

 
Fig. 10. Diagram of critical Hartmann number in 

terms of non-dimensional pressure for different 

values of the non-dimensional transverse electric 

field. 

 

4. CONCLUSION 

In the present work, electromagnetic hydrodynamic 

flow (EMHD) of electrolyte solution consisting of an 

axial electric field and traverse magnetic and electric 

fields inside the two-dimensional microchannel was 

studied. Flow equations were solved numerically by 

assuming non-slip condition on the walls and under 

a constant pressure gradient. By defining critical 

Hartmann number (Hacr) as the Hartmann number 

for which the maximum flow rate and consequently 

the maximum flow velocity is created, the critical 

Hartmann number for various values of the non-

dimensional transverse electric field (S) is obtained. 

For this purpose, by plotting the diagram of 

maximum velocity as a function of Hartmann 

number in each non-dimensional transverse electric 

field, the Hartmann number for which the maximum 

velocity Umax is achieved has been selected as the 

critical Hartmann number. Therefore, the critical 

Hartmann numbers for different values of the 

transverse electric field were obtained in the range of 

0 < S < 100 , and it became clear that with this 

criterion for all values of S, Hartmann number is 

critical. This result is in contrast with the result of 

Chakraborty et al. (2013) which has suggested that 

for values of S < 0.8 , critical Hartman number no 

longer exists. The results showed that in the non-

dimensional axial electric field α = 4500 and non-

dimensional Debye-Huckel parameter K = 4, By 

increasing the amount of S, Hacr number tends 

toward a constant value (about 1.5). It has also been 

shown that by increasing the amount of non-

dimensional pressure difference, for each specific 

value of number S, the number Hacr is reduced. 

However, the effect of pressure changes on Hacr 

number in high values of number S reduces. 

Moreover, it can be said that in high values of S, the 

pressure differences on the critical Hartmann number 

are less effective. 
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